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Abstract

Background: We considered the prediction of cancer classes (e.g. subtypes) using patient gene expression profiles that
contain both systematic and condition-specific biases when compared with the training reference dataset. The
conventional normalization-based approaches cannot guarantee that the gene signatures in the reference and prediction
datasets always have the same distribution for all different conditions as the class-specific gene signatures change with
the condition. Therefore, the trained classifier would work well under one condition but not under another.

Methods: To address the problem of current normalization approaches, we propose a novel algorithm called CrossLink
(CL). CL recognizes that there is no universal, condition-independent normalization mapping of signatures. In contrast,
it exploits the fact that the signature is unique to its associated class under any condition and thus employs an
unsupervised clustering algorithm to discover this unique signature.

Results: We assessed the performance of CL for cross-condition predictions of PAM50 subtypes of breast cancer by using
a simulated dataset modeled after TCGA BRCA tumor samples with a cross-validation scheme, and datasets with known
and unknown PAM50 classification. CL achieved prediction accuracy >73 %, highest among other methods we evaluated.
We also applied the algorithm to a set of breast cancer tumors derived from Arabic population to assign a PAM50
classification to each tumor based on their gene expression profiles.

Conclusions: A novel algorithm CrossLink for cross-condition prediction of cancer classes was proposed. In all test
datasets, CL showed robust and consistent improvement in prediction performance over other state-of-the-art
normalization and classification algorithms.

Background
The rapid development of high-throughput technologies
including microarray and high-throughput sequencing
have significantly advanced our understanding of disease
including cancer [1]. Torrent of gene expression profiles
from cancer cell lines and patient samples have been

and are being made available by efforts ranging from
large group projects such as The Cancer Genome Atlas
to individual labs [2–4]. Significant efforts have been
devoted to developing new genomic approaches using
gene expression and other genomic data for cancer
diagnosis and prognosis [5]. As exciting new results
generated from these research efforts continue to chal-
lenge our knowledge of cancer, these efforts are also
poised to revolutionize the practice of cancer therapy. A
large number of gene expression based biomarkers such
as PAM50 have been reported to improve cancer classi-
fication and prediction of therapy response [6–10].
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As exciting as these new discoveries are, their translation
from laboratories to real clinical practice remains a chal-
lenge. Overcoming systematic and condition-specific biases
presented in expression data as a result of different tech-
nological platforms, varying experimental/measurement
conditions, and heterogeneities in the patient age, gender
and race continues to be an issue yet to be completely
addressed. Although improved standards in uniform
experimental and clinical protocols have and will help
reduce the systematic biases, eliminating biases specific to
experimental/clinical conditions, patient individuals, tech-
nology/platforms would be more effective dealt with by
using computational algorithms. The well-known Micro-
array Quality Control project (MAQC) spearheaded the al-
gorithm development in this front and demonstrated that
through careful algorithm-based normalization, consistently
differentially expressed genes can be reproduced in data
produced from different platforms [11]. Since then, many
algorithms have been reported to address different aspects
of cross-platform data normalization [12–17]. However,
removing biases from different platforms might require
using different normalization algorithms. Furthermore, the
problem of mitigating condition-specific bias due to dif-
ferences in experimental/clinical conditions and patient
characteristics has not been given sufficient attention.
Therefore, a normalization algorithm may work well under
one condition but not under another [12].
In this paper, we consider the problem of predicting

cancer classes (e.g. subtypes) based on patient gene
expression profiles. Particularly, a reference expression
dataset is assumed available, where the true cancer class
labels for each sample are known. However, compared
with the reference dataset, the prediction dataset is gener-
ated using a different platform, from patient samples of,
for instance, different races, and collected under a dif-
ferent condition. That is, we assume that the prediction
dataset contains both systematic and condition-specific
biases. Currently, the mainstream practice to this
prediction starts by first normalizing the reference and
prediction dataset so that both can follow the same
desired characteristics (e.g. distribution). Then, a classifier
is trained using the normalized reference dataset, which
would produce a set of signature genes, accompanied also
by their associated class-specific expression signatures
[14]. This gene-signature based classifier is finally applied
for cancer class prediction in the prediction dataset. The
premise for the trained classifier to work well is that the
distributions of the label-specific gene signatures in the
reference and prediction datasets should remain similar
after normalization. However, when both systematic and
condition-specific biases are present in data, it cannot be
guaranteed that a normalization algorithm can map the
gene signatures in the reference and prediction datasets
to have the same distribution for all different

conditions. As a result, the trained classifier would
fail under a different condition (Fig. 1), where one will
have to train a new classifier after applying a different
normalization algorithm.
To address the problems of current normalization

based approaches, we propose a novel algorithm called
CrossLink (CL). The CL algorithm represents a complete
departure from the current normalization-classification
paradigm. CL only assumes that each cancer class is
associated with a set of signature genes, which are inde-
pendent of the conditions. However, CL recognizes that
although for a specific condition, the signature genes
should define a unique, cancer class-specific gene expres-
sion signature but this signature changes under a new
condition. Moreover, the change in the signature is
condition-specific and there is no universal, condition-
independent normalization mapping of signatures. As a
result, unlike existing normalization-based algorithms, CL
does not attempt to explore a mapping of the signatures
across different conditions; in contrast, it exploits the fact
that the signature is unique to its associated class under
any condition and thus employs an unsupervised cluster-
ing algorithm to discover these unique signatures (Fig. 1).
The rest of the paper is organized as follows: In

Methods, the workflow of CL is discussed in details. In

Fig. 1 General idea of CL. Due to condition-specific biases,
the existing normalization algorithm might fail to normalize
the distributions of class-specific gene signatures in the reference
and prediction datasets. Therefore, the classifier trained using the
reference dataset would not work well for the prediction dataset
(top right figure). Unlike normalization based approach, CL
exploits the fact that the signature is unique to its associated
class under any condition and thus employs an unsupervised
clustering algorithm to discover this unique signature, hence
the class label (bottom right figure)
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Results, we demonstrate the improved, robust perform-
ance of CL using both simulated and real data. The con-
cluding remarks are drawn in Conclusion.

Methods
Problem definition and CL algorithm details
Suppose that we are given a reference dataset that mea-
sures global gene expression of a set of known cancer
classes (e.g., PAM50 subtypes). The problem that CL
addresses is to predict the cancer classes for a set of new
expression data samples collected under a different con-
dition. The workflow of the CL algorithm can be divided
into two steps: signature gene set identification and class
prediction. For the first step, the goal is to identify the
signature gene sets for each cancer classes from the ref-
erence dataset. For the second step, the signature gene
sets are used to predict the class labels for the prediction
dataset. The details of these two steps will be discussed
next. Notice that before implementing CL, gene entries
of data samples from reference and prediction datasets
need to be mapped into a set of common reference en-
tries. By default, CL uses the common Gene Symbol as
the reference entries. A data entry is removed from all
samples if no entry in any samples can be mapped.

Signature gene set identification
As commonly defined, the signature gene set of a cancer
class include genes that show uniquely differential
expression in that class. Analysis of Variance (ANOVA)
solves such problem. Suppose that there are N classes
and the reference dataset contains M genes. A one-way
ANOVA model is then proposed for each gene expression

Gi ¼ gi þ αk þ � ð1Þ
where k = 1…N, Gi is the gene expressions of the ith
gene in all samples, gi is the ambient expression of this
gene while αk represents the unique effect of the kth class
on the gene expression, and ε ~N(0, σ) denotes the zero-
mean noise. The ANOVA analysis identifies these signa-
ture genes for each class by testing the hypothesis

H0 : all αk ¼ 0 ð2Þ
against the alternative hypothesis

H1 : at least one αk ≠ 0: ð3Þ
A multiple comparison procedure such as Benjamini-

Hochberg is applied to calculate the False Discovery
Rates (FDRs) for each gene and the genes that are tested
significant (FDR>0.05) for a class are determined as the
candidate gene of the signature gene set of that class. An
additional filtering step is followed to reduce the pos-
sible false positive signature genes. The filtering imposes
three expression conditions on every candidate signature

genes, first, the candidate signature gene should have
the largest absolute average expression in the class it test
significant for; second, a lower limit is introduced on the
difference of average expression between the class it
tested significantly for and the rest; and third, a lower
limit is introduced on the absolute average expression of
the class it is testing. The leave-one-out cross-validation
was applied to determine the limits that yield the best
classification outcomes. Only those candidate genes that
satisfy all three conditions will be retained to form the
final signature gene sets. In the end, N signature gene
sets will be obtained.

Class prediction
Once the signature gene sets are determined for each
class, the next step is to predict the class labels for a
new set of data samples. As opposed to using a sup-
ervised approach that performs the prediction with a
classifier trained on the (normalized) training data set,
CL employs a novel unsupervised solution. Since we
assume that each signature gene set possesses a unique
expression signature for the corresponding class, it
would be natural to expect that the class-specific gene
set can separate the dataset into two groups: one that
belongs to the target class that the gene set is associated
with and the other one that contains samples from other
classes. Therefore, CL employs the K-means clustering
[18] to group the dataset into two clusters and this is per-
formed for each of the N signature gene sets independ-
ently. For each of the clustering results, the cluster with a
higher absolute average expression value is determined
target class, whereas the other cluster is determined as the
non-target class. Now that each sample can be assigned
with a target class label for any of the N classes, a sample
can be associated with multiple class labels. To resolve
this ambiguity, a multiple call adjustment procedure is
proposed. Specifically, for each class j that is assigned to a
sample i, a confidence score Si,j is calculated as:

Si;j ¼ p1 � p2 ð4Þ

Where

p1 ¼ −logðPðGj

��μj;nt; σ j;ntÞ� ð5Þ

p2 ¼ −logðPðμj;t− μj;nt
��t0;sp;n1þn2−2Þ� ð6Þ

where j = 1,…, k. Since for each class specific signature
gene set, the clustering algorithm separates the dataset
into two clusters: class target clustering and class non-
target cluster. We further assume that the class target
cluster can be modeled by a normal distribution N1(μj,t,
σj,t) and the non-target cluster by another normal distri-
bution N2(μj,nt, σj,nt). The first criteria p1 calculate the
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probability of samples in the class j’s gene set under the
hypothesis that the non-target cluster distribution is
true. This probability essentially measures the distance
from the sample to the center of the class non-target
cluster center. The second criteria p2 calculate the prob-
ability of μj,t − μj,nt under the hypothesis that the differ-
ence of two means follows a student t distribution
tðt0;sp;n1þn2−2Þ where means is 0, variance sp is the pooled
variance of two normal distribution N1 and N2, and de-
gree of freedom is n1 + n2 − 2, where n1 and n2 are the
sample size of class target cluster and class non-target
cluster respectfully. This probability is essentially a two-
sample t test, measures the distance between the class
target cluster and class non-target cluster. It is obvious
that both two criteria are maximized to yield a higher
confidence level. A confidence score is determined by
multiplying these two criteria together. The class with
the highest confidence will be assigned to the sample

Labeli ¼ argmaxj ðSi;jÞ ð7Þ

A metric for evaluating PAM50 subtype prediction
using ER and PR status
We investigated CL performance for cross experiment pre-
dictions of PAM50 subtypes (See Results for details). How-
ever, the true PAM50 subtypes are rarely available for most
of the prediction datasets and when this is the case, direct
evaluation of the CL performance is infeasible. In contrast,
the pathological biomarker assessments of the estrogen re-
ceptor (ER) progesterone receptor (PR) are much more ac-
cessible for most of the patient samples. Particularly, in a
recent study, over 800 breast cancer patients were genetic-
ally profiled and their PAM50 subtypes tested by a novel
RT-qPCR approach that is independent of microarray plat-
form and their ER and PR status were recorded [19]. This
study inspired us to propose an indirect evaluation of the
PAM50 classification result by seeking a link between the
ER-PR markers status and PAM50 subtypes. Table 1 tallies
the distribution of patients from this study over a classifica-
tion based on both ER-PR status and PAM50 subtypes.
Based on Table 1, the empirical conditional probability of
each PAM50 classification given an ER-PR status, or
P(PAM50|ER, PR) can be calculated, which can be used as
the confidence level of predicting a PAM50 subtype given

its ER-PR status. For example, if a patient was ER+ and PR
+, then from Table 1, we can infer that our confidence of
PAM50 prediction as the subtype LumA is 45.64 %. Notice
that another important assessment HER2-status is also
available and could be included into our analysis, but it is
not as commonly documented as ER and PR. Because of
this reason Her2 status is not included in our assessment.
However, including Her2 could further improve the per-
formance and is very straight forward as we explained. Over
all, in the absence of true PAM50 labels, we propose the
Indirect Summed Evaluation Probability (ISEP) to evaluate
the PAM50 prediction results and ISEP is calculated as

ISEP ¼
XN

n¼1ðPAM50n
��ERn;PRnÞ ð8Þ

where N represents the size of the prediction dataset.
Since different dataset certainly have different PAM50 class
label rates, this difference in the class label rates could yield
an accidentally equal ISEP. Also, because the conditional
probability of each PAM50 class does not equal to each
other, although the ISEPs of two experiments may differ,
they could infer the exact same classification accuracy. Be-
cause of these reasons, we want to point out that the ISEPs
for two datasets should not be compared.

Code implementation and development environment
All algorithms are designed and implemented under
Matlab R2013a. Function ‘anova1’ is used in the signature
selection; function ‘kmeans’ is used in the classification
procedure. The designed algorithm is also implemented
with R (version 3.1.1). The R code and an example dem-
onstrating the whole pipeline are provided to show how to
extract signatures from a reference dataset and how they
can be used to classify independent cross-condition sam-
ples. The package can be downloaded from http://comp-
genomics.utsa.edu/CrossLink/CL_R.zip.

Data collection for Arabic breast cancer patients
The study was approved by the Institutional Review
Board of Weill Cornell Medicine-Qatar and the Hamad
Medical Corporation’s Ethics Committee, Doha. All sub-
jects signed informed consent documents for participa-
tion in this study. The diagnosis of cancer was
confirmed by histopathologic analyses. Expression of ER,
PR and Her2 was revealed by immunohistochemistry.
Human breast cancer tumor samples and non-malignant
healthy breast tissues were collected, immediately placed
in RNAlater solution and frozen at -80 °C until further
use. RNeasy Minikit (Qiagen) was used to extract and
purify RNA from these breast tissue samples. The Gene-
Chip Human Genome U133A 2.0 Array (Affymetrix)
was used to explore the differentially expressed genes ac-
cording to manufacturer’s instructions.

Table 1 Distribution of patients on PAM50 subtypes and
ER-PR status

LumA LumB Her2 Basal Normal

ER+,PR+ 246 188 78 4 23

ER+, PR- 12 51 33 3 6

ER-, PR+ 15 5 3 4 1

ER-, PR- 4 17 60 59 2
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Results
This section is separated into three parts: (1) the ability of
CL for PAM50 classification is first demonstrated in sev-
eral scenarios; (2) the application of CL on Cancer2000
classification is then demonstrated; (3) a Qatar breast
cancer patients’ Microarray data analysis is conducted.

Cross-experiment prediction of PAM50 breast cancer
intrinsic subtype
PAM50 breast cancer intrinsic subtype is a gene expres-
sion based classification system that includes five breast
cancer subtypes: Luminal A (LumA), Luminal B (LumB),
Her2 enriched (Her2), Basal and Normal-breast like
(Normal) [20]. It has been well studied and has the
ability to predict patient’s survival [19, 21, 22]. The
PAM50 system is also accompanied by a 50-gene based
classifier for subtype prediction based on an expression
data. However, the usage of this classifier requires the
prediction datasets to be also generated from the same
platform as that of PAM50 (Agilent Human 1A Oligo
Microarrays). Otherwise the prediction accuracy would
suffer significantly due to platform bias [23]. This limita-
tion underscores the need for a system that can faithfully
map the PAM50 classification to samples generated
from a different platform.

PAM50 prediction of a simulated dataset
We first evaluated CL on a simulated dataset, where the
true class labels for the test samples are known. Breast
Cancer Patient Microarray dataset (BRCA) from The
Cancer Genome Atlas (TCGA) [24] was used in this ex-
periment. This dataset includes over 500 microarray
samples as well as detailed clinical information of breast

cancer patients. BRCA dataset also includes PAM50 sub-
types for each sample. This dataset will be used as the
reference dataset for all PAM50 prediction cases. To
simulate a cross-experiment prediction, a five-fold cross-
validation scheme was implemented, where in each
cross-validation, the four folds of dataset was considered
as the reference set and the other one fold was used as
the prediction set. To simulate the effect of the cross-
experiment bias in the prediction set, the experimental
bias was added to each gene expression value Gij accord-
ing to the following model:

Gij ¼ gij þ αi þ �ij ð9Þ

where Gij is the gene expression of the ith gene in the
jth sample of the prediction dataset, αi ~N(0, σ2) is the
experimental bias for gene i and is constant across all
the samples, and εij ~N(0, σ1

2) models the sample-
specific noise. Notice that the experimental biases are
different for different genes. These gene-specific biases
simulates the varying influence of a different experimen-
tal condition on the expression of different genes. In this
experiment, we investigated the robustness of CL predic-
tion against experimental bias, where we let σ2 equal to
0.5 and σ1

2 ranged from 0 to 7.
The prediction performance of CL and seven state-of-

the-art cross- platform normalization algorithms are
shown in Fig. 2. These seven algorithms include Cross-
Platform Normalization (XPN) [12], Distance Weighted
Discrimination (DWD) [13], Empirical Bayes (EB) [14,
15], Median Rank Scores (MRS) [14], Quantile Discreti-
zation(QD) (Warnat, et al., 2005), Distribution Transfor-
mation(DisTran) [16], and Gene Quantiles (GQ) [17].

Fig. 2 Comparison of CL and seven cross platform normalization + SVM algorithms for PAM50 classification accuracy. Horizontal line represents
the level of experimental bias level and vertical line represents the classification accuracy
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For each algorithm, a Support Vector Machine (SVM)
based one-vs-the-rest multi-class classification algorithm
was applied to the normalized data for class label predic-
tion. In order to keep the genes used in our CL to be the
same as those in SVM to obtain a fair comparison, SVM
was applied on the pooled gene signature set obtained in
the CL procedure. Overall, CL produced the best predic-
tion performance at all bias levels. Interestingly, even at
no bias, CL outperformed all seven other normalization
algorithms, where CL obtained a classification accuracy
of 0.75, which improved 0.13 percentage points over the
best performing normalization algorithm (DisTran at
0.6393). The reason of this could because that the
normalization algorithms actually introduced more arti-
ficial bias into the system because it assumes there was
bias between training and testing datasets. Moreover, the
performance of CL remained robust against the increase
of the experiment biases. In contrast, four of the seven
normalization algorithms suffered different degree of
performance degradation with the increase of the experi-
mental bias. Taken together, these results suggest that
CL not only can obtain improved performance when no
experimental bias present, but is also immune from the
influence of constant, gene-specific experimental bias.

PAM50 prediction for the UNC breast cancer dataset
We carried out next an evaluation of CL performance on
a real dataset: the UNC breast cancer patient dataset. In
this case, the PAM50 subtypes are available and the
prediction performance can be directly evaluated. The
data samples were collected from Gene Expression Omni-
bus (GEO) under the data entry GSE2740 [25]. Out of all
samples from the entire dataset, 349 samples from the
platform GPL1390 were extracted. We used the TCGA-
BRCA dataset as the reference dataset. The signature gene
sets for each PAM50 subtypes (Table 2) were obtained in
the signature gene sets identification step of CL.
In this process, the impact of different threshold (see

Methods for details) was also investigated (Table 3). We
can see that there is no significant trend in T1 and T2 vs.
the classification performance. Because of this, the best
way to locate a combination that yields the best classifica-
tion performance would still be through a gradient search
for a given range. In this case, two threshold were both

given a range of (0.1, 1) and the combination (0.1, 0.8) was
chosen for the best leave one out classification accuracy
and the corresponding gene signature was obtained.
This signature gene set yielded a leave one out classifi-

cation rate of 80 % for the BRCA dataset. In addition,
this gene set was pooled together and compared with
the well-known PAM50 signature gene set (Fig. 3). Spe-
cifically, 9 genes are shared between PAM50 and CL,
while the rest of the two gene set are completely differ-
ent. This result suggests that while PAM50 signature
gene set shows well established ability for subtype pre-
diction in the expression pattern based algorithms [26],
for some specific subtypes, the discriminative power of
these genes are not as strong as CL selected gene set.
The gene sets were then used in the subtype prediction
step. Notice that TCGA-BRCA was also generated from
the platform GPL1390, so there is no cross-platform
biases. The prediction results are shown in Table 4, where
CL achieves 73 % classification accuracy, which is a 16-
percentage-point improvement over the best normalization
algorithm (XPN: 55 %).

Table 2 The size of CL selected gene set for PAM50
classification

Subtype Selection gene size

LumA 60

LumB 60

Her2 63

Basal 299

Normal 52

Table 3 Impact of different threshold on selected size, value
and corresponding classification accuracy

T1 T2
combination

Selected gene
size

Smallest absolute
expression

Classification
accuracy

0.1, 0.1 790 0.21 79.66 %

0.3, 0.1 637 0.28 74.02 %

0.5, 0.1 441 0.37 72.99 %

0.7, 0.1 292 0.48 72.99 %

0.9, 0.1 189 0.66 74.53 %

1.1, 0.1 123 0.73 63.42 %

0.3, 0.3 634 0.30 74.02 %

0.3, 0.5 600 0.50 75.56 %

0.3, 0.7 532 0.70 73.85 %

0.3, 0.9 442 0.80 70.09 %

0.1, 0.8 (selected) 534 0.80 80.00 %

Fig. 3 Comparison of CL selected PAM50 signature and
PAM50 signature
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PAM50 prediction for a dataset with no true PAM50 labels
We then proceeded to test CL on additional datasets. This
time, the true PAM50 labels were not available and we
applied the proposed ISEP instead to direct assess the pre-
diction performance. Before we proceeded to prediction,
we first evaluated the relationship between the ISEP
accuracy and the accuracy based on true PAM50 labels.
The better the ISEP represents the true performance, the
more correlated the ISEP and the true accuracy should be.
ISEPs corresponding to different PAM50 classification
accuracy based on the reference dataset (TCGA-BRCA)
were calculated. The result shows that ISEP strongly
correlated with PAM50 classification accuracy with a cor-
relation coefficient of 0.96 (Fig. 4). The ISEPs in the previ-
ous simulation case were also calculated (Fig. 5). The
result shows almost the same trend as the accuracy plot in
Fig. 2. The average correlation coefficient between classifi-
cation accuracy and its corresponding ISEP is 0.83. Over-
all, the result indicates that without the true PAM50
labels, ISEP could be used to evaluate the performance of
PAM50 classification.

Next, CL was applied to a dataset that includes 28
breast cancer patients, whose stroma and epithelium
cells were profiled with Affymetrix U133A 2.0 Gene-
Chips (GSE10797). Only 20 samples with both ER and PR
information were selected in order to calculate the ISEP
accuracy. TCGA-BRCA was still used as the reference
dataset and this time there was also a difference in
platforms in addition to the apparent experimental di-
fferences. As a comparison, the original PAM50 classifier
(R code) [27] was also applied in addition to the seven
normalization algorithms. ISEP accuracies of each predic-
tion outcomes were calculated and the results are summa-
rized in Table 5. CL greatly outperforms all algorithms
except QD, which has a slightly higher ISEP than CL (QD:
5.71 vs CL: 5.67). Particularly, the original PAM50 classi-
fier greatly suffered from the platform bias and only
achieved an ISEP of 3.3, which is the worst performance
among all. Taken together, the results from this test and
that on UNC breast cancer dataset confirm the improved
performance of CL for cross-experiment predictions.

Cross-experiment prediction of cancer 2000 subtypes
Recently, over 2000 breast cancer patients (cancer2000)
were profiled and a classification including 10 novel
breast cancer subtypes were reported based on the inte-
grative study of microarray gene expression, copy num-
ber variation as well as gene mutation information [28].
These novel subtypes were shown to be associated with
distinct patient survival. Since Cancer2000 subtypes
were recently introduced, the perdition of Cancer2000
subtypes for other patient data has not yet been exten-
sive studied. Given this interest, we investigated how CL
performed in predicting Cancer2000 subtypes.

Evaluation by simulation
Cancer 2000 contains two parts, where first part is a dis-
covery dataset that includes 997 breast cancer patients
samples and the second part includes 5 additional valid-
ation sets including another over 900 breast cancer pa-
tient samples. For each patient, the expression levels of
48,803 genes were measured [28]. Here we used the dis-
covery dataset as our reference dataset for all cancer
2000 subtype classification. The same procedure as in
PAM50 was conducted and 10 signature gene sets were
selected by CL for all 10 classes (Table 6). As for can-
cer2000 prediction, we first evaluated the CL perform-
ance on the cancer2000 dataset through 5-fold cross-
validation and simulation, where the same model as in
(1) was applied to model the experimental bias. Notice
that the prediction problem is a 10-class classification
and it is extremely challenging even without any experi-
ment bias. Once again, CL significantly outperformed all
normalization algorithms at all bias levels, registering a
more than 100 % improvement in prediction accuracy

Table 4 Classification accuracy of PAM50 classification of
GSE2740

Algorithm Accuracy

CL 73 %

EB 55 %

GQ 55 %

DWD 56 %

XPN 57 %

DisTran 53 %

MRS 57 %

QD 56 %

Fig. 4 Classification accuracy vs ISEP for simulation case. Horizontal
axis represents the classification accuracy and vertical axis represents
the corresponding ISEP
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(~0.6 for CL vs <0.3 for others; Fig. 6). The fact that
none of the normalization algorithms achieved classifica-
tion accuracy higher than 30 % at any bias levels speaks
for the difficulty of this classification problem and also
underscores the significance of the improvement that
CL achieved.

Prediction of cancer2000 subtypes for TCGA-BRCA dataset
We then used CL to predict the Cancer2000 subtypes
for TCGA-BRCA dataset. A set of 10 signature gene sets
was first obtained on the reference Cancer2000 dataset
(Table 6) and the prediction results were shown in Fig. 7.
Although there was no true Cancer2000 classification
for TCGA-BRCA samples, it was shown in [28] that the
10 subtypes have unique characteristics in terms of their
protein marker status, PAM50 classification, mutation and
copy number variation and these characteristics provide
ample evidence to assess the performance. Here we se-
lected 4 classes with characteristics available in BRCA
dataset (Table 7). Using these characteristics, we evaluated

the classification performance by assessing the enrichment
of the characteristics in the corresponding class. The rest
6 classes were excluded because the corresponding
characteristics were not available in the BRCA dataset.
The analysis results of CL predictions and the seven
normalization algorithms are presented in Table 8. It is
clear that the Cancer2000 characteristics are highly
enriched in CL predictions. For instance, 36 of 41 patients
that were predicted as Class 2 by CL are ER positive. This
is highly consistent with the fact that Class 2 is mainly
characterized as ER positive (Table 7). Moreover, while
Class 3 is mostly Luminal A samples, 24 of 26 Class 3
samples predicted by CL are Luminal A samples. Also,
Class 5 includes mostly ER negative and HER2 enriched
samples and among 28 CL identified Class 5 samples, 20
samples are ER negative and 21 samples are HER2
enriched. Similarly, Class 6 samples are enriched by ER
positive and Luminal samples; 26 CL identified samples
are all ER positive and 24 are Luminal samples. In con-
trast, the predictions by all the seven normalization

Fig. 5 Plot of ISEP with experimental bias for CL and seven cross platform normalization algorithm + SVM in the Simulation Case. Horizontal axis
represents the experiment Bias level and vertical axis represents the ISEP values

Table 5 ISEP of PAM50 prediction for CL and seven cross
platform normalization algorithms + SVM for GSE10797

Algorithm ISEP

CL 5.67

EB 3.61

GQ 3.86

DWD 3.66

XPN 4.09

DisTran 5.27

MRS 5.12

QD 5.71

PAM50 3.3

Table 6 CL selected signature gene set size for cancer 2000

Subtype Selection gene size

Class 1 367

Class 2 3111

Class 3 98

Class 4 207

Class 5 981

Class 6 501

Class 7 265

Class 8 247

Class 9 773

Class 10 286
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algorithms showed poor enrichment of desired character-
istics. Specifically, EB, XPN, DisTran, MRS and QD failed
to predict any samples in four out of these six selected
classes. GQ and DWD did predict samples in four classes;
however, the enriched characteristics of the predicted
samples did not agree with the original characteristics.
Particularly, GQ predicted 69 samples as Class 2 but only
37 of them are ER +. It also predicted 126 Class 3 samples

but only 75 of them are Luminal A samples. Over all, CL’s
predictions are much more enriched with the known char-
acteristics and it predicted more classes.

Arabic breast cancer patient’s microarray data analysis
First we aimed to find genes differential expressed in
Qatar breast cancer patient compare to the control
sample. With two sample t test and adjusted P value set

Fig. 6 Comparison of Cancer 2000 Classification between CL and seven cross platform normalization algorithm + SVM in the simulation case.
Horizontal axis represents the experimental bias level and vertical axis represents the classification accuracy

Fig. 7 Cancer2000 classification for TCGA-BRCA dataset. Horizontal axis represents the number of samples classified for each cancer 2000 cluster.
Different colors label the PAM50 class label

The Author(s) BMC Genomics 2016, 17(Suppl 7):549 Page 203 of 325



to 0.05, 116 genes showed significantly differential ex-
pression between Qatar breast cancer patients and Qatar
normal breast tissue samples. We also aimed to find the
genes uniquely expressed only in Aerobic species by
comparing QNRF dataset with another set of breast can-
cer population. For comparison, dataset GSE22035 was
downloaded from GEO. This dataset contains 43 Cauca-
sian species samples. It has the same microarray plat-
form as the QNRF dataset. Both datasets went through
the same pre-process procedure and additional round of
normalization was done on two datasets together. Note
that this analysis was not performed on all the genes but
only on the differential expressed genes detected previ-
ously. All seven cross platform normalization algorithms
and quantile normalization were performed in order to
detect common differential expressed gene unique to
QNRF dataset. However, among all the cross-platform
normalization algorithms, no common gene is reported.
With Quantile normalization, 9 genes were reported but
for DisTran and MRS, another set of 6 genes were re-
ported. Although we cannot provide a consistent list of
genes that differential expressed across all normalization
algorithm, this 15 gene together could be our primary tar-
get of interest in future study for breast cancer in Qatar
population. The PAM50 classification and Cancer 2000
classification were also reported by CL procedure
(Table 9). For PAM50, the PAM50 R code classification
result was also reported. PAM50 R classifies most of the
QNRF samples into Lum B class, while some of them had
obviously problems. For example, sample B2, B22 and B25
were both ER – and PR –, which were most likely to be
Basal or Her2 subtype but PAM50 R classifies them into
Lum B. On the other hand, sample B20 who is ER + and
PR + was classified as Basal but is more likely to be non-

Basal sample. For CL, the classified result of the above
samples was much more reasonable: B2, B22 and B25
were all classified as Basal and sample B20 was classified
as HER2. One interesting point is that among the 20 pa-
tients, most of the patients were identified as either Basal
subtype or Her2 subtype, while only one Qatar sample
was identified as Lum B. This result suggests that over all,
breast cancer in Qatar population behaves more like Basal
and Her2 subtypes. However, additional tests using sam-
ples from larger cohorts need to be performed to confirm
this finding.

Discussion and Conclusions
In this paper, we proposed a novel algorithm CrossLink
for cross-condition prediction of cancer classes. Unlike
other normalization-based method, CL employs an un-
supervised algorithm, which aims at identifying unique
class-specific signatures patterns. CL was applied for
cross-condition prediction of the PAM50 and Cancer2000
subtypes. In all tested datasets, CL showed robust and
consistent improvement in prediction performance over
other state-of-the-art normalization algorithms.
Despite its advantages, CL has limitations. First, CL is

better fitted for datasets of large sample size, because CL
needs to perform an unsupervised learning. It cannot be
applied to individual samples separately as what a classifier
would do. By the same reasoning, CL would fail when there
are samples from only a single class.
Our future work includes to three directions. First, the

result of the CL indicates that instead of choosing a
common signature set for all subtypes classification, sub-
type specific signatures can lead to better robustness and
accuracy for subtypes classification. Further investigation
is needed to discover the biological insight of those

Table 7 Selected cancer 2000 classes and their characteristics

Cancer 2000 cluster (Selected) Class 2 Class 3 Class 5 Class 6

Characteristics ER + Luminal A ER-,Her2 enriched Luminal Samples, ER+

Table 8 Comparison of cancer2000 prediction results between CL and 7 alternative cross platform normalization algorithm

Cancer2000 class Class 2 Class 3 Class 5 ER- Class 5 Her 2 Class 6 Luminal Class 6 ER+

CL 36/41 24/26 20/28 21/28 24/26 26/26

EB 8/10 0/0 0/0 0/0 0/0 0/0

GQ 37/69 75/126 4/4 0/4 20/23 21/23

DWD 98/111 52/105 14/15 0/15 19/24 19/24

XPN 8/10 0/0 0/0 0/0 0/0 0/0

DisTran 0/0 256/256 0/0 0/0 0/1 0/1

MRS 0/0 29/68 0/0 0/0 0/0 0/0

QD 2/3 1/11 0/0 0/0 0/0 0/0
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signatures. By doing so, the subtype related function
could be also discovered. Second, CL shows great poten-
tial for subtype classification in cross-condition breast
cancer subtype classification. This ability could be fur-
ther extended into other cancer genomic classification
problems when condition specific bias presented. Third,
the unique design of CL allows it bypassing the condi-
tion specific bias to achieve a robust classification accur-
acy. This advantage can be further extended to handle
bias between different technical platforms, for example,
between microarray and RNA-seq data.
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