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Abstract

Background: The ability to engineer zinc finger proteins binding to a DNA sequence of choice is essential for targeted
genome editing to be possible. Experimental techniques and molecular docking have been successful in predicting
protein-DNA interactions, however, they are highly time and resource intensive. Here, we present a novel algorithm
designed for high throughput prediction of optimal zinc finger protein for 9 bp DNA sequences of choice. In
accordance with the principles of information theory, a subset identified by using K-means clustering was used as a
representative for the space of all possible 9 bp DNA sequences. The modeling and simulation results assuming
synergistic mode of binding obtained from this subset were used to train an ensemble micro neural network.
Synergistic mode of binding is the closest to the DNA-protein binding seen in nature, and gives much higher quality
predictions, while the time and resources increase exponentially in the trade off. Our algorithm is inspired from an
ensemble machine learning approach, and incorporates the predictions made by 100 parallel neural networks, each
with a different hidden layer architecture designed to pick up different features from the training dataset to predict
optimal zinc finger proteins for any 9 bp target DNA.

Results: The model gave an accuracy of an average 83% sequence identity for the testing dataset. The BLAST e-value are
well within the statistical confidence interval of E-05 for 100% of the testing samples. The geometric mean and median
value for the BLAST e-values were found to be 1.70E-12 and 7.00E-12 respectively. For final validation of approach, we
compared our predictions against optimal ZFPs reported in literature for a set of experimentally studied DNA sequences.
The accuracy, as measured by the average string identity between our predictions and the optimal zinc finger protein
reported in literature for a 9 bp DNA target was found to be as high as 81% for DNA targets with a consensus sequence
GCNGNNGCN reported in literature. Moreover, the average string identity of our predictions for a catalogue of over 100
9 bp DNA for which the optimal zinc finger protein has been reported in literature was found to be 71%.
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Conclusions: Validation with experimental data shows that our tool is capable of domain adaptation and thus scales well
to datasets other than the training set with high accuracy. As synergistic binding comes the closest to the ideal mode of
binding, our algorithm predicts biologically relevant results in sync with the experimental data present in the literature.
While there have been disjointed attempts to approach this problem synergistically reported in literature, there is no work
covering the whole sample space. Our algorithm allows designing zinc finger proteins for DNA targets of the user’s
choice, opening up new frontiers in the field of targeted genome editing. This algorithm is also available as an easy to
use web server, ZifNN, at http://web.iitd.ac.in/~sundar/ZifNN/.
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Background
Zinc finger proteins are the most widely occurring tran-
scription factors and have found applications in genome
engineering [1]. The modular nature of zinc finger pro-
teins has enabled custom design of these proteins for
unique targets in any genome. However, the exact nature
of zinc finger protein binding to its target DNA is not
completely understood. Design of custom ZFPs for
newer targets requires a better elucidation of the mode
of interaction from a physico-chemical perspective.
Ab-initio prediction of a protein with optimal binding

to any target DNA would be the paramount solution
for therapeutic applications of genome engineering. Ex-
perimentally mapping protein-DNA interactions has
seen considerable success [2], though the imperfections
and cumbersome nature of high throughput experi-
ments have limited absolute information about regula-
tory network for any organism, hence questioning the
feasibility of these experiments. Computational tools
affirming accurate and quick prediction of protein-
DNA interaction can be the savior to fill this gap. The
best prototype to propel development of such tools in
the best interest of genome engineering is Cys2-His2
variants of zinc fingers. These transcription factors are
well characterized and represent the largest class of
DNA-binding proteins in metazoans.
Each finger of a ZFP, the most widely occurring tran-

scription regulating factors, binds to a 3 bp DNA sub-
sites i.e. the promoter region of the gene via the cardinal
residues -1, +2, +3, +6 on its alpha helix. The specialty
of the binding domains of this class of proteins is that
they can be linked nearly in a tandem fashion to
recognize nucleic acid sequences of varying lengths [3].
Zinc finger proteins which bind to four base pair DNA
sub-sites via the “Recognition Code” on the alpha helix
of each zinc finger, can be exploited to predict optimally
binding ZFPs to any target DNA. Devising a method that
analyses the physico-chemical properties of ZFP-DNA
complexes and selects the most optimum zinc finger
protein candidate for our target DNA by exploiting the
relative strengths based on these interactions stands as
the ultimate concern.

Zif-268 is a very useful model for studying zinc finger
protein structure and function. Fusion of the recognition
domain of tandemly linked zinc fingers to functional do-
mains like nucleases, repressors [3] etc. bind to a very spe-
cific short nucleotide sequence around the major groove
[4] whose statistical probability of occurring in the gen-
ome elsewhere by chance is low, hereby revolutionizing
genetic engineering. This has many current applications in
research and medicine such as repression of HIV expres-
sion, activation of expression of VEGF-A in a human cell
line and the disruption of the effective cycle of infection of
herpes simplex virus to name a few [3].
The binding of ZFP to its target DNA is assumed to

have two hypothesized modes of binding: modular and
synergistic. Modular mode of binding assumes that
binding affinity of each finger of the protein is not af-
fected by the other fingers (Fig. 1). The final energy for
interaction between the target DNA and number of re-
spective finger is additive energy of each finger. The ad-
vantage lies in individual investigation of each finger for
its positional dependence and amino acid propensity ig-
noring the effect on affinity due to adjoining fingers.
The disadvantage lies in dismissing this cooperative ef-
fect. Tools based on modular mode of binding: OPEN
[5], ZiFiT [6], ZiF-Predict [7], ZifBASE [8]. These tools
in addition to ignoring the cooperative effect of the zinc
finger proteins, are unable to explore the whole sample
space and predicts for a skewed sample space, which is
GC rich. Hence, the need for a tool which does both
and is able to predict with good accuracy when scaled
for experimental datasets propels this research study.
In synergistic mode of binding, the dependency of the

fingers on each other is taken into account. Cross-strand
interaction as well as the concept of co-operativity holds
true (Fig. 1). The synergistic approach to ascertain the
functioning of zinc fingers while interacting with the re-
spective target DNA via their recognition code appears
to be highly resourceful and reliable in terms of quanti-
fying the physico-chemical interaction. This mode gives
respite to the quandary whether the ideal mode of ZFP-
DNA binding is modular or synergistic. The synergistic
mode of binding is in a much closer to the natural ZFP-
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DNA binding. However, unfortunately in this case the
individual fingers and their respective energies cannot be
determined and evaluating all possibilities of an ideal
three finger ZFP with its target 9 bp DNA is an impossi-
bility in terms of both computational resources and time
constraints. The problem at hand necessitates the need
to develop an efficient predictive algorithm for predict-
ing best binding proteins based on data obtained from
docking and simulation strategies, which has proved to
be credible upon validation with experimental datasets
mined from literature. For this purpose, we relied upon
a micro neural network (μNN) model in conjunction
with the modeling and simulation data (Fig. 2). A μNN
is defined as a micro neural network model, with the
number of nodes in hidden layer typically of an order
less than the dimension of output vector. The μNNs
used for prediction have between 28 and 52 nodes.
The fields of biology and machine learning have been

closely related for a long time now. The use of machine
learning in biology has been reported in literature for
solving problems pertaining to pattern recognition, clas-
sification, and prediction based on models derived from
existing data [9]. The μNN, widely considered as a
cornerstone in the field of machine learning had
emerged from something known as the perceptron,
which was an attempt to model the behavior of neurons
in humans [10]. Towards the latter half of 2000, machine
learning was actively being used in binding site

predictions, primarily using sequence based features
[11–15]. As more DNA-binding protein structures were
identified through experimental work, the data available
for prediction algorithms became richer in terms of pos-
sible features, opening up the gambit for a number of
machine learning algorithms like ANNs [16, 17], Sup-
port Vector Machines (SVMs) [18, 19], Random Forest
(RF) algorithm [14, 20] and Bayesian networks [12], and
decision tree algorithms [15].
Mathematically, a neural network is a series of transform-

ation matrices with a nonlinear operation after each trans-
formation operation [21, 22]. Thus, the conceptualization
of a neural network allows us to approximate the required
transformation matrix by training the neural network with
the true data [23, 24]. NNs have been shown to be su-
ccessful in literature with even relatively smaller datasets
[25–27]. Moreover, one distinguishing feature of NNs as
compared to other machine learning techniques is the abil-
ity to extract features from the training set, a fundamental
step in any machine-learning problem. There have been
numerous studies in literature, which explore NNs as fea-
ture extractors for complex datasets [28–31]. Keeping these
in mind, neural network was chosen as the preferred
method for training the prediction model for our tool.
For high dimensional data; characteristic of our data-

set, often a single ANN is not able to pick up all the
relevant features, and thus, an ensemble μNN has been
used to train the non-linear transformations relating the

Fig. 1 A schematic representation of DNA-zinc finger protein interaction depicting the two possible modes of binding. a) The binding affinity of
each finger is affected by the adjacent fingers due to co-operativity - Synergistic mode of binding and b) Binding affinity of each finger with its
respective 3 bp DNA sub-site is independent of each other - modular mode of binding
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DNA sequence and its optimal binding ZFP in our tool.
Ensemble μNN relies on the principle that multiple
μNNs trained with the same dataset and different hidden
structure differently approximate the needed nonlinear
space transformation. Thus, the predictions made may
vary from one μNN model to another, and the final re-
sult can be obtained by taking the consensus of these
predictions [32, 33].
In our previous studies, we were able to draw correl-

ation between binding affinity determined by docking
scores and respective dissociation constant (KD) values
from experimental data for the same sample. Complexes
with lower KD values mined from literature show stron-
ger binding, which falls in sync with the finding that
more negative docking scores showed higher binding af-
finity. Simulation studies for the same sample set affirm
stability for complexes with higher binding affinity and
more negative docking score [34]. Hence, we use this
method to generate the most optimal ZFPs for the entire
50 sample DNA PDBs we have generated.

Methods
Protein and DNA sequences
The zinc finger skeleton used to start our pipeline was
Zif-268 (1AAY). The cardinal residue positions (-1, 3
and 6) on the α-helix of Zif-268 interact with its corre-
sponding 3 base pair DNA subsites which is the “recog-
nition code”. We chose to work with Zif-268 as our
starting skeleton because we have replete literature as
well as the x-ray crystallography structure available for

it [1]. Hence, it stands as the ideal prototype to propel
our studies.
The DNA sequences that were used as our representa-

tive set of the whole sample space were generated using
K-means clustering. The need for doing so arises from
the fact that data reported in literature is highly skewed
and GC rich. The training and the testing sample set
DNA sequences have been documented (Table 1). These
sequences were generated using CHIMERA in the PDB
format [35].

DNA sequence dataset creation
Efficient sampling is a necessity for good prediction ac-
curacy and scaling of a prediction model across all pos-
sible prediction cases [36, 37]. Sampling is a method to
choose the subset of total population such that the sam-
pled subset represents the population appropriately,
encompassing the information pertaining to the diversity
in the original population [38]. A common conjecture is
that given a large enough sampled subset and an appro-
priate sampling methodology, information learned
through a sampled sub-population can be close to that
learnt from the whole population [39].
An optimal sample size was chosen taking into ac-

count the statistical margin of error, the confidence
interval and the complexity of data point generation
[40]. These points were selected from a population of
size 49 based on K-means clustering, where K = 50. K
means clustering sampling reports the representative
data point for each of the K clusters [41]. Assuming that
there are pseudo-clusters of data points within the

Fig. 2 The pipeline for our algorithm to predict optimal ZFPs for any 9 bp target DNA. K-means sampling was used to identify sample points that
represent the whole sample space well. These DNA samples are docked with mutants of the Zif-268 protein to generate the training samples for
our ensemble micro neural network model. Finally, the model is used for making predictions for user queried 9 bp DNA targets
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population space, we found a representative data point
for each pseudo-cluster, thus obtaining a sub-population
which is well representative of the whole population.

DNA-protein interaction studies
The HADDOCK software algorithm based on the data-
driven approach, utilizes distance constraints extracted
from experimental data (gathered from various possible
sources, such as NMR, conservation data, etc.), to re-
construct and refine the protein-DNA complex. The
docking is the most computationally heavy and time-
consuming step, and thus had to be optimized. We
assumed that the template (Zif-268) and the mutated
protein differ at only certain key residues (at most 3
amino acids at the -1, +3 and +6 for the particular fin-
ger) and hence are not structurally too different which
are used in indicating the active residues in HADDOCK.
Therefore, in order to get a template complex structure
with each DNA sequence, they were docked with Zif-
268. The numbers of structures for rigid body docking
(it0) were from 1000 to 750 and the number of struc-
tures for refinement (it1) were from 200 to 100 (rate de-
termining step). There was no need to randomize the
starting orientation of the protein before docking; hence,
the parameter was set to False. This was justified as the
structure of Zif-268 was extracted from its already com-
plexed state with its consensus DNA and hence can be
assumed to be close to the confirmation it would attain
when docked with the new DNA. Solvated rigid body
docking was not performed. The analysis we are con-
ducting is without any solvent. The possible effect of the
presence of a solvent like water, which might interfere
with the intermolecular hydrogen bonding between
DNA and protein, was discarded as it has been shown in
literature that the effect of polar solvents on hydrogen
bonding in DNA-protein complexes is minimal. The
protein used to dock with each of the 50-DNA ensem-
bles was Zif-268 (1AAY). Out of the numerous

structures generated for each DNA-protein (Zif-268)
pair, the structure with the greatest HADDOCK score
was deemed the most suitable for that pair and further
used in the next step.

Mutation of key residues in Zif-268
Excluding the residues that do not frequently function in
DNA recognition helps reduce the library size and the
“noise” associated with nonspecific binding members of
the library. Therefore, the randomizations need not en-
code all 20 amino acids but rather represent only those
residues that are most frequently found to occur in
sequence-specific DNA binding from the respective α-
helical positions (Additional file 1). With the help of
data from [42], a list of most commonly occurring
amino acids found at the key α-helical positions was pre-
pared, listing the required mutations at key positions
(Additional file 1). Mutating residues at positions -1, +3,
+6 (keeping +2 fixed to eliminate cross strand interac-
tions) using the listed amino acids in Additional file 1,
the 7*8*8 possible recognition helices were considered
and complexed with each DNA to finally rank the best
helices for each codon.
In case the NMR or crystallographic structure of the

protein is unavailable, homology modeling can be used
to develop a reliable 3-D model for the protein if atleast
one protein structure is available with some similarity to
it. Therefore, homology modeling predicts the 3-D struc-
ture of a protein sequence of interest, the target relying
on its alignment to one or more proteins with available
experimentally determined 3-D structure called the tem-
plate. Fold assignment, target-template alignment, model
building, and model evaluation form the core of hom-
ology model prediction [43]. MODELLER, an open
source tool used for comparative modeling aligns our
target of interest to templates to automatically calculate
a 3-D model for our target containing all non-hydrogen
atoms [44]. Script was written and run which takes a

Table 1 DNA Sequences used for training and testing of micro neural network Model

Training Sample Set Testing Sample Set

(Orientation 5′→ 3′)

CGA AAT CGC GCT TAT ACT GCA GCC TTT TTT GCT TCA CAT TTA GTG

CAT GTA TGA AGG GCA GCG TAG TCC ATT TTA TTA TGG GGA GGA GGA

GTG GCG GGC CCA TAT GCG CTT ACT CTG GGA GCG ATC ACT CAG CTC

TAA GCT CAA GTG TAT ATA GCC CAC GAA ACG CAA CAG GGG GGG GGG

TGG TGG GGA ACT ACG CTA GAC CCA TAC CGC TTA TTA TGG TGT CCG

TCG GCG TGA TAA TGT GGT AGC TAT TTC TCC TCG TGT GTT GTT GTT

CAA TCA GAT CCA GAG TCC CGG AGA AGG GTT TCT CTC GCC GCC GCC

TGC AAT TGA GTG ATA ATC GCT AGT TAG ACG ATT AGG GCA GCA GCA

ACC GAG CTA TTA AGA GAG CGC AGC TAG ATA TTC GAG GAG GAG GAG

TGC AGC TAT GAA CGA AGA CCC CAA CTG TTC GGG CAA GGC GGC GGC
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particular template complex and depending on the
finger under consideration (determined by the DNA
sequence), performs mutations (Fig. 1.) to generate com-
plexes with all possible recognition helices using MOD-
ELLER [45].

Determining hydrogen bonding parameters
To detect even single residue differences in the mutated
recognition helices all the hydrogen bonding parameters
like acceptor-donor distance and angles would need to
be extracted from the PDBs. For this purpose, the LIG-
PLOT/HBPLUS software was used [46].

Calculation of free energy of hydrogen bonding
It has been found that amino acid–base hydrogen bonds
are the most frequent interactions in protein–DNA
complexes (50%), followed by van der Waals, hydropho-
bic, and electrostatic interactions [47].
A desirable and accurate rendition of the AMBER99

force field with its hydrogen bond energy component
described below was used to calculate the free energy of
hydrogen bonding. Once the target pairs were identified,
the atom types (primarily N or O) of the donor and ac-
ceptor atoms were identified, the constants εij and dij’
values’ applied and the energy calculated. For a particu-
lar codon: helix file, the total hydrogen bond energy
accounted for was the sum of individual energies of all
specific pairs identified. The energy values for all helices
for a particular codon (and finger) were saved as a data-
base. The equation used to determine hydrogen bond
energy:

ΔG hbð Þ ¼ ∈ij 3
dij′
dij

� �8

−4
dij′
dij

� �6
" #

cos4θ

Where εij is the optimum hydrogen-bond energy for
the particular hydrogen-bonded atoms i and j, consider-
ing that d*ij is the optimum hydrogen-bond length. εij
and d*ij vary according to the chemical type of the
hydrogen-bonded atoms i and j. The above hydrogen
bond energy function was used to quantify the DNA-
protein interaction at the interface.
Assumptions:

εij = 2.0 kcal · mol-1 and dij’ = 3.2 Å for N-N hydrogen
bonds
εij = 2.8 kcal · mol-1 and dij’ = 3.0 Å for N-O hydrogen
bonds
εij = 4.0 kcal · mol-1 and dij’ = 2.8 Å for O-O hydrogen
bonds [48].

Each step was automated and a batch run was done
using scripts.

Details of the ensemble micro neural network developed
The 9 bp DNA sequence was encoded and represented
as a vector of length 36, with a group of four dimensions
representing a position in the DNA sequence – A as
(1,0,0,0), T as (0,1,0,0), G as (0,0,1,0) and C as (0,0,0,1).
A similar encoding was done to represent the Zinc Fin-
ger Protein of length 21 as a vector of length 420, each
position of the protein represented by a group of 20 di-
mensions. The Neural Network models used had a sig-
moidal thresholding after each matrix operation to
approximate nonlinearity. Sigmoidal thresholding allows
the output to be between 0 and 1 and thus conforms
with the input–output representation. In the training
phase, the objective is to minimize ||L||2 error on the
output layer, by performing stochastic gradient descent.
||L||2 is a standard mathematical norm to measure an
entity that corresponds to euclidean distance in real
space. Minimizing ||L||2 between predicted and the ac-
tual output vector during training phase aims to
minimize the euclidean prediction error in the trans-
formed space. An ensemble machine learning approach
utilizing100 Neural Networks in parallel was used, so as
to minimize the modeling uncertainty. All the 100
Neural Networks were generated with single hidden
layer and number of nodes in hidden layer of each
neural network were randomly generated between 28
and 52. The neural network models are trained with 150
iteration of training dataset, shuffled after each epoch.
The model described above predicts the optimal pro-

tein. An ensemble of the results obtained by running
each of the 100 neural network models on the user quer-
ied DNA sequence is reported as the best binding Zinc
Finger Protein. For each position of the protein se-
quence, the amino acid which is predicted by the max-
imum number of ANN models is reported as the most
appropriate amino acid at that position.

Sigmoid xð Þ ¼ 1
1þ e−x

LayerOperation Xð Þ ¼ Sigmoid W :Xð Þ

Where x is the input and W is the weight matrix for
the transformation function.

Scoring function
The quantification of the accuracy of a prediction made
by our algorithm is done by a scoring function, which
ensures appropriate resolution amongst the predictions.
The score value is calculated for each prediction as the
negative exponential of the sum of total number of votes
the protein sequence gets for each position. A more
negative exponent implies better prediction confidence
on the result, thus the score value will be smaller for
better predictions. As the voting is done for each
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position, using an exponential will convert an addition
of the votes to multiplication of exponential terms, thus,
if the confidence at a particular position is low, it will re-
flect strongly in the score.

Accuracy Score ¼ e−0:01s

Where; s ¼
X21
i¼1

No: of μNN which voted for the ith

position of predicted protein

In order to optimize the number of predictions that
our algorithm reports, the relationship between the
number of predictions reported, and the best prediction
accuracy for the testing dataset was closely studied. It
was seen that the graph between the two approached a
plateau as the number of predictions reported
approached 10, and that there was no significant im-
provement in the best prediction accuracy after that.
Thus, ZifNN reports the top 10 predictions for a user
queried DNA sequence.

Results and discussion
Validating the binding affinity for our training sample set
The HADDOCK scores based on our previous study ad-
here to the inference that more negative the docking
score, higher the binding affinity [34]. The study also
confirmed that score around or more than -140 show
very high binding affinity. Hence, the average docking
score for the sample ensemble is -151.287, which indi-
cates good and reliable docking scores. Thus, the part of
our pipeline that includes docking was run successfully
with good precision.
After docking, the pipeline generates hydrogen bond

energies for each sample and its optimal binding ZFPs.
The hydrogen bond energy for the 50-data ensemble for
their top binding ZFPs has an average of -6.814. To val-
idate the effect of the energy change due to hydrogen
bonding, a small sample set was run through the same
algorithm and the results compared to experimental data
of helix QNK [49]. Lower the KD value higher the binding
affinity, which translates to more negative or lower value
of free energy change due to hydrogen bonding showing
higher affinity as well. We validated that the energy
change for finger 2 of our predictions was in coherence
with the experimental data for the helix type QNK [49].
The success of the above two steps of our algorithm

lies in their validation based on data mined from litera-
ture assuring their reliability. This algorithm cannot be
run for all possibilities i.e. (4)9 [all possibilities of a 9 bp
DNA] * (448) [mutations for all three fingers of Zif-268],
hence we opt for machine learning. Accuracy in

validation at these crucial stages paves way to adopt an
approach employing a prediction model based on ma-
chine learning with high confidence.

Accuracy of the ensemble micro neural network
prediction model
One of the guiding principles in the field of bioin-
formatics is the notion that sequence similarity, albeit
loosely, is related to functional similarity. Sequence iden-
tity is widely used as measures for sequence comparison
[50, 51]. Thus, Sequence identity was used as one of the
metrics to measure accuracy of our predictions, which
was measured a position-wise comparison of the pre-
dicted sequence with the optimal sequence and report-
ing the percent of positions which matched with the
optimal protein. Mathematically, this measure is a vari-
ant of Hamming distance, which is a widely used string
metric [52]. However, it has often been contended that
homology, and thus function departs very quickly with
departing sequence identity. In order to account for this,
we have also reported the average BLAST e-value for
the testing sample set (Table 2) [53].
The 50 data point sample set was divided into two sub-

sets of 40 and 10, former was used for training while latter
was used for testing the model and its generalizability
across other datasets. The training dataset was used to
train the neural network ensemble model. To test the per-
formance of model and to check over-fitting, the testing
set was used on the trained model [54].

Domain adaptation: validation with experimental data
Final validation of our algorithm was done by comparing
its predictions against experimentally identified best
binding ZFPs for DNA sequences which have been stud-
ied experimentally [55]. This approach, based on the
idea of domain adaptation, was used to estimate its ac-
curacy on data reported in literature. Domain adaptation
is the ability to use the features learnt from data points
belonging to a particular domain to predict results for
data points belonging to a different, but closely related
dataset [56]. For the purpose of our algorithm, the
neural network was trained with a diverse, but represen-
tative set of the entire space of 9 bp target DNA

Table 2 Accuracy of micro neural network model for both
the training and testing datasets (Sequence Identity and
BLAST e-value scores)

Training Data Testing Data

Median BLAST e-value score 2.00E-21 7.00E-12

Geometric Mean of BLAST
e-value scores

3.00E-21 1.70E-12

Average Sequence Identity 100% 83%
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sequences, while its validation is done on experimental
data obtained from literature.
We have catalogued a list of over 100 9 bp DNA

targets and their optimal zinc finger binding proteins
and their respective KD values, which have been re-
ported in literature [57–66] (Additional file 2). The
metric chosen for validation of our predictions with
the catalogue of experimental data was string identity
calculated as the Hamming distance between the ex-
perimentally identified alpha helices and the helices
predicted by our tool. The average identity for our
predictions as compared to the experimental data in
the catalogue described above was found to be 71%
(Additional file 3).

Positional preference for DNA binding specificities: an
observation
The accuracy of our algorithm, as measured by the aver-
age string identity, was found to be as high as 81% for
DNA targets with a consensus sequence GCNGNNGCN
reported in literature. However, for DNA targets with a
consensus sequence GNGNA/TNGAN was found to be
around 62%. The consensus sequences for the same
were obtained using CLUSTALW2 [67].

Comparison with other tools
A number of other tools have been reported in literature
which attempt to predict optimal zinc finger binding
protein for a target DNA sequence. However, most of
these are based on algorithms assuming modular bind-
ing between the target DNA and its respective zinc fin-
ger protein. As synergistic binding takes into account
the co-operativity of zinc finger binding affinities, it
comes closest to mimicking the molecular interactions
found in nature. Thus, the predictions made by our algo-
rithm are much more biologically relevant. This was
confirmed when we compared the predictions made by
our tool to others found in literature including ZiFiT
[68] and Zinc Finger Tools [69] (Table 3). Moreover,
other tools based on synergistic binding reported in lit-
erature have not covered the whole sample space of 49

DNA sequences. Thus, they are not able to predict opti-
mal ZFPs for all possible user queried DNA target
sequences.
The average identity for predictions made by ZifNN

was found to be 81% for DNA targets with consensus
sequence GCNGNNGCN. ZiFiT was able to report
the optimal ZFP for only 56% of the queried DNA
targets [68]. The average identity of the predicted
helices for ZiFiT was found to be 42%. Though, Zinc
Finger Tools was able to report the optimal ZFP for
all the queried DNA targets, the efficiency was found
to be only 58% [69].

Moreover, for majority (82%) of the sample set used
for comparing ZFP prediction tools, the KD value was
found to be <0.5, indicating high confidence in the an-
notation of their DNA binding specificities. This shows
that ZifNN is capable of domain adaptation and makes
biologically relevant predictions, which scales well to ex-
perimentally validated zinc fingers with higher confi-
dence than other tools reported in literature.

Conclusion
Zinc finger proteins have proven to be indispensable
tools for targeted genome editing. While there are a
number of approaches reported in literature to predict
optimal ZFPs for target DNA sequences, they have had
limited success in doing so with high accuracy. This can
largely be attributed to two major factors – Firstly, most
tools fail to capture the co-operativity of subsequent zinc
finger binding affinities by assuming modular mode of
binding. While there have been disjointed attempts to
make predictions assuming synergistic mode of binding
reported in literature, there is no tool which does so for
the whole sample space of all possible 9 bp DNA targets.
Secondly, the datasets reported in literature are highly
GC rich, and are thus, a skewed representation of the
whole sample space. Thus, tools based on learning fea-
tures from experimentally reported data alone are not
generalizable to the whole sample space.
We present here a novel algorithm combining an

ensemble micro neural network in conjunction with
domain adaptation to make predictions about DNA-
Zinc Finger Protein binding specificities to overcome
the above mentioned hurdles plaguing the tools cur-
rently existing in literature. Our algorithm assumes
synergistic mode of binding, thus capturing the mo-
lecular interactions between the DNA sequence and
the ZFP helices in greater detail. The exponential in-
crease in the number of possible complexes is
accounted for by using a small, but diverse sample
set which well represents the whole space of possible
DNA targets to train an ensemble micro neural net-
work model, which is then used to make predictions
about the rest of the dataset.
Moreover, our micro neural network is capable of do-

main adaptation, which allows it to make predictions
about data points from a domain other than the one
used for training the model. This enables us to make
predictions with much higher accuracy for the DNA se-
quences that are not GC rich as well. This was con-
firmed by the comparative analysis of our tool against
others reported in literature.
Using domain adaptation in conjunction with ma-

chine learning comes across as a powerful tool which
can be exploited in biology, which is characterized by
small, high dimensional datasets which are skewed
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and not well representative of the whole sample
space. Our algorithm promises to opens new frontiers
in the field of targeted genome editing, by enabling
the scientific community to design zinc finger binding
proteins for DNA targets of their choice. It’s imple-
mentation in the form of the ZifNN web-server is easy to
use, and reports top 10 predictions for the user along with
an accuracy score reflecting the biological significance of
the prediction.

Additional files

Additional file 1: List of most frequently occurring amino acids at the
key positions like -1, 3 and 6 of the α-helix of the ZFP. (PNG 73 kb)

Additional file 2: Validation of ZifNN predictions by comparison with
experimental helices. The Hamming distance between the catalogue of
experimentally determined helices and the helices predicted by our tool
are reported for different target DNA sequences. The average identity for
these predictions is about 71%. (XLSX 79 kb)

Additional file 3: Evaluation within our top predictions for any given
target DNA sequence. Analysis for the top 10 predictions for each
experimental DNA target and their comparison based on e-s score for
each prediction. Further string identities have also been calculated to
check the variation between the top 10 predictions for each DNA target.
(XLSX 12 kb)
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ZFP: Zinc finger proteins; μNN: Micro neural network
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