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Abstract

Background: Inferring species trees from gene trees using the coalescent-based summary methods has been the
subject of much attention, yet new scalable and accurate methods are needed.

Results: We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene
trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show
that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of
leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with
running times ranging between quadratic to quartic in the number of leaves.

Conclusions: We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based
summary methods and reduced running times.
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Background
The evolutionary histories of species and genes can be
discordant [1], necessitating a distinction between genes
trees and species trees. Incomplete Lineage Sorting (ILS),
modeled by themulti-species coalescent (MSC)model [2],
is one of the main causes of discordance. A fast approach
for estimating the species relationships in the face of such
discordances is to first estimate a gene tree for each gene
and to summarize the gene trees to build a species tree.
The summary method, thus, takes as input a set of gene
trees and returns a species tree. A desirable property for
a summary method is statistical consistency (a theoretical
guarantee that it converges in probability to the correct
species tree as the number of error-free genes increases).
Many statistically consistent summary methods are avail-
able (e.g., ASTRAL [3, 4], BUCKy-population [5], andMP-
EST [6]), and coalescent-based species tree estimation is

*Correspondence: smirarab@ucsd.edu
Department of Electrical and Computer Engineering, University of California,
San Diego, 9500 Gilman Dr, 92093 La Jolla CA, USA

a vibrant field of research, with many recent examples of
successful biological analyses [7–9] (see [10–14] for criti-
cism of these methods, especially their sensitivity to gene
tree error).
Inferring trees using pairwise distances is a well-studied

general method of phylogenetic reconstruction [15–18],
and several summary methods are distance-based. These
methods first compute a pairwise distance between
species based on input gene trees and then use a dis-
tance method (e.g., neighbor joining [17]) to build the
species tree; examples of distance-based summary meth-
ods are STAR [19], GLASS [20], NJst [21], and its new
implementation, ASTRID [22].
Another powerful general approach to phylogenetic

reconstruction is analyzing quartets, which are subsets of
four leaves in a tree. Quartet methods first infer a set of
quartet trees and then combine them to build a tree on
the full dataset [16, 23, 24]. Induced quartet trees have
also been used [24–28] to combine a collection of input
trees to build a so-called supertree [29]. Quartet-based
phylogeny estimation has been revived in recent years
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[3, 5, 30–32] because of its connections to coalescent-
based analyses [33–35]. Under the MSC model, for
unrooted species trees with four leaves, the most likely
unrooted gene tree is identical to the species tree [33]
(but this is not true for larger trees [34, 36]). Further-
more, the length of the internal branch in a quartet species
tree (in coalescent units) defines the probabilities of the
three possible gene tree quartet topologies [34]. Some
recent and statistically consistent quartet-based species
tree estimation methods rely on these results. For exam-
ple, ASTRAL seeks the species tree with the maximum
number of quartet trees shared with input gene trees
[3, 4].
In this paper, we introduce a new coalescent-based sum-

mary method, called DISTIQUE (Distance-based Infer-
ence of Species Trees from Induced QUartet Elements).
Like ASTRAL, DISTIQUE is based on quartets, but
instead of directly optimizing a quartet score, it uses quar-
tets to compute pairwise distances, which are then used
as input to a distance method. The innovative aspect
of DISTIQUE is its method of calculating distances. It
chooses two arbitrary “anchor” species and computes the
frequency of quartet trees induced by gene trees that
include the two anchors as sisters. We show that these
frequencies can be transformed into an asymptotically
additive distance matrix; using this matrix with a consis-
tent distance-based method (e.g., neighbor joining) gives
a statistically consistent summary method. This method
would generate a species tree on all species except the two
anchors in �(n2k) (for n species and k gene trees). How-
ever, using multiple anchor pairs can increase accuracy
and can ensure all species are included in the final tree.
Various strategies for choosing anchors and combining
their results are introduced, with running times ranging
between �(n2k) and �(n4k).
After describing DISTIQUE, we show that the anchor-

ing approach can be generalized to any tree inference
problem. Assume we have a way to compute the topol-
ogy and the internal branch length for any quartet of
leaves. We show that as long as this quartet estimator
is consistent, our anchoring mechanism and a certain
family of transformations can be used to compute an
additive distance matrix, which in turn can be used to
infer the correct tree topology but not correct branch
lengths. This result is rather surprising because, for any
pair of anchors and a pair of other leaves, the quartet
internal branch length will often be very different from
the distance between non-anchor leaves. Thus, anchoring
produces incorrect pairwise distances that are neverthe-
less additive for the correct tree topology. DISTIQUE uses
anchoring because for the MSC-based species tree infer-
ence, pairwise species distances are not straightforward to
define but inferring quartet trees is easy. We evaluate the
accuracy of DISTIQUE on simulated and biological data

and show that its accuracy is competitive with the best
alternative methods even when used with relatively small
subsets of all possible anchors.

Methods
Notation and background: Let L denote the leaf-set of
size n. For an unrooted tree T onL, the set of quartet trees
induced on all possible

(n
4
)
quartets of leaves is denoted

by QT . We use ab.cd to denote that a and b are sisters in
the quartet tree on {a, b, c, d}. A tree T is equivalent to a
distance matrix DT , computed by summing lengths of the
edges between pairs of leaves, and a distance matrix that
corresponds to a tree is called additive [37]. We refer to
the unique tree [37] associated with the additive distance
matrix D as TD or T . Also, T |L′ and D|L′ denote T and D
restricted to the leaf-set L′.
To test for the additivity of a distance matrix D, we

can use the four point condition [37]. For a quartet of
leaves Q = {a, b, c, d} ⊂ L, the median and the maxi-
mum of the following three values should be the same:
{D[ a, b]+D[ c, d] ,D[ a, c]+D[ b, d] ,D[ a, d]+D[ b, c] }.
When internal branch lengths are assumed positive,
as we do throughout this paper, the minimum value
is strictly smaller than the median. Assuming w.l.o.g.
D[ a, b]+D[ c, d] is the smallest value, we can infer ab.cd
is the topology induced by TD. Let τ(Q) > 0 denote the
length of the single internal branch in this quartet tree,
which we call its “quartet length”; i.e., if ab.cd ∈ QT , then
τ(Q) = 1

2 (D[ a, c]+D[ b, d]−D[ a, b]−D[ c, d] ).

General theoretical results
Definition 1 (Anchored Distances) Given two positive

constants α,β and a monotonically increasing function
f (x) bounded above by β for positive x (i.e., 0 < f (x) < β

for x > 0), two “anchor” leaves u, v ∈ L, and a tree T equiv-
alent to distance matrix D with the corresponding quartet
length function τ(Q), we define:

D′
uv[ a, b] =

{
β + α.τ({a, b,u, v}) ab.uv /∈ QT

β − f (τ ({a, b,u, v})) ab.uv ∈ QT (1)

D′
v[ a, b] =

∑

u∈L−{a,b,v}
D′
uv[ a, b] (2)

D′[ a, b] =
∑

v∈L−{a,b}

∑

u∈L−{a,b,v}
D′
uv[ a, b] (3)

D′′[ a, b] = max
u,v∈L−{a,b}

max
(
0,

D′
uv[ a, b]−β

α

)
. (4)

D′,D′
u, and D′

uv are distance matrices on leaf-sets
L,L{v}, and L − {u, v}, respectively, and are called “all-
pairs anchored”, “single anchored”, and “double anchored”.
We say D′

uv is induced fromD anchored by u, v.D′′ is called
an “all-pairs anchored maximum distance matrix” and is
defined on the leaf-set L.



The Author(s) BMCGenomics 2016, 17(Suppl 10):783 Page 103 of 186

Theorem 1 Let DT be an additive distance matrix. A
double anchored distance matrix D′

uv induced from DT

anchored by arbitrary leaves u, v ∈ L is an additive
distance matrix for the leaf-set L′ = L − {u, v} and cor-
responds to a tree that is topologically identical to T |L′.
Similarly, a single anchored distance matrix D′

v induced
from DT anchored by an arbitrary leaf and an all-pairs
anchored distance matrix D′ induced from DT are addi-
tive distance matrices for the leaf-sets L − {v} and L,
respectively, and correspond to trees that are topologically
identical to T |L − {v} and T, respectively.

Theorem 2 An All-pairs anchored maximum distance
matrix D′′ induced from additive matrix DT is additive
and corresponds to a tree with the identical topology and
internal branch lengths to T.

Both theorems are proved in the appendix. Theorem 2 is
similar to a result given by Brodal et al. [38], and is easy to
prove. The basic idea is that for any two non-sister leaves
{a, b}, there is a pair of anchors such that in the resulting
quartet, a and b are not sisters, and the quartet length is
exactly the same as the distance between the two leaves
minus their terminal branches. We note that similar to us,
Brodal et al. use the concept of anchors, but instead of
using anchors to define distances, they use anchors to effi-
ciently build Buneman trees from given distances. Thus,
despite some parallels, our anchoring mechanism is novel;
In particular, Brodal et al. do not prove our surprising
result that a single arbitrarily chosen pair of anchors gives
additive distances for the correct topology.
Theorem 1 states anchored distances induced from an

additive matrix will correspond to the same topology as
the initial matrix (albeit with wrong branch lengths). This
result is surprising, but its usefulness might be less clear.
Theorem 1 enables new estimators of the tree topology
that rely on quartets to compute pairwise distances. Let
D denote the input data to be used for inferring a phy-
logeny. Regardless of the nature of D, we require having
a quartet estimator. A quartet estimator is a function that
given a quartet of leaves Q, usesD to estimate the quartet
tree topology and the quartet length τ(Q), and is statisti-
cally consistent if, as the size ofD increases, the estimated
quartet topology and length both converge in probability
to correct values. Statistically consistent quartet estima-
tors can be designed for various models (e.g., sequence
evolution [39] and the MSC [33, 34]).
Given a statistically consistent quartet estimator, a

family of statistically consistent tree inference algo-
rithms can be designed (Additional file 1: Algorithm
S1). Details and proofs are given in the (Additional
file 1: Section 2.4). The basic idea is the following.
We can use the quartet estimator to infer a distance
matrix that asymptotically can be made arbitrarily close

to an additive distance matrix for the true tree topology.
Using a method such as neighbor-joining that infers
the correct tree for additive distance matrices with a
safety radius will give a consistent estimator of the
tree [40].

DISTIQUE (theory)
Problem statement: Given an input dataset G of a collec-
tion of k unrooted gene trees, we seek to find the unrooted
species tree topology, assuming gene trees are generated
by the MSC model [2].
Next, we first describe anchored distances based on the

MSC model used in DISTIQUE. We then describe the
algorithmic design of DISTIQUE, including its strategies
for selecting anchors, combining results from multiple
anchors, and dealing with long branches.

Definition 2 (MSC-based anchored distances) Let
p(ab.uv) denote the true probability of observing the
quartet topology ab.uv in gene trees generated according
to the MSC model. We define MSC-based double, sin-
gle, and all-pairs anchored distance matrices D∗

u,v,D∗
v ,

and D∗, respectively on leaf-sets L − {u, v},L − {v} and
L as:

D∗
u,v[ a, b] = − ln p(ab.uv) (5)

D∗
v [ a, b] =

∑

u∈L−{a,b,v}
− ln p(ab.uv) (6)

D∗[ a, b] =
∑

v∈L−{a,b}

∑

u∈L−{a,b,v}
− ln p(ab.uv) (7)

Lemma 1 For species tree estimation under the MSC
model, Eq. (1) simplifies to Eq. (5) for β = ln 3,α = 1,
and f (x) = ln(3 − 2e−x). Thus D′

uv[ a, b]= D∗
uv[ a, b]=

− ln p(ab.uv).

Theorem 3 Given true quartet probabilities p(ab.uv),
D∗
uv,D∗

v , and D∗ become additive distance matrices that
correspond to the true species tree topology on leaf-sets
L − {u, v},L − {v}, and L, respectively.

Lemma 1 is proved in the appendix. From Lemma 1, it
follows that Eq. (5) is a special case of Eq. (1); Theorem 3
follows directly from Theorem 1.
It may be surprising that D∗

uv, which is a special case of
D′
uv, depends only on quartet topologies and not branch

lengths. To see why, readers should recall that p is the
quart frequency in gene trees, and relates to both the
quartet topology and the quartet length in the species tree.
True quartet probabilities are not known. Instead, we

empirically use p(ab.uv) = 1
k |{t : G|ab.uv ∈ Qt}|. Empiri-

cal frequencies inferred from gene trees converge in prob-
ability to true values as the number of genes increases;
thus, it is easy to show (proof omitted):
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Corollary 1 D∗
uv,D∗

v , and D∗ computed using empirical
frequencies in a random sample of error-free gene trees
converge in probability to an arbitrarily small radius of an
additive matrix identical in topology to the true species
tree; a consistent distance method with a safety radius
[40] run on these matrices is a consistent estimator of the
species tree topology.

Computing anchored matrices require �(n2k),�(n3k),
and �(n4k) time, respectively forD∗

uv,D∗
v , andD∗. Among

these matrices, only D∗ includes all species.

DISTIQUE (algorithmic design)
DISTIQUE uses double anchored matrices, which can
be each computed in �(n2k). It uses multiple anchors
and combines the trees or matrices produced by differ-
ent anchors. A careful selection of anchors can ensure the
final DISTIQUE tree includes all species, and can control
its running time between �(n2k) and �(n4k). Before pre-
senting our anchoring strategy, we first need to show how
DISTIQUE deals with long branches.

Long branches: smoothing and consensus
Smoothing For species tree branches that are even mod-
erately long, expected frequencies of alternative quartet
topologies become exceedingly close to zero. For exam-
ple, a species tree quartet length of 12 in coalescent units
[41] results in a 99.6 % chance of observing no discor-
dance among 1000 genes. Thus, our simple empirical
frequency estimator p can easily be equal to zero, result-
ing in distances of infinity (Eq. 5). To avoid this problem,
we use Krichevsky-Trofimov [42] (i.e., add-half estimator),
which adds a pseudo-count of 0.5 for each of three pos-
sible quartet topologies. This estimator has been shown
to reach the min-max cumulative loss for KL divergence
asymptotically [42].
Consensus Smoothing does not fix the larger problem
of distinguishing between long distances. For example,
branches of length 12, 24, or 48 are all very likely to
result in no gene tree discordance given 1000 genes; thus,
even with smoothing, it remains impossible to distinguish
between branches with these very different distances. This
limitation makes it impossible to compute distances that
reflect the true topology from limited data when the
species tree includes adjacent long branches (resembling
the saturation problem in phylogenetics [43]). We can
construct examples when all gene trees are likely identi-
cal, yet our smoothed distances aremisleading (Additional
file 1: Section 2.2; Figure S7). However, long branches are
easy to recover because they appear in most gene trees. A
simple majority rule (50 %) consensus of gene trees would
return all long branches. Thus, we simply compute the
majority consensus and resolve its polytomies using DIS-
TIQUE (Additional file 1: Algorithms S2 and S3). Because

the majority consensus is proved not positively mislead-
ing under the MSC [44], our method remains statistically
consistent.
To resolve a polytomy, Additional file 1: Algorithm S2

first assigns a cluster label to each branch pendant to it,
and then builds a tree using DISTIQUE with the cluster
labels as leaves; this tree defines a resolution of the poly-
tomy. Given anchor species u, v from two distinct clusters,
we compute distances between other pairs of clusters A
and B using Eq. (5), defining the quartet frequencies as:
p(uv.AB) = 1

|A||B|
∑

a∈A
∑

b∈B p(uv.ab). When all clusters
in the consensus tree are correct (expected asymptot-
ically), p(uv.ab) values are identical; thus, all p(uv.ab)
values are empirical estimates of the same true value, and
using their average is justified.

Choosing anchors
Additional file 1: Algorithm S4 shows DISTIQUE’s tar-
geted sampling strategy for choosing a subset of all possi-
ble anchor pairs. Let d1 . . . dr denote the degree of poly-
tomies in the consensus tree, indexed arbitrarily. For each
polytomy i, we randomly partition its di clusters into sets
of size two; if di is odd, we randomly choose a cluster
and pair it with the remaining cluster. Then, we randomly
choose one species from each cluster. This produces �di

2 �
pairs of anchors for each polytomy i. The total number of
anchors ism = ∑r

1�di
2 � = O(n) (Additional file 1: Lemma

S2). Each anchor pair is used to resolve all polytomies on
the path between them in the consensus tree. This pro-
cesses may be repeated several rounds (a user-specified
input parameter).
Polytomies of degree 4 or 5 cannot be handled using

the double anchored approach because once two clus-
ters are chosen as anchors, only two or three clusters
remain which cannot be resolved as unrooted trees. For
these small polytomies, we always use all-pairs distance
matrices; thus, we choose all

(4
2
)
or

(5
2
)
possible pairs of

clusters around the polytomy. We need O(n) anchors in
this scenario as well (Additional file 1: Lemma S2).

Combining anchors
Oncem anchor pairs are selected, DISTIQUE computesm
double-anchored matrices and then combines them using
one of two methods.
Tree-sum: We first computem trees, each on n−2 leaves
using the double anchored method (Corollary 1) and then
combine these m trees using a supertree method. Using a
compatibility supertree (i.e., one that given a set of com-
patible input trees, outputs a tree that refines all input
trees) would make the approach statistically consistent
(Theorem S2, Additional file 1).
We also use the following approach to filter out out-

lier anchors. We compute an initial supertree from m
anchored trees, then find the RF distance betweenm trees
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and the supertree, remove those with an RF distance at
least two standard deviations larger than the mean, and
recompute the supertree.

Distance-sum: The distance-sum approach creates a
summary distance matrix and runs neighbor joining on
the summary matrix. The summary distance is simply
the average distance of each pair in the set of m dou-
ble anchored matrices. Note that some of the m double
anchored matrices might not have a value for a given pair
of leaves; we treat those as missing values and ignore them
when averaging values. The presence of missing values
jeopardizes our proofs of statistical consistency.
Let D∗

uv and D∗
wz be two double anchored matrices pro-

duced using two disjoint pairs of anchors. If the twomatri-
ces are reduced to the n−4 leaves common between them
(i.e.,L′ = L−{u, v,w, z}), we get twomatrices that asymp-
totically converge to an additive matrix for the same tree
topology (Corollary 1). The sum of two additive distance
matrices that correspond to the same tree topology is also
additive for the same topology. Thus, D∗

uv|L′ + D∗
wz|L′ is

asymptotically additive for the correct species tree. This
provides a theoretical justification for our distance-sum
approach. However, distances between four anchors and
other leaves are missing in one of the matrices, and thus,
their correct placement cannot be guaranteed.
If all

(n
2
)
anchors are used, the distance-sum approach

becomes equivalent to the all-pairs approach and is prov-
ably statistically consistent (Theorem 3). On the other
hand, using only two pairs of anchors makes the place-
ment of anchors dependent on averages of two num-
bers, one of which is missing, a clearly problematic
scenario. Choosing an intermediate number of anchors,
while insufficient for giving proofs of consistency, clearly
reduces the impact ofmissing values. For example, assume
we have m anchors and each species is included in at
most only one of those anchors. The summary distance
between each pair of leaves becomes an average of m
values, among which at most one may be missing.
For large enough m, we conjecture that the impact

of that single missing value is negligible. In the results
section, we provide empirical evidence for this conjec-
ture, but future work should explore theoretical proofs.
Due to its superior empirical performance, distance-sum
is used by default in the DISTIQUE (see Additional file 1:
Algorithm S2 for all details).

Running time analysis:
Using all-pairs or all-pairs-max clearly require �(n4k)
time to build the distance matrix and using the default
O(n3) neighbor joining algorithm [45] would result in
�(n4k) total running time. The running times of tree-sum
and distance-sum depend on the selection of anchors,
and also the exact distance method and supertree method

used. Building each double anchored distance matrix
requires �(n2k); thus, building m matrices requires
�(n2mk). Using a fast neighbor joining algorithm (e.g.,
FNJ [46], or NINJA [18]), the running time of distance
method can be O(n2).
Clearly, any function between �(n2k) and �(n4k) can

be obtained by adjusting m. DISTIQUE’s default strat-
egy requires O(n) anchors and therefore results in O(n3k)
total running time. For the tree-sum approach, the run-
ning time of the supertree method needs to be also added.
MRL, which we use here, doesn’t have running time guar-
antees, but ML methods tend to have average running
time close to O(n2) [47].

Experimental setup
We use simulated and real datasets to evaluate the accu-
racy and scalability of DISTIQUE. We measure species
tree accuracy using False Negative (FN) rate, which is
equivalent to normalized RF distance [48] here because all
estimated species trees are fully resolved.

Datasets
For biological analyses, we re-analyzed a dataset of 2022
supergene trees from an avian dataset [7, 11]. We also use
three sets of simulated datasets we used before: a 37-taxon
mammalian dataset [12], a 45-taxon avian dataset [11],
and datasets used for evaluating ASTRAL-II [4]. The first
two datasets are based on biological data and have a single
species tree topology, whereas the last dataset is simu-
lated using SimPhy [49] and has a different species tree per
replicate and has heterogeneous parameters. Avian and
mammalian datasets enable us to evaluate performance
for relatively small numbers of species, varying ILS and
the number of genes. The amount of ILS is changed by
multiplying or dividing branch lengths by 2 or 5; shorter
branches (0.2X and 0.5X) produce more ILS and longer
branches reduce ILS (Additional file 1: Table S1). We cre-
ate two collections for these datasets, one where we fix
the number of genes (200 for mammalian and 1000 for
avian) and vary the amount of ILS, and a second collec-
tion, where we fix the amount of ILS (to very high or
0.2X for mammalian and default 1X for avian) and vary
the number of genes (200 to 3200 for mammalian and
200 to 2000 for avian). The simPhy dataset [4] has two
collections, and is simulated to capture the range of rea-
sonable biological datasets. In the simPhy-ILS collection,
we fix the number of species to 201 and show three levels
of ILS, ranging from moderate (10 million generations) to
very high (500K generations), and for each case, we vary
the number of genes (50, 200, 1000). For each case, we
have 100 replicates, half with a speciation rate of 10−6 and
the other half with 10−7. In the simPhy-size, we fix ILS
to moderate and speciation rate to 10−6, and change the
number of species from 10 to 500, with 50 replicates per
dataset.
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Methods
We compare various versions of DISTIQUE, described
below, against each other, and against ASTRAL-II [4],
which is a quartet-based method, the ASTRID [22] (a
new implementation of the NJst algorithm [21]), which
is a distance-based method, and concatenation using
RAxML [50] (CA-ML). ASTRAL and NJst are statisti-
cally consistent summary methods and, like DISTIQUE,
work on unrooted gene trees and species trees (most
other approaches such as MP-EST and STAR need rooted
input). Also, these two are among the most accurate
summary methods [3, 4, 21, 22, 51].

DISTIQUE: We explore variants of DISTIQUE, chang-
ing the distance matrix (comparing all-pairs, all-pairs-
max, tree-sum, and distance-sum; see Additional file 1:
Algorithm S1), the number of anchoring rounds (2 to 8),
and the use of consensus. To compare to other methods,
we use the default distance-sum DISTIQUE (Additional
file 1: Algorithm S2), with 2 or 8 rounds of anchoring.
DISTIQUE is implemented in python and uses the Den-
dropy library [52] and uses the FastME [53] as its distance
method (but we also tested PhyD* [54]).

Results
Comparison between DISTIQUE variants
We start by comparing all-pairs and all-pairs-max vari-
ants, each applied to either the entire set of species or to
polytomies of a 50 % majority rule consensus (default),
limiting our study to the 37-taxon and 45-taxon avian and

mammalian datasets where �(n4k) methods could run.
On both datasets, a surprising pattern emerges. With-
out the use of consensus, the error unexpectedly goes up
with decreased ILS, a pattern that is more pronounced
for all-pairs-max (Additional file 1: Figures S1 and S2).
As discussed before, we attribute this pattern to difficul-
ties of estimating long quartet lengths. When consensus
is used within DISTIQUE, the accuracy improves with
decreased ILS, as expected (Additional file 1: Figures S1
and S2). Depending on the level of ILS, the consensus tree
is unresolved for 25 to 95 % of branches, leaving much
to DISTIQUE to resolve. Overall, all-pairs methods has
better accuracy than all-pairs-max, a result that we do
not find surprising. Based on these results, hereafter, we
only show results for DISTIQUE applied to a majority
consensus, and we omit all-pairs-max.
We compared the three algorithms, all-pairs, tree-sum,

and distance-sum (the last two with eight rounds of
anchor sampling), and observed that the distance-sum
is competitive with all-pairs and outperforms tree-sum
(Table 1). The difference between all-pairs and distance-
sum was never more than 1 %. Distance-sum consistently
outperformed tree-sum, by as much as 5 % in some cases,
despite the fact that tree-sum is provably consistent and
distance-sum has not been proved consistent. Thus, we
chose to set the default DISTIQUE implementation to
distance-sum.
We next evaluated the impact of anchor sampling by

changing the number of rounds of targeted sampling
between 1 and 8 on the avian and mammalian datasets

Table 1 DISTIQUE variants on simulated datasets

Dataset #genes All-pairs Tree-sum Distance-sum

avian-0.5X 1000 0.10 0.11 0.11

avian-1X 1000 0.08 0.09 0.08

avian-2X 1000 0.05 0.08 0.06

mammalian-0.2X 200 0.11 0.13 0.11

mammalian-0.5X 200 0.06 0.12 0.07

mammalian-1X 200 0.04 0.08 0.04

mammalian-2X 200 0.02 0.04 0.02

simphySize-10 50 0.03 0.03 0.03

simphySize-10 200 0.02 0.02 0.02

simphySize-10 1000 0.02 0.02 0.02

simphySize-50 50 0.07 0.10 0.07

simphySize-50 200 0.04 0.07 0.04

simphySize-50 1000 0.03 0.04 0.04

simphySize-100 50 0.08 0.11 0.08

simphySize-100 200 0.05 0.06 0.05

simphySize-100 1000 0.03 0.05 0.04

Distance-sum and tree-sum are both based on 8 rounds. For simPhy-size, all-pairs could not finish given two days of running time for more than 100 species. Where there is
at least 1 % difference between methods, the best method is shown in bold
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(Additional file 1: Figures S3 and S4). The distance-sum
method had substantial improvements when going from
one to two rounds, and generally much smaller improve-
ments after that. We show results for both 2 and 8 rounds
when comparing DISTIQUE to other methods.
Finally, we checked the impact of the exact distance

method used inside DISTIQUE (Additional file 1: Figure
S5), using a variety of methods implemented inside
FastME [53] and PhyD* [54] on both mammalian and
avian datasets. There were substantial variations of accu-
racy among distance methods, especially on the avian
dataset. PhyD* tended to have more error, and among
methods implemented in FastME, balanced minimum
evolution (BME) with SPR moves had the highest accu-
racy. We chose this option of FastME in the default
DISTIQUE.

DISTIQUE versus other methods
simPhy-size:On this simulated dataset, we compare run-
ning time and tree accuracy across methods. Generally,
all the methods we studied had similar patterns of accu-
racy on the simPhy-size dataset, and the mean errors of
different methods tended to be within the standard error
of each other (Fig. 1a). According to a two-way ANOVA

test with FDR correction [55] for multiple testing (n = 24;
see caption of Additional file 1: Table S3) with α = 0.05,
the error rate of DISTIQUE-8 was statistically indistin-
guishable from both ASTRAL and ASTRID (Additional
file 1: Table S3). In the few cases where the differences
seemed substantial, for example on 500 species and 1000
genes, ASTRAL tended to be the best, followed by both
versions of DISTIQUE (but there were exceptions; e.g.,
50 species and 1000 genes). Unlike the accuracy, running
times of summary methods were quite different (Fig. 2).
ASTRID was by far the fastest, followed by DISTIQUE-
2 and DISTIQUE-8, and ASTRAL was the slowest. For
example, with 500 species and 1000 genes, DISTIQUE-2
and DISTIQUE-8 ran in about 1.1 and 2.2 hours, while
ASTRAL took 5 hours, and ASTRID took only 7.5 min-
utes.

simPhy-ILS: On the simPhy-ILS dataset where the num-
ber of species is fixed to 201, differences between var-
ious summary methods were generally small (Fig. 1b),
but overall, ASTRAL was significantly better than
DISTIQUE-8 (p < 0.001). However, DISTIQUE-8 and
ASTRID were indistinguishable (Additional file 1: Table
S3). The magnitude of the difference between ASTRAL

Fig. 1 DISTIQUE versus other methods on (a) simPhy-size and (b) simPhy-ILS datasets using estimated gene trees. Boxes: (a) number of genes and
(b) levels of ILS. The mean and standard error of species tree error are shown over (a) 50 and (b) 100 replicates



The Author(s) BMCGenomics 2016, 17(Suppl 10):783 Page 108 of 186

Fig. 2 Running time comparisons on the simPhy-size datasets with
1000 genes (Additinal file 1: Figure S6 has other numbers of genes).
Lines show the average running times (50 replicates) in hours

and DISTIQUE-8 significantly depended on the level of
ILS (p = 0.001), where with low or medium ILS levels,
the two methods had a similar error, but with increased
ILS, ASTRAL outperformed DISTIQUE; the differences
were more pronounced when we had fewer gene trees
(significant: p = 0.039; Additional file 1: Table S3).

Avian On the avian dataset (Fig. 3a), ASTRID was gen-
erally the best method, followed by DISTIQUE-8 (which
was significantly worse; p = 0.004) and then ASTRAL;
CA-ML was the worst. Differences between ASTRAL
and DISTIQUE-8 were not statistically significant (Addi-
tional file 1: Table S3). The largest difference between
DISTIQUE-8 and the bestmethodwas for 0.5X ILS, where
DISTIQUE-8 had 2.9 % more error than ASTRID.

Mammalian On this dataset (Fig. 3b), overall, ASTRAL
was the best method, and was significantly better than
DISTIQUE (p = 0.025). DISTIQUE and ASTRID were
overall statistically indistinguishable (Additional file 1:
Table S3). The relative error of concatenation depended
on the level of ILS, which was much worse than summary
methods for high levels of ILS, but better for low levels of
ILS.

Biological results
On the avian dataset, we ran ASTRAL, ASTRID, and
DISTIQUE-8 and used both bootstrapping [56] and local
posterior probability (pp) [57] to quantify branch sup-
port (Additional file 1: Figures S8 and S9). Bootstrap
support was generally high, but the local pp was low for
many branches. DISTIQUE andASTRID differed on three

branches. Of these, one, related to the first neoavan split,
had high local pp support in ASTRID (0.98) but very low
local pp in DISTIQUE; the remaining conflicts had local
pp below 0.58 in both trees. ASTRAL and DISTIQUE dif-
fered in six branches, and all of these had local pp below
0.58 in DISTIQUE, and all but one also had low local pp (≤
0.9) in ASTRAL. None of these conflicting relationships
have been well resolved in the literature. Interestingly,
many of conflicting branches with low local pp had high
bootstrap support. It can be argued that conflicts are
due to uncertainties resulting from insufficient data, but
bootstrapping misleadingly computes high support [57].

Discussion
We compared three statistically consistent summary
methods, ASTRAL, ASTRID, and DISTIQUE; overall,
ASTRAL was at least as good as other methods on most
datasets, but ASTRID was occasionally the best. DIS-
TIQUE was often as good as and never more than 3 %
worse than the best method. The choice of the best
method depended on the level of ILS and the number
of genes, suggesting when the level of ILS is expected
to be very high, ASTRAL might be the best choice. On
the other hand, the running time of DISTIQUE grows
more slowly with increased numbers of genes; for datasets
with large number of species and tens of thousands of
genes, DISTIQUE and ASTRID provide fast alternatives
to ASTRAL.
Despite having strong competition in ASTRAL and

ASTRID, we believe DISTIQUE is a promising approach,
for several reasons. Because of its speed, DISTIQUE can
be used for a very fast estimation of species trees, for
example, as a starting point for an extensive hill-climbing
search. DISTIQUE can also generate a set of trees instead
of a single tree, and we plan to study whether these sets
of trees can be utilized for defining the search space of
ASTRAL.
DISTIQUE is essentially a method for 1) defining dis-

tances based on quartets, and 2) subsampling the space
of all �(n4) quartets. The first aspect of DISTIQUE can
be replaced by improved ways of defining distances, for
example those that better handle gene tree estimation
error. Co-estimation of gene trees and the species tree
[58] is a computationally challenging problem in gen-
eral. However, it is reasonable to think that a similar
problem defined on quartets, and addressed using dis-
tances becomes easier, as some recent theoretical results
suggest [32, 59]. DISTIQUE provides a general way for
using anchoring introduced in this paper to implement
novel distance-based gene tree species tree co-estimation
in a scalable fashion. Simpler approaches of taking into
account gene tree uncertainty, for example weighting
various quartets according to coalescent expectations,
might also result in improvements. Finally, we note that
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Fig. 3 The accuracy of methods on Avian (a) and Mammalian (b) datasets using estimated gene trees. Left: number of genes is fixed (1000 for avian,
200 for mammalian) and ILS levels change. Right: ILS level is fixed (default 1X for avian and very high 0.2X for mammalian). We show average and
standard error over 20 replicates, except for 1600 and 3200 genes, which have 10 and 5 replicates, respectively. For the mammalian dataset with
0.2X ILS, due to the large number of gene trees, running concatenation was not feasible

DISTIQUE’s anchoring strategy can be paired with site-
based ILS methods such as SVDQuartets [35], and more
broadly for other tree inference problems.

Conclusions
We introduced a general approach for computing tree
leaf distances by inferring topologies and internal branch
lengths for quartets of leaves. We used our novel anchor-
ing to design DISTIQUE, a new statistically consistent
summary method for species tree estimation. DISTIQUE
has variants, with several strategies for choosing and
combining anchors. The default version of DISTIQUE

requires O(n3k) running time and is much faster than
ASTRAL. In terms of accuracy, DISTIQUE was nearly
as accurate as ASTRAL with differences that were rarely
substantial.

Appendix
Proof of theorems
Proof of Theorem 1 Let {a, b, c, d} ⊂ L be four arbi-

trary leaves and L′ = L − {a, b, c, d}. W.l.o.g assume
ab.cd ∈ QT . We prove that the four point conditions hold
for this arbitrarily chosen quartet in D′

uv,D′
v, and D′; we

also prove that the four point conditions are true for a
tree compatible with the tree T. Proving these conditions
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for arbitrary quartets completes the proof by results of
Buneman [37].
We start with the double-anchored matrix. The four

point condition can be written in three ways, but only
one of them is compatible with the tree T. Since we
assumed w.l.o.g that ab.cd ∈ QT , the four point condition
compatible with T is:

L
︷ ︸︸ ︷
D′
uv[ a, b]+D′

uv[ c, d] <

R1
︷ ︸︸ ︷
D′
uv[ a, d]+D′

uv[ b, c]

=
R2

︷ ︸︸ ︷
D′
uv[ a, c]+D′

uv[ b, d] .

Figure 4 shows all ways of placing anchors {u, v} on the
quartet tree ab.cd. Anchors can be sisters, placed on the
internal branch (Case 1) or on a tip branch (Case 2; w.l.o.g,
we pick the branch pending to d). When anchors are not
sisters, they can be both placed on the internal branch
(Case 3), or one on the internal branch and the other on
a tip branch (Case 4), or they can be both on terminal
branches, which can be done in three ways: u and v can
be on the same terminal branch (Case 5), on different but
adjacent branches (Case 6), or on non-adjacent branches
(Case 7).
In Table 2, for each of the seven cases, we compute

L,R1,R2. We use Eq. (1) to derive D′
uv[ x, y] values. Where

xy.uv is induced by the tree shown in Fig. 4, we use [β −
f (t)] and otherwise we use [β +αt], where t = τ(x, y,u, v)
is the length of the internal branch for the quartet tree
induced by {x, y,u, v}. For example, for Case 1,D′

uv[ a, b]=
[β − f (e1 + e3)] because ab.uv is induced by the tree, and
the length of the edge on the ab.uv quartet tree is e1+e3; in
Case 7, D′

uv[ a, b]= β + αe1 because ab.uv is not induced
by the tree and τ(a, b,u, v) = e1.
We need to show that L < R1 and R1 = R2. We remind

the reader that all branches are assumed to be strictly pos-
itive and that f is a positive and monotonically increasing
function bounded from above by β . In all cases, the equal-
ity of R1 and R2 is immediately clear from the Table 2. The
inequality L < R1 follows directly from the fact that f (x)

is monotonically increasing in Cases 1, 2, and 5. For Case
3, because of positivity of f (x) and α, we have L < 2β < R.
Similarly, for Case 4, L < 2β + αe1 < 2β + αe1 + 2αe2 =
R. Case 6 follows from the positivity of f, and Case 7
is trivially correct for positive branch lengths. Thus, we
have shown in all possible relationships between {u, v} and
the quartet tree, the four point condition holds for the
topology consistent with tree T. Therefore, the proof is
complete for the double anchored case.
Now consider the “single anchored” distance matrix D∗

v
on the leaf-set L − {v} (for a single v ∈ L). To prove
additivity of the single anchored distance matrix, we need
to prove the following four point condition:

∑
u/∈{a,b} D′

uv[ a, b]+
∑

u/∈{c,d} D′
uv[ c, d] <

∑
u/∈{a,d} D′

uv[ a, d]+
∑

u/∈{a,b} D′
uv[ b, c] =

∑
u/∈{a,c} D′

uv[ a, c]+
∑

u/∈{b,d} D′
uv[ b, d]

We divide each sum to terms with u ∈ L′ and u /∈ L′:
∑

u∈L′
D′
uv[ a, b]+D′

uv[ c, d]+

D′
cv[ a, b]+D′

dv[ a, b]+D′
av[ c, d]+D′

bv[ c, d]︸ ︷︷ ︸
L

<

∑

u∈L′
D′
uv[ a, d]+D′

uv[ b, c]+

D′
bv[ a, d]+D′

cv[ a, d]+D′
av[ b, c]+D′

dv[ b, c]︸ ︷︷ ︸
R1

=

∑

u∈L′
D′
uv[ a, c]+D′

uv[ b, d]+

D′
bv[ a, c]+D′

dv[ a, c]+D′
av[ b, d]+D′

cv[ b, d]︸ ︷︷ ︸
R2

For u ∈ L′ terms, the sums are exactly those we ana-
lyzed for double anchored distances; thus, the additivity is
already proved. Since the sum of two additive distances is
additive, it suffices to prove additivity for u ∈ {a, b, c, d}
cases, marked as L,R1, and R2 above.

Fig. 4 Possible ways of adding anchors to a quartet. Left: All 7 possible placements of two anchors u and v on a given quartet topology ab.cd.
Internal branches are labeled with their length. Right: Placements of a single anchor v on quartet tree ab.cd
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Table 2 Proof of four-point condition for double anchors. Four point condition for all 7 cases of adding {u, v} to a quartet tree, as
shown in Fig. 4 (left side)

L = D′
uv [ a, b]+D′

uv [ c, d] R1 = D′
uv [ a, d]+D′

uv [ b, c] R2 = D′
uv [ a, c]+D′

uv [ b, d]

Case 1
[
β − f (e1 + e3)

] + [
β − f (e2 + e3)

] [
β − f (e3)

] + [
β − f (e3)

] [
β − f (e3)

] + [
β − f (e3)

]

Case 2
[
β − f (e1 + e2 + e3)

] + [
β − f (e3)

] [
β − f (e3)

] + [
β − f (e1 + e3)

] [
β − f (e1 + e3)

] + [
β − f (e3)

]

Case 3
[
β − f (e1)

] + [
β − f (e3)

]
[β + αe2] + [β + αe2] [β + αe2] + [β + αe2]

Case 4
[
β − f (e3)

] + [β + αe1] [β + α(e1 + e2)] + [β + αe2] [β + αe2] + [β + α(e1 + e2)]

Case 5
[
β − f (e2 + e3)

] + [β + αe1]
[
β − f (e2)

] + [β + αe1]
[
β − f (e2)

] + [β + αe1]

Case 6
[
β − f (e1)

] + [β + α(e2 + e3)] [β + αe3] + [β + αe2] [β + αe2] + [β + αe3]

Case 7 [β + αe1] + [β + αe3] [β + α(e1 + e2 + e3)] + [β + αe2] [β + α(e1 + e2)] + [β + α(e2 + e3)]

A single anchor v can be placed (Fig. 4) either on the
internal branch (Case 8) or on a terminal branch (Case 9)
of a quartet tree. We prove L < R1 = R2 for these: In Case
8, we have:

L =[β − f (e1)]+[β − f (e1)]+[β − f (e2)]+[β − f (e2)]
<4β <[β + αe1]+[β + αe1]+[β + αe2]= R1 = R2

and in case 9,

L = 2[β + αe1]+[β − f (e2)]+[β − f (e1 + e2)]<
4β + 2αe1 − f (e1 + e2) <

[β+αe2]+[β − f (e1)]+[β + αe1]+[β + α(e1 + e2)]
= R1 = R2.

Note that the four point condition proved above is for
the topology that corresponds to the tree T. The proof for
single-anchored distances follows from additivity of sum
of additive matrices.
We now prove the additivity for the all-pairs matrix.

Equation (3) has three types of terms: {u, v} ∩ {a, b, c, d}
may have (I) both anchors, (II) one anchor, or (III) none.
The four point condition can be written:

I
︷ ︸︸ ︷
2D′

ab[ c, d]+
II

︷ ︸︸ ︷∑

v∈L′

∑

u∈{c,d}
D′
uv[ a, b]+

∑

u∈{a,b}
D′
uv[ c, d]+

III
︷ ︸︸ ︷∑

u,v∈L′
D′
uv[ a, b]+D′

uv[ c, d] <

2D′
ad[ b, c]+

∑

v∈L′

∑

u∈{b,c}
D′
uv[ a, d]+

∑

u∈{a,d}
D′
uv[ b, c]+

∑

u,v∈L′
D′
uv[ a, d]+D′

uv[ b, c] =

2D′
ac[ b, d]+

∑

v∈L′

∑

u∈{b,d}
D′
uv[ a, c]+

∑

u∈{a,c}
D′
uv[ b, d]+

∑

u,v∈L′
D′
uv[ a, c]+D′

uv[ b, d]

For terms of type (III) and (II), the additivity is already
proved in double and single anchored cases, respectively.
Thus, we need to prove additivity only for terms of type
(I), which have no anchors. Let x = τ(a, b, c, d).

2D′
ab[ c, d]= 2[β − f (x)]< 2β < 2[β + αx]=

2D′
ad[ b, c]= 2D′

ac[ b, d]

Thus, for all three types, the four point conditions hold
for the topology found in T. Proof follows from the fact
that the sum of additive terms is additive.

Proof of Theorem 2 We prove that Eq. (4) returns the
sum of internal branch lengths on the path from a to b on
the tree T (we denote this by DTab). The theorem imme-
diately follows because a distance matrix compatible with
the tree T has to be by definition additive and compat-
ible with it (note that the theorem also claims that D′′
gives internal branch lengths). For simplicity, we prove
with α = 1; extension to other values is simple. If a and
b are not sisters in T, there exists an anchor pair (u, v)
with quartet topology au.bv and τ(a, b,u, v) = DT

ab; to find
such u and v, the following procedure can be followed.
Pick u arbitrarily from the sister group of a after rooting
T on b and pick v arbitrarily from the sister group of b
after rooting T on a. With this choice, it’s easy to see that
τ(a, b,u, v) becomes simply the sum of internal branches
between a and b; thus, from the first case of Eq. (1), we
have D′

uv[ a, b]−β = τ(a,b,u,v)
α

+ β − β = DT
ab. More-

over, D′
wz[ a, b]−β for two other anchors w, z cannot be

bigger than DT
ab. That is because if ab.wz ∈ QT , then

D′
wz[ a, b]< β ; else, τ(a, b,w, z) will give the length for a

subpath from a to b. Thus, the max function in Eq. (4)
returns DT

ab, as desired. When (a, b) are sisters, DT
ab = 0;

also D′
uv[ a, b]< 0 for any (u, v), and thus, the max func-

tion returns D′′[ a, b]= 0; this is what we want, since for
sisters, the length of the internal branch length is zero.
Thus, as desired, Eq. (4) always returns the length of the
internal branches in theT between a and b; this completes
the proof.
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Proof of Lemma 1 For x > 0, ln(3 − 2e−x) is clearly
positive, monotonic, and bounded from above by ln 3, as
required by Definition 1. Let Q = {a, b,u, v} and let T
be the true species tree. To prove that Eq. (1) simplifies
to (5), consider two cases. If anchors u, v are not sisters
in the species tree quartet on Q (i.e., ab.uv /∈ QT ), by
the MSC model, p(ab.uv) = 1

3e
−τ(Q) and thus, τ(Q) =

− ln 3p(ab.uv). In the first case in (1),D′
uv = β +α.τ(Q) =

ln 3 + τ(Q) = ln 3 − ln 3p(ab.uv) = − ln p(ab.uv). In
the second case, u, v are sisters (i.e., ab.uv ∈ QT ), and by
the MSC model, p(au.bv) = 1 − 2

3e
−τ(Q); thus, τ(Q) =

− ln 3
2 (1−p(au.bv)). In the second case in (1), the distance

is β − f (τ (Q)) = ln 3 − ln(3 − 2e−τ(Q)) = − ln p(ab.uv).
Thus, in both cases, D′

uv = D∗
uv.
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