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Abstract

Background: Phylogenetic networks are leaf-labeled graphs used to model and display complex evolutionary
relationships that do not fit a single tree. There are two classes of phylogenetic networks: Data-display networks and
evolutionary networks. While data-display networks are very commonly used to explore data, they are not amenable
to incorporating probabilistic models of gene and genome evolution. Evolutionary networks, on the other hand, can
accommodate such probabilistic models, but they are not commonly used for exploration.

Results: In this work, we show how to turn evolutionary networks into a tool for statistical exploration of
phylogenetic hypotheses via a novel application of Gibbs sampling. We demonstrate the utility of our work on two
recently available genomic data sets, one from a group of mosquitos and the other from a group of modern birds. We
demonstrate that our method allows the use of evolutionary networks not only for explicit modeling of reticulate
evolutionary histories, but also for exploring conflicting treelike hypotheses. We further demonstrate the performance
of the method on simulated data sets, where the true evolutionary histories are known.

Conclusion: We introduce an approach to explore phylogenetic hypotheses over evolutionary phylogenetic
networks using Gibbs sampling. The hypotheses could involve reticulate and non-reticulate evolutionary processes
simultaneously as we illustrate on mosquito and modern bird genomic data sets.

Background
Phylogenetic trees play a central role in evolutionary
biology. A phylogenetic tree is most commonly inferred,
directly or indirectly, from an alignment of sequences col-
lected from a set of taxa of interest. The fundamental
assumption underlying this inference step is that all char-
acters in the alignment have evolved down a single tree in
a strictly diverging manner. However, it is well established
that different sites in the genome (and, different mor-
phological characters) could evolve down different trees
due to a host of biological processes (debate continues
to rage regarding the size of genomic regions that could
truly have a single underlying evolutionary tree [1, 2]).
These processes can be divided into two categories: Tree-
like processes, which include incomplete lineage sorting

*Correspondence: nakhleh@rice.edu
1Department of Computer Science, Rice University, 77005 Houston, Texas, USA
2Department of BioSciences, Rice University, 77005 Houston, Texas, USA

(ILS) and gene duplication and loss (GDL), and reticulate,
or non-treelike, processes, which include hybridization
and horizontal gene transfer. From an evolutionary per-
spective, a major difference between these two categories
is that the evolutionary history of the genomes is still ade-
quately represented by a tree in the presence of treelike
processes, whereas it is more appropriately represented by
a network in the presence of reticulate processes. Since
networks generalize trees, they can accommodate both
categories of processes [3–5].
The term “phylogenetic network” encompasses many

disparate models that allow topologies more general than
trees. At the highest level of classification, phylogenetic
networks can be grouped into data-display networks and
evolutionary networks [6, 7]. A data-display network is
a special type of undirected graphs that represents con-
flicts in the data, regardless of the causes of the conflict
(the network could be treelike or reticulate) [7]. An evo-
lutionary network is a special type of rooted, directed
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acyclic graphs that accommodates both treelike and retic-
ulate evolutionary processes, yet distinguishes between
the two in terms of the classification of its nodes [3]. Let
us illustrate with an example of four sequences of two sites
each, TT, TG, GG, and GT, from four taxa A, B, C, and
D, respectively. Assuming, for example, that no recurrent
or parallel mutation occurred at any of the two sites, then
these four sequences cannot be modeled with a single tree
since the two sites give conflicting signals (the first sites
groups A and B together, while the second site groups
B and C together). A data-display network of these four
sequences is shown in Fig. 1a. If we cut the two horizon-
tal lines in the box, we obtain a split that groups A and B
together and groups C and D together. If we cut the two
vertical lines in the box, we obtain a split that groups B and
C together and groups A and D together. In this manner,
a data-display network can represent a set of conflicting
splits (and trees). However, it is important to emphasize
that these networks are analyzed and interpreted in a spe-
cial way: To obtain a split, or bipartition, of the data, only
maximal sets of parallel lines (edges) can be cut.
An evolutionary network of the same four sequences is

shown in Fig. 1b. This network gives an explicit model of
the evolutionary history with a precise interpretation of
the processes (in this illustration, it is a reticulation event,
e.g., hybridization, that involves taxon B). Needless to say,
the conflict in the data could be due to a recurrent muta-
tion, e.g., at the second site, and the data could fit a tree
(Fig. 1c). However, it is important to point out that these
structures are used for modeling genome-wide incongru-
ences, where processes such as ILS, GDL, etc., are at play
in many data sets.
The efficiency with which data-display networks could

be reconstructed and the availability of a popular tool,
SplitsTree [8], that provides user-friendly implementation
of several algorithms for their inference, makes them com-
monly used for exploring data. Evolutionary networks, on
the other hand, have been used to incorporate statistical
models such as the multispecies coalescent [9, 10] and, as

a result, their statistical inference [11] is currently compu-
tationally prohibitive except for small data sets. Therefore,
evolutionary networks have not been used for exploring
data.
In this paper, we develop a framework for exploring

evolutionary hypotheses, including treelike ones such as
different tree rootings, via a novel application of Gibbs
sampling to evolutionary networks. While in this work
we focus on the multispecies coalescent, thus allowing
to explore hypotheses that involve ILS and reticulations,
our model could be extended to incorporate statistical
models of other processes, such as GDL. We demonstrate
the application of our framework to explore evolutionary
hypotheses that arose in two recent studies of genomes
of mosquitos [12] and modern birds [13]. Furthermore,
we study the performance of our framework on simulated
data to assess its accuracy. While exploration of evolu-
tionary processes using this statistical framework is still
more computationally expensive than data-display net-
works, it results in more specific hypotheses and allows
for explicit incorporation of evolutionary models of genes
and genomes. The method is implemented and publicly
available as part of the PhyloNet software package [11].

Method
The posterior of phylogenetic networks and their
parameters
A (binary) phylogenetic network [3]N on set of taxaX is a
rooted, directed, acyclic graph whose leaves are bijectively
labeled by X and whose every internal node v (except
for the root which has indeg(v) = 0) has indeg(v) = 1
and outdeg(v) = 2 (tree node), or indeg(v) = 2 and
outdeg(v) = 1 (reticulation node). Here, indeg and outdeg
denote the in- and out-degree of a node, respectively. We
denote by E(N) the set of edges of N. The phylogenetic
network N has branch lengths λ : E(N) → R

+, where
λ(e) is the length of edge e in coalescent units. Further-
more, associated with each reticulation edge e is a value
γe ∈[ 0, 1], such that if two reticulation edges e1 and e2
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Fig. 1 Three different models of four sequences of two sites each, TT, TG, GG, and GT, from four taxa A, B, C, and D, respectively. a A data-display
network that accommodates the two conflicting splits AB|CD and BC|AD. b An evolutionary network that explicitly models a reticulation event
involving taxon B. c A tree model that would fit the data if, for example, a recurrent mutation occurred at the second site
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are incident into the same reticulation node, then γe1 +
γe2 = 1. These γ values represent the inheritance prob-
ability associated with a reticulation node. Throughout
this paper, we denote by θ the parameters of a phyloge-
netic network N which include both the branch lengths
λ and inheritance probabilities γ of N. If N has k1 edges
and k2 reticulation nodes, then θ is of size k1 + k2. The
network topology along with θ define a generative model
of gene trees in the presence of reticulation under the
multispecies network coalescent model [9, 10].
Given a set of gene trees G from a set of independent loci

and a phylogenetic network N, the posterior distribution
of N and θ is given by

p(N , θ |G) ∝ p(G|N , θ)p(N , θ) = p(N , θ)
∏

g∈G
p(g|N , θ)

(1)

where the product over the gene trees is based on the
assumption that the loci are independent. The probabil-
ity density function (PDF) p(g|N , θ) when the gene tree
is given by its topology and branch lengths was derived
in [10] and the probability mass function (PMF) for gene
tree topologies alone was derived in [9] and an efficient
algorithm for its computation was developed in [14]. As
estimating gene tree branch lengths is challenging and
negatively affects parameter estimation [15], we focus in
this work on the scenario where the data consist of gene
tree topologies alone. However, the method applies in a
straightforward manner to data that consist of gene trees
with branch lengths, with the only difference from what
we describe below being the use of the PDF, rather than
PMF, in computing the likelihood.
In this paper, we focus on (evolutionary) phylogenetic

networks as an exploratory tool. That is, scenarios we
envision are ones where the practitioner proposes a net-
work topology and uses the gene tree data to explore the
posterior of the network’s parameters to determine which
edges are supported by the data. Therefore, the distribu-
tion of interest in this case is the posterior on the parame-
ters θ for a fixed network N. We illustrate the exploratory
power of the method on two recently available biological
data sets in the Results section. We now describe how to
apply Gibbs sampling to obtain a posterior distribution of
a given network’s parameters.

A Gibbs sampling approach
Gibbs sampling [16] is a Markov chain Monte Carlo
(MCMC) algorithm commonly used for sampling from
the posterior distribution of a parameter set such as θ . The
algorithm begins with an initialization θ(0). Then, some
subset of the parameters θ is updated by sampling from
the target distribution of the subset conditioned on the

known values of all other parameters. This is repeated
for different subsets until convergence. In the particular
version of Gibbs sampling we consider, the algorithm pro-
ceeds in a series of iterations, where in each iteration,
each parameter θi is updated in sequence. That is, in each
iteration, a value of parameter θi is sampled from the con-
ditional distribution p(θi|θ\i,G,N), where θ\i denotes that
the values of all parameters in θ are fixed except for θi. for
simplicity. Note that when θ\i is fixed we have

p(θi|θ\i,G,N) = p(θ ,G,N)

p(θ\i,G,N)

= p(G|N , θ)p(N , θ)

p(θ\i,G,N)
∝ p(G|N , θ)p(N , θ).

(2)

Thus, when sampling from p(θi|θ\i,G,N), we can cal-
culate p(G|N , θ)p(N , θ) with only θi changing and sample
from it. For the prior p(N , θ), since N is fixed, we focus
on p(θ). For branch lengths, we use the exponential dis-
tribution with parameter λ = 1, which is a standard
prior [17]. For the inheritance probabilities, we assume the
U-shaped Beta distribution with parameters α = β = 0.1
to reflect the belief that amajority of the reticulation edges
do not exist in reality. For both the branch lengths and
inheritance probabilities, any prior could be used without
modifying the algorithm.
The major challenge in implementing the Gibbs sam-

pler in our case is that it is very hard to sample from
the conditional distribution. To overcome this challenge
we use rejection sampling. We implement an algorithm
that progressively builds a more accurate, step-wise over-
approximation of the posterior for use in the rejection
sampling. Suppose we are sampling θi whose range is
[ xl1, x

h
1]. The rejection sampling starts with a uniform

envelope whose height is y1 = max p(G|N , θ)p(N , θ)

computed using finite difference-based gradient descent
(the dotted line in Fig. 2a) with θi set to x1 =
argmax p(G|N , θ)p(N , θ). If no sample is accepted within
some preset number of trials (maxFailure in the algorithm
below), the envelope is adjusted by breaking it down into
more rectangles, such as in Fig. 2b, and the rejection sam-
pling is repeated. If the sampling fails again, the envelope
is further refined as in Fig. 2c. This process is repeated
until one sample is successfully obtained.
Algorithm 1 gives the pseudo-code of one iteration of

the Gibbs sampler. The input to each iteration is the
set of gene trees G, a phylogenetic network topology N,
the values of the parameters θ from the previous itera-
tion, the number of trials before adjusting the envelope
maxFailure, the bounds within which to sample param-
eter values xl1 and xh1, and thresholds τ , ε, and δ used in
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a cb
Fig. 2 Building envelopes for rejection sampling. The black curves are the distribution we want to sample from. The red dotted lines correspond to
envelopes built for rejection sampling. a The initial envelope. b The adjusted envelope after the initial envelope fails to produce an accepted
sample. c The envelope is further refined

the envelope construction. In our analyses here, we used
maxFailure = 10, τ = 1/100, ε = 0.001, and δ = 0.2.
For the bounds on the parameter values we used the range
[ 0.001, 6] for branch lengths and the range [ 10−6, 1 −
10−6] for inheritance probabilities.

Algorithm 1: GibbsSamplingIteration
Input: A set of gene trees G, a phylogenetic network N, current values

of parameter vector θ ,maxFailure ∈ N and τ , ε, δ, xl1, xh1 ∈ R

Output: A sample of values of the parameter vector θ
22 for i = 1 to |θ | do
3 Let xl1 and xh1 be the lower and upper bounds of θi, respectively;
4 θi ← x1 ← argmaxθi p(G|N , θ)p(N , θ);
5 y1 ← p(G|N , θ)p(N , θ); // The height of the envelope
6 ns ← 1; // The number of steps in the envelope
7 success ← false; // Indicates whether a sample has

been accepted
8 while ! success do

1010 repeat
11 Sample θi in the range [ xl , xr] where xl = minj≤ns xlj

and xr = maxj≤ns xrj ;
12 Let k be the index such that θi ∈[ xlk , xhk ];
13 Sample ρ ∼ U(0, 1);
14 if ρ <

p(G|N ,θ)p(N ,θ)
yk then

15 success ← true;
16 end if
17 untilmaxFailure attempts have been made or success is true;
1919 if ! success then
2121 if x1 − xl1 > ε then // refine the left end

of the envelope
22 for j = ns to 1 do
23 xlj+1 ← xlj , xhj+1 ← xhj , xj+1 ← xj , yj+1 ← yj ;
24 end for
25 do
26 δ ← δ/2;
27 xh1 ← x2 − δ;
28 y1 ← p(G|N , θ)p(N , θ) with θi ← xh1 ;
29 while xh1 < xl1 or

y1
y2 < τ ;

30 x1 ← xh1, x
l
2 ← xh1 , ns ← ns + 1;

31 end if
3333 if xhns − xns > ε then // refine the right end

of the envelope
34 xhns+1 ← xhns, yhns+1 ← yhns;
35 do
36 δ ← δ/2;
37 xlns+1 ← xns + δ;
38 yns+1 ← p(G|N , θ)p(N , θ) with θi ← xlns+1;
39 while xhns+1 < xlns+1 or

yns+1
yns < τ ;

40 xns+1 ← xlns+1, xhns ← xlns+1, ns ← ns + 1;
41 end if
42 end if
43 end while
44 end for

The Gibbs sampler performs each iteration described
in Algorithm 1 a maxIterations number of times, and
then collects samples every sampleInterval iterations after
an initial burn-in period of burnin iterations. For all
analyses we conducted below, we used maxIterations =
11000, burnin = 1000, and sampleInterval = 100.

Using pseudo-likelihood
The bottleneck of our method in terms of scalability
results from computing the likelihood function p(G|N , θ).
In every iteration of the Gibbs sampling, the likeli-
hood p(G|N , θ) is computed repeatedly when building
envelopes and conducting rejection sampling. This com-
putation is very expensive, whichmakes themethod infea-
sible for large data sets (such as the avian data set below).
Pseudo-likelihood of phylogenetic networks was recently
introduced [18] and its computation is very efficient as it is
based on the probabilities of rooted triplets (rooted trees
with three leaves) rather than full gene trees. The main
issue with using the pseudo-likelihood is that it might
result in indistinguishability of different parameter values,
as discussed in [18].

Network inference
Wen et al. [19] recently introduced a Bayesian Markov
chain Monte Carlo (MCMC) method for sampling the
posterior of phylogenetic networks. Their work entails
walking the space of phylogenetic network topologies,
branch lengths and inheritance probabilities. One way
to use the method presented here to infer, rather than
explore, a phylogenetic network is by using an overly com-
plex network that, desirably, contains within it the true
network, and then apply our method to obtain a poste-
rior distribution of its parameters. The major bottleneck
in this case would be computing the PMF, as its computa-
tional complexity explodes as the number of reticulations
increases. An advantage of the approach, though, would
be avoiding the sampling, comparison, and summariza-
tion of the network topologies, all of which are very
challenging as discussed in [19]. A disadvantage, though,
is that evolutionary relationships not present in the net-
work being analyzed will not be recovered or assessed in
the analysis.
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Results and discussions
Performance on simulated data
To study the accuracy of our sampler, we consider two
simulated data sets. The phylogenetic topologies and
associated parameters are modeled after the topologies
and parameters of themosquito data set of [12]. In the first
data set, the model species phylogeny is a tree, shown in
Fig. 3a. All branch lengths are set to 1 coalescent unit. We
use our method to explore several phylogenetic hypothe-
ses, represented in the network shown in Fig. 3b. Through
this species network we can test two treelike issues that
do not involve true reticulation. One is the rooting of the
species tree. The reticulation on the top indicates two dif-
ferent rootings. One splits {C,G} and {A,Q, L,R} and the
other splits {R} and {A,Q, L,C,G}. The second issue we
can test through this network is the location ofQ: whether
it should be grouped with A or R. It is captured by the
lower reticulation.
To assess the performance of our method, we used ms

[20] to simulate 50, 100, 200, 500, 1000 and 2000 gene
trees within the branches of the true species phylogeny.
For each number of gene trees, 30 data sets were gener-
ated. Then down each gene tree we simulated sequences
of lengths 1000 under the general time-reversible (GTR)
model using seq-gen [21]. The population mutation rate
was set to 0.036. The base frequencies of the nucleotides
A, C, G and T were set to 0.2112, 0.2888, 0.2896 and
0.2104, respectively. The relative rates of substitutions
were set to 0.2173, 0.9798, 0.2575, 0.1038, 1 and 0.2070.
Finally, gene trees were reconstructed using RAxML [22]
and then rooted at the outgroup. RAxML was run five
times for each sequence alignment to obtain the estimated
gene tree.

We ran our method on the species network in Fig. 3b
along with true gene trees and reconstructed gene trees.
We used full-likelihood to compute p(G|N , θ) in Eq. (1).
After we collected samples from the Gibbs sampler, we
pruned the collected networks by removing all reticula-
tions with inheritance probabilities lower than 0.01. The
results are shown in Fig. 3c. The posterior probabilities
of true networks were calculated as the proportion of
the true networks appearing in the final set of pruned
networks. The red and blue boxes in the figure repre-
sent results from true gene trees and reconstructed gene
trees, respectively. As the results demonstrate, as more
gene trees are used in the input, the true phylogeny is
more likely to be sampled. Furthermore, the results from
reconstructed gene trees and results from true gene trees
differ only slightly, demonstrating robustness to gene tree
estimation errors.
In the second simulated data set, we tested the case

where the model species phylogeny has reticulations. We
conducted simulations on the true network with one retic-
ulation, shown in Fig. 4a. All branch lengths are set to
1 coalescent unit, and the inheritance probability is set
to 0.2. Our exploratory phylogenetic hypothesis is the
species network shown in Fig. 4b), which contains two
scenarios for testing. One is whether gene flow is from Q
to R or R toQ, and the other is the location ofA or whether
there is gene flow from the ancestor of C and G to A. To
test whether our method can recover the true gene flow,
we used the same settings as in the first case to generate
true gene trees and reconstructed gene trees and then ran
our method on those gene trees. The results are shown in
Fig. 4c. As the results show, the posterior probabilities of
the true network increase with the number of gene trees

a

b c
Fig. 3 Simulation study 1. a The true species phylogeny (a tree) with all internal branches set to 1 coalescent unit. b The species network fed into
our method. c The results where red boxes represent results from using true gene trees and blue boxes represent results from using reconstructed
gene trees
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a

b c
Fig. 4 Simulation study 2. a The true species phylogeny (a network with one reticulation) with all internal branches set to 1 coalescent unit and
inheritance probability set to 0.2. b The species network fed into our method. c The results where red boxes represent results from using true gene
trees and blue boxes represent results from using reconstructed gene trees

sampled. Also, the results from reconstructed gene trees
only differ slightly when comparing to the results from
true gene trees.
As we discussed above, in order to improve the scal-

ability, we proposed to use pseudo-likelihood instead of
full-likelihood to calculate p(G|N , θ) in Eq. (1).We studied
the performance of our method using pseudo-likelihood
versus using full-likelihoodwhen the number of gene trees
is large. More specifically, for both simulation cases we
studied (Figs. 3 and 4), we ran our method using pseudo-
likelihood instead of full-likelihood on data sets of 2000
true gene trees. Results are shown in Fig. 5. We can
see that the posterior probabilities of the true networks
from using pseudo-likelihood are slightly lower than those
from using full-likelihood when both of them use 0.01 as
threshold to prune networks (remove reticulation edges

whose inheritance probabilities are lower than 0.01).
However, if we change the threshold slightly to 0.015, then
the results from using pseudo-likelihood are almost the
same as results from using full-likelihood.

Analysis of a mosquito data set
In a recent study, Fontaine et al. [12] conducted phyloge-
nomic analysis of six members of the Anopheles gam-
biae species complex, including An. gambiae (gam), An.
coluzzii (col), An. arabiensis (ara), An. quadriannulatus
(qua), An.merus (mer) and An. melas (mel). The authors
reported extensive incongruence among gene trees due
to both incomplete lineage sorting and introgression and
presented a reticulate evolutionary history of this group,
which is the network shown in Fig. 6a with gene flow
between An. arabiensis and the ancestor of An. gambiae
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Fig. 5 Using pseudo-likelihood versus full-likelihood. Left and right panels correspond to results of case 1 (Fig. 3) and case 2 (Fig. 4), respectively. For
both, 2000 true gene trees were used. In each panel, red box represents results from using full-likelihood when threshold 0.01 was used to prune
networks. Blue boxes represent results from using pseudo-likelihood, while three blue boxes from left to right correspond to using threshold 0.01,
0.015 and 0.02, respectively, to prune networks
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a b c
Fig. 6 Analysis of a mosquito data set. a The species network tested in our method. b The distribution of inheritance probabilities returned by our
method using bootstrap gene trees from autosomes. c The distribution of inheritance probabilities returned by our method using bootstrap gene
trees from X chromosome. The colors in panels (b) and (c) correspond to the reticulation edge colors in panel (a)

and An. coluzzii (indicated by blue and pink reticulation
edges) and gene flow from An.merus to An. quadriannu-
latus (indicated by green reticulation edge). Later, Wen
et al. [23] reanalyzed this data set and reported a different
species network which is the network in Fig. 6a exclud-
ing the green reticulation edge. It was inferred by adding
reticulations on the underlying species tree of [12] under
maximum likelihood using bootstrap gene trees from the
autosomes. The difference between these two hypothesis
is the direction of gene flow betweenAn. quadriannulatus
and An. merus.
We reanalyze this data set using our method, mainly

focusing on testing the gene flow between An. quadri-
annulatus and An. merus and the other two reticulations
that both [12] and [23] agreed on. We used the gene trees
of [23], which were reconstructed from 2791 loci sam-
pled at least 64 kb apart from autosomes, including 669
from 2L, 849 from 2R, 564 from 3L and 709 from 3R. For
every locus, 100 bootstrap trees were built. Then Eq. (1)
becomes

p(N , θ |G) ∝ p(N , θ)
∏

G∈G

∑
g∈G p(g|N , θ)

|G| (3)

where G contains all bootstrap gene trees from a given
locus. The method took close to 2 days to obtain the
results. Figure 6b shows the posterior of the inheritance
probability samples computed by the Gibbs sampler. As
the figure shows, for the pink and blue reticulation edges,
which [12] and [23] agreed on, the inheritance probabili-
ties are very close to 1, which suggests that the data sup-
port an underlying “backbone” tree that groups (col, gam)

with ara, in agreement with the tree inferred bymaximum
likelihood in [23]. As for the red and green reticula-
tion edges, the posterior samples indicate non-negligible
amount of introgression along both of these edges.

We repeated the analysis using gene tree data from the
X chromosome. This data set contains 228 loci sampled at
least 64 kb apart from X chromosome and 100 bootstrap
trees were built for each locus. The posterior samples of
the four inheritance probabilities are shown in Fig. 6c. The
inheritance probabilities of the blue, red and green retic-
ulation edges are all close to 0, which makes sense given
that the species tree in [12] was inferred based on the
X chromosome data. For the pink reticulation edge, the
inheritance probabilities are between 0.2 and 0.4, which
indicates that there is introgression from An. arabiensis
to the ancestor of An. gambiae and An. coluzzii on X
chromosome, in agreement with [23].

Analysis of a modern bird data set
We reanalyzed the modern bird data set of [13]. The orig-
inal data set contains 48 species representing all orders
of Neoaves. In the species tree the authors reported, the
three vocal learners (Hummingbirds, Parrots and Oscines)
are not monophyletic. Hummingbirds, in particular, were
placed far from the other two. An interesting question
in this context is whether there was convergent evo-
lution in vocal learning or it was shared among these
three species via introgression. To investigate this ques-
tion, we first pruned the data set from 48 species to
16 for computational feasibility. We selected Medium
Ground-Finch to represent Oscines, Budgerigar to repre-
sent Parrots, and then we arbitrarily selected one species
from each of the well-supported clades. Lastly, we added
reticulation edges between every among Oscines, Par-
rots and Hummingbirds. The resulting species network is
shown in Fig. 7a. We downloaded the maximum likeli-
hood gene trees of [13], including 8251 based on exons,
2516 based on introns and 3679 based on ultra-conserved
elements. We used Struthioniformes (Ostrich) or Tinami-
formes (Tinamous) to root all the gene trees. For gene trees
that do not contain either of these two, we excluded them
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a

b c

d
Fig. 7 Analysis of a modern bird data set. a The species network explored by our method, which contains six pairwise reticulation edges among the
three vocal learners. b The posterior of the inheritance probability samples associated with the six reticulation edges using all 14,357 gene trees
from exons, introns and ultraconserved elements. c The posterior of the inheritance probability samples associated with the six reticulation edges
using 524 gene trees (from introns) that have more than 5 internal branches with at least 70 bootstrap support. d The number of gene trees with
high bootstrap support. The number of internal branches in the gene trees with at least 70 bootstrap support is on the x-axis. The number of gene
trees that have a given number of branches with at least 70 bootstrap support is on the y-axis. The three panels from left to right correspond to gene
trees from exons, introns and ultra-conserved elements, respectively
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from our analysis. We ended up with a total of 14,357
gene trees.
Since the data set is too large for full-likelihood calcu-

lations, we used pseudo-likelihood [18]. The method took
close to 5 days to obtain the results Fig. 7b shows the
posterior of the inheritance probabilities collected from
the Gibbs sampler when using the entire gene tree data
set. The results indicate non-negligible gene flow between
Parrots and Hummingbirds (in cyan and pink) and from
Hummingbirds to Parrots (in black), but negligible inheri-
tance probabilities (and, consequently, gene flow) between
Parrots and Oscines (in red and blue) and from Parrots
to Hummingbirds (in green). However, given that a large
majority of the gene trees of [13] have poor bootstrap sup-
port, the question becomes: Is this detected introgression
real or an artifact of the poor support of gene trees (errors
in gene trees can masquerade as introgression signal).
Figure 7d provides a clear picture of how little resolution
the gene trees of [13] had: The great majority of trees
inferred from exons and ultra-conserved elements had
fewer than 5 internal branches with support exceeding 70.
Therefore, we repeated the analysis only using gene trees
that have at least 6 internal branches with bootstrap sup-
port of at least 70. This data set consists of 524 gene trees
only. When we used this gene tree data set, the results
were negligible inheritance probabilities along all six retic-
ulation edges (Fig. 7c). In other words, the gene trees with
strong signal support a treelike evolutionary hypothesis
of this group of birds, indicating the possibility that vocal
learning has undergone convergence in this group, at least
as supported by this data. This further attests the strength
of our method: While it uses networks for evolutionary
exploration, it returns treelike hypotheses when they are
supported by the data.

Conclusions
In this paper, we showed how to use Gibbs sampling
to explore phylogenetic hypotheses over evolutionary
phylogenetic networks. These hypotheses could involve
reticulate and non-reticulate evolutionary processes
simultaneously. We showed how pseudo-likelihood could
be used to speed up the computation and make the
analysis of large data sets feasible. We demonstrated
the power of our method to explore phylogenetic
hypotheses on two biological data sets, and assessed
its performance on simulated data. An open-source
implementation of the method is publicly available as
one of the functionalities in the PhyloNet software
package [11].
The analysis of the modern bird data set highlights a

very important issue that is relevant not only to net-
work analysis, but to all phylogenetic analyses, namely,
the effect of error in gene tree estimates on methods that

use those estimates as the primary data for inference.
When all gene trees in the data set were used, regard-
less of their support, large extents of introgression were
estimated. However, when only well-supported gene trees
were used, introgression patterns mostly disappeared.
Gene tree topological estimation errors masquerade as
signal for biological causes of incongruence. In our case,
these causes could be incomplete lineage sorting or intro-
gression. Therefore, to avoid erroneous inferences, par-
ticularly false positives, it is very important that only
well-supported gene tree topologies are used in the analy-
ses.
The work of [19] is most relevant to the method pre-

sented here. In [19], the phylogenetic network topology
and its associated parameters are all sampled, which gives
rise to mathematical and computational challenges arising
from quantifying convergence and summarizing phylo-
genetic network topologies. Nevertheless, the method is
powerful in sampling the posterior of phylogenetic net-
works and associated parameters, and is useful when that
posterior is the quantity of interest. Our proposedmethod
here differs in that we see its primary use in sampling
the posterior of only the continuous parameters (branch
lengths and inheritance probabilities) of a given set of
phylogenetic network topologies that reflect evolution-
ary hypotheses of interest. Since the network topology is
fixed during the sampling, summarizing the sampled val-
ues of the continuous parameters is straightforward in our
proposed method.
It is important to note that while we illustrated our

method on evolutionary hypotheses formed by adding
horizontal edges to a given (species) tree, the method
treats the phylogenetic topology as a network and does
not designate any trees inside the network as a species
tree. Furthermore, since the network is fixed during
the sampling, any evolutionary relationship that is cap-
tured by the analyzed network cannot be uncovered
(which is another difference between this method and that
of [19]).
While we focused here on the multispecies network

coalescent [10, 19], statistical models that incorporate,
for example, gene duplication and loss, could be added
naturally to the framework.
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