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Abstract

Background: Bisulfite sequencing (BS-seq) has become a standard technology to profile genome-wide DNA
methylation at single-base resolution. It allows researchers to conduct genome-wise cytosine methylation analyses
on issues about genomic imprinting, transcriptional regulation, cellular development and differentiation. One single
data from a BS-Seq experiment is resolved into many features according to the sequence contexts, making
methylome data analysis and data visualization a complex task.

Results: We developed a streamlined platform, TEA, for analyzing and visualizing data from whole-genome BS-Seq
(WGBS) experiments conducted in the model plant Arabidopsis thaliana. To capture the essence of the genome
methylation level and to meet the efficiency for running online, we introduce a straightforward method for
measuring genome methylation in each sequence context by gene. The method is scripted in Java to process BS-
Seq mapping results. Through a simple data uploading process, the TEA server deploys a web-based platform for
deep analysis by linking data to an updated Arabidopsis annotation database and toolkits.

Conclusions: TEA is an intuitive and efficient online platform for analyzing the Arabidopsis genomic DNA
methylation landscape. It provides several ways to help users exploit WGBS data.
TEA is freely accessible for academic users at: http://tea.iis.sinica.edu.tw.

Background
Genomic DNA methylation is a long observed phenomenon.
It was first described in prokaryotes and was found as a
defense system of the genome against foreign DNA
invasion (e.g., R-M system, [1]). In eukaryotes, it is
known to play roles in regulating gene activity [2–4].
DNA methylation can be a stable change, such as gen-
omic imprinting in diploid organisms to label the par-
ental origin of the genome constituents in the zygote or
to regulate gene dosage in sexual dimorphic chromo-
somes. Recent studies reveal that genomic DNA methy-
lation can be changed dynamically; working together
with histone codes, DNA methylation is recognized as

an epigenetic marker, i.e., to alter genome activity with-
out changing the sequence context [5–7].
5-methylcytosine (5 mC) is the best-characterized

methylation type in genomic DNA. It can be classified
into three different sequence contexts by the neighboring
bases, CG, CHG, and CHH (H =A, C, or T). In plants,
CG methylation is maintained by DNA methyltransferase
1 (MET1), the plant homolog of DNMT1 [8–12]. The
plant-specific DNA methyltransferase chromomethylase 3
(CMT3) activity promotes CHG methylation, which is
linked to the histone H3 lysine 9 (H3K9) dimethylation
condition [13–15]. Asymmetric CHH methylation is me-
diated by two DNA methyltransferases: chromomethylase
2 (CMT2), and domains rearranged methyltransferase 2
(DRM2) [16]. CMT2 mainly functions at the pericentro-
meric and long transposable element region, and DRM2
mediates CHH methylation through the RNA-directed
DNA methylation (RdDM) pathway [17, 18]. The fact that
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methylation of cytosine in different sequence contexts is
maintained/modified by different enzymes and pathways
implies complex regulation of genomic methylation status
and attracts researchers interested in various subjects.
Bisulfite sequencing (BS-Seq) has become a standard

technology to profile genome- wide DNA methylation at
single-base resolution. Briefly, genomic DNA is treated
with sodium bisulfite before high-throughput next
generation sequencing (NGS). Bisulfite modification
converts non-methylated cytosines to uracils (read as T
in the sequencing reaction) while methylated cytosines
remain unchanged. The frequency of C/C + T at each C
is calculated from reads mapped to the position to give
the cytosine methylation measurement at each C in the
genome. Tools have been developed to deal with whole-
genome BS-Seq (WGBS) data, such as BiSeq [19],
BSmooth [20], DMAP [21], methPipe [22], methylKit
[23], methylPipe [24], methylSig [25], MOABS [26], rad-
Meth [27], and WBSA [28]. Most of these analysis tools
focus on identifying differentially methylated regions
(DMRs) and defining differentially methylated genes
(DMGs) as genes with DMRs in or near the gene body.
Arabidopsis thaliana is a popular model plant. It is a

selfing (or self-fertilization) species with a small and
completely sequenced genome from the standard strain
Col-0. The genome of A. thaliana is comprised of five
nuclear chromosomes plus mitochondrial and chloro-
plast DNA. The present genome build, TAIR10, is
135 Mb. Arabidopsis has been used in a wide range of
studies which are collected in a centralized resource
[29]. One special interest in studying plant genomes is
the relationship between DNA methylation and trans-
posable element silencing. In plants, most DNA methy-
lation occurs at transposable elements and other
repetitive DNA sequences. The DNA methylation path-
way is described as a powerful tool for flowering plants
to silence these high amounts of transposon parasites in
their genomes [30]. Recently, a comprehensive survey on
the Arabidopsis methylome published a whole series of
BS-Seq data from a panel of gene silencing mutants at
single-nucleotide resolution [31]. Reanalyzing the openly
accessible methylome data can serve as a good starting
point for bench scientists to conceive of new studies;
however, it is often hampered by a ceiling on data-
handling skills. Various features according to the se-
quence contexts and locations need to be resolved and
compared. The workflow for a BS-Seq data analysis
process is more complicated than a transcriptome
workflow.
In this paper, we present an intuitive data analysis plat-

form for Arabidopsis whole-genome bisulfite sequencing
(WGBS) data, TEA (The Epigenomic platform for Arabi-
dopsis, http://tea.iis.sinica.edu.tw). To crop the essence
of genome methylation status and to meet the efficiency

for performing analysis online, we introduce a straight-
forward method for measuring genome methylation level
in each sequence context by gene. This method is imple-
mented in an in-house program (EpiMolas.jar) to
process BS-Seq mapping results from CGmap by BS-
Seeker2 [32] and CX_report by Bismark [33] into a
small, tab-delimited data file, mtable. The mtable upload
process triggers a website deployment by linking data
files to gene annotation databases (TAIR10, KEGG, GO
etc.) and to versatile data analysis and display modules
in TEA. Using this user-friendly interface, the summary
of gene and promoter methylation levels among experi-
ment conditions are retrieved and analyzed easily.

Methods
The measurement of methylation level
The methylation landscape in TEA is based on the gene,
in which DNA methylation levels in the promoter and
gene body are estimated from the WGBS data. The
DNA methylation level for individual cytosines is esti-
mated as Equation (1.1):

the DNA methylation level for individual cytosine i

¼ Ci ¼ # read C
# readC þ readT

ð1:1Þ

Calculating the average promoter or gene body methy-
lation levels within the promoter or gene body is then
the average Ci within the range by Equation (1.2):

Average DNA methylation level in promoter or gene body ¼

X
i∈X

ci
X
i∈X

1

ð1:2Þ

X = promoter or gene body
We count the number of reads mapped to each C with

a minimum threshold of four, making an average methy-
lation percentage of at least five C sites of each sequence
context type, and give six measurements (i.e., pmt-CG,
pmt-CHG, pmt-CHH, gene_CG, gene_CHG, gen-
e_CHH) of a gene. Whole Genome Bisulfite sequencing
is actually considered the gold standard approach for
profiling genome-wide DNA methylation [34], and has
become the standard profiling method in major epige-
nome consortiums, such as NIH Roadmap [35], EN-
CODE [36], Blueprint [37], and IHEC [38]. The major
sources of error originate from DNA sequencing errors
and incomplete bisulfite conversion. The former is now
well controlled, with the advancement of NGS, and is
generally <0.01%. The latter is usually >99.5% in a stable
lab practice. When a region such as a promoter or gene
body is analyzed, TEA requires at least five cytosines to
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be included in order that any potential bias from indi-
vidual cytosines can be minimized.
The methylation level is thus a normalized score from

0 (all observed sites are unmethylated) to 1 (all observed
sites are methylated), or “NaN” for genes that do not
have sufficient reads/sites to calculate the index. The
overall calculation process is shown in Fig. 1.
The method is scripted in Java to process BS-Seq map-

ping results, e.g., *.CGmap from BS SEEKER2 [32] or CXre-
port.txt from Bismark [33]. This program EpiMolas.jar
(download from link in http://tea.iis.sinica.edu.tw/tea/mta
ble.html) also requires the Arabidopsis gene annotation file
(gtf) to calculate the methylation measurement file mtable.
mtable is a tab-delimited pure text file, indexed by gene
identifiers and six measurements of methylation levels. It is
the upload format for the TEA server. Processes for execut-
ing EpiMolas.jar to generate mtable are described in TEA
online help.

System implementation
TEA (The Epigenomic platform for Arabidopsis) is con-
structed using LAPP system architecture (Ubuntu 14.04,
Apache 2.04, PostgreSQL 9.1, and PHP 5.1) with bootstrap
3 CSS framework (http://getbootstrap.com/) to provide an
intuitive user experience. The whole system runs in a vir-
tual machine (CPUs of 2.27 GHz, four cores, 16 GB RAM
and 500 GB storage) on the cloud infrastructure of the

Institute of Information Science, Academia Sinica, Taiwan.
The TEA annotation database includes genome structure
and gene annotation for A. thaliana. It based on Ensembl
(Ensembl Plants release 32) and function-rich annotations
like GO terms from Gene Ontology (Aug. 2016) and KEGG
Pathways (Apr. 2016). Data retrieving, integration and
real-time calculation in the analysis process are
implemented in scripts written in Java (OpenJDK 7),
Python (version 2.7), and PHP (version 5.1). Graphical
visualization used HTML Canvas and SVG library to
provide a high level of data interactivity. Biodalliance gen-
ome browser (version 0.13.7) [39] and Circos software
package (version 0.69) [40] were integrated for browsing
the genome structure and for accessing a gene list of
chromosome coordinates, respectively.

Heat map for 2D presentation in color
The heat map plot is implemented in java with jquery
(version 2.1.4) and d3.js libraries (version 3.5.17, https://
d3js.org/). Tree topologies of the dataset grouping and
the methylation level of the subjects (promoter or gene
body for a selected C context) are calculated by the SIN-
GLE_LINKAGE in EUCLIDIAN_ DISTANCE method.
We added tooltip functions to enhance the legibility as
well as to access source data intuitively. For example, we
introduced CanvasRenderingContext2D.drawImage with
d3 to zoom and pan the heat map on the gene name

Fig. 1 Flowchart of methylation level extraction in EpiMolas.jar. EpiMolas.jar accepts output from several types of BS-seq mapping reports and
generates six methylation profiles in three contexts, CG/CHG/CHH, and two locations, promoter/gene body, based on a gene annotated file
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(the Y axis on a heat map) or on the dataset label (the X
axis on a heat map). Users can select a subset of genes
from the heat map by mouse clicking on the gene name
and saving the list for the module “Gene List Analysis.”

Venn diagram for all possible logical relationships
For showing and counting all possible logical relation-
ships between a finite collection of different sets, we im-
plemented a Venn plot generator to render a diagram. It
is a pure java script developed by our team to generate
SVG without dependency on jquery or other libraries.
This plot is also an interactive visualization tool to assist
in subset selection without sophisticated Boolean oper-
ation. The implemented Venn plot function can generate
comparison results for up to four selected sets. All of
the possible relationships among different gene sets can
be saved as a new gene list to module “Gene List Analysis”
for deciphering deeper biological meanings.

Gene Ontology terms and KEGG pathway enrichment
calculation
Functional enrichment analysis pipelines are built in
TEA for detecting overrepresented GO terms and KEGG
entities in the given gene list compared with a random
sampling from a whole-genome background. Custom-
ized P-value is an applicable cutoff for displaying
enriched GO terms or KEGG pathways. The gene set
enrichment score is measured using the hypergeometric
test in Equation (2):

p xjN ;m; nð Þ ¼
m
x

� �
N−m
n−x

� �

N
n

� � ð2Þ

where x is the number of genes in the test set in a par-
ticular annotation class (e.g., a given GO term), m is the
gene number of the test set, N is the number of total
genes being annotated in the whole sample space (i.e.,
the genome), n is the number of the genome in the
given annotation class.

Demo datasets
The demo datasets are from Zhong et al. [41], which in-
cludes five previously published WGBS datasets,
GSM881756, GSM1193638, GSM981015, GSM981017,
and GSM981040 [31, 42]. All of these bisulfite sequen-
cing reactions were carried out in 50-mer single-end for-
mat using an Illumina HiSeq2000. Raw read data files
were downloaded from SRA/NCBI and were prepro-
cessed with Cutadapt [43] to remove TruSeq adaptors.
Cleaned reads were mapped to TAIR10 genome using
BS Seeker2 [32] and Bismark [33]. The output files
(*.CGmap /BS Seeker2 and CX_report.txt) were then

converted to methylation data files (*.mtable) using
EpiMolas.jar as described previously.

Results
Deploying the working platform
A working platform in TEA starts with a data uploading
process. Users should make their mtable first (described
previously). A step-by-step process guides users to de-
fine and check the overall data-to-TEA database map-
ping conditions in real time. The data deployment will
take a few minutes to complete. Measurements on pro-
moter regions of RNA genes (rRNAs, pre-tRNA,
snRNAs, snoRNAs, miRNAs, and other RNA genes) and
transposable genes (TE) are not included on the TEA-
derived website. The whole process of TEA is illustrated
in Fig. 2. Data-uploading details can be viewed through
the demo tutorial on “New Submission”. Unregistered
users can upload the data to TEA and run “have a trial”
to get the analysis in a dynamic URL for 1-month
access.
A summary of data mapping condition and usable

measurements for each dataset and each methylation
index are logged in the data website “home”. User
should check this summary first. Unexpected values,
such as a low gene id mapping rate or a low percentage
of analyzable genes/promoters, are warning signs of
problems in the data, for example, improper files were
used in the data preprocessing steps or a low read
throughput were used for resolving the methylome.
The basic data display view in TEA is the gene-centric

page containing gene information, the methylation pro-
file on CG, CHG, and CHH contexts of the gene (gene
body) and the promoter region (−2500 to +500), an em-
bedded genome browser, and gene function annotation
(GO terms and KEGG pathways). The neighboring gene
function allows users to browse the genes located up to
a 5-Mb flanking range.

Data modules
TEA provides several ways to help users exploit their
uploaded high-throughput data (Fig. 3). The data mod-
ules include the word search function on the annotation
table, the gene ID list search function, the quantitative
analysis functions on the differences (subtraction) or a
threshold (cutoff ) of a methylation measurement, and
the canonical view in pathways. The gene list from all of
these data retrieval steps can be kept as a gene list for
later uses.

� Find Genes by Text
In the module Full Text Search, users can find
genes by Gene ID, gene symbol, gene description,
and KEGG pathway description from the integrated
annotation table in TEA. Further constraints on the
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gene biotypes and chromosome location can be
applied to refine the search simultaneously. In the
module Import Genelist query, users can paste or
upload a file of a list in TAIR10/ ensembl gene IDs
or gene symbols and obtain the matches. In the
module KEGG GlobalView, users can browse genes

on pathway maps. Items in a given map can be
saved as a gene list for further analysis.

� Find Genes by Values
Module DMGs (differentially methylated genes) is a
pairwise comparison workflow for two data pools
(experimental conditions) to which a single or

Fig. 2 The workflow of TEA from raw reads to data visualization and deep analysis. a Align BS-seq read to the reference genome. b Generate
mtable from CGmap, the output of BS Seeker2, or CX_report, the output of Bismark. c The main portal of TEA for data submission. d Data
visualization with Venn diagram, boxplot, histogram, heatmap, and Circos plot

Fig. 3 Six data modules in TEA. The full text search module is to search for genes of interest in the keyword search from the context of gene ID,
gene symbol, gene description, and KEGG description. The DMGs module is to select differentially methylated genes (DMGs) on the basis of
customized criteria. The mc Threshold module is to select DMGs by a cutoff value. The Import Genelist module is to upload lists of genes of
interest. The KEGG Global View module is to display which genes are involved in each category of KEGG pathways. The gene list analysis module
is to view the gene set from different analytic approaches including Venn diagram, heatmap, Circos plot, GO terms, and KEGG pathway
enrichment analysis
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multiple datasets can be assigned. Through a
customized and flexible parameter setting, genes
that fulfill the criteria are selected and can be
further constrained on particular gene biotypes and
chromosome locations. Module mC Threshold is
used for selecting genes above or below a cutoff in
at least one or among all of the selected datasets.
These two modules provide different ways to access
methylation landscapes in six different sequence
contexts.

� Gene List Analysis
Gene list items are derived from text search, id
search, or a value comparison process and are kept
for users’ needs. With the aid of the data displaying
approach “show Venn diagram”, overlapping of
elements (i.e., genes) in different gene lists is easily
solved. Further manipulation on Boolean algebra,
such as union, intersection, or other combinations,
can be carried out on the interactive diagram to
generate a new gene list.

Data displaying approaches
We designed several ways to deepen the view of a gene
list including “Show gene list”, “Plot on the location of
genes on chromosome map” “Calculate GO term enrich-
ment”, “Calculate KEGG pathway enrichment”, and
“Draw heatmap with 2D clustering”. As mentioned in
previous paragraphs, genes can be selected for different
reasons via different data modules. Using “show gene
lists”, the selected genes can be saved as a GeneList item
for later uses. The approach “Show Venn Diagram” is
only available in module GeneList Analysis to help on
sub-list selection.

Demo case: BS-Seq data reanalysis
To help users become familiar with TEA, we provide a
demo dataset from Zhong et al. (2015) entitled “DO-
MAINS REARRANGED METHYLTRANSFERASE3 con-
trols DNA methylation and regulates RNA polymerase V
transcript abundance in Arabidopsis” [41]. Briefly, this
study focused on elucidating the function of DRM3 (do-
main rearranged methyltransferase 3) in the RdDM path-
way, which contains a catalytically inactive enzyme
domain, but is required for de novo DNA methylation in
vivo. The major conclusions from this study are: 1. DRM3
has moderate effects on global DNA methylation and 2.
DRM3 interacts with Pol V, implying regulatory roles of
Pol V- involved RNA-directed DNA methylation.
Five BS-Seq libraries were prepared from 3-week old

leaf for detecting genome-wide methylation status under
four conditions: two biological replicates in the control
group and one dataset for each of the three gene silencing
mutants (drm2, drm3, and nrpe1/Pol V catalytic domain).
We first downloaded the raw read files from SRA/ NCBI,

trimmed and mapped the reads to the Arabidopsis refer-
ence genome and produced the mtable file for each data-
set. The five mtable files were uploaded to TEA and
joined to TEA annotation database to build a data analysis
website (http://tea.iis.sinica.edu.tw/tair10_demo_new/).
Firstly, we examined the summary of the five datasets.

The percentage on gene id mapping and the usable mea-
surements were acceptable. The methylation measure-
ment data distribution showed a higher level of CG
methylation in both gene body and promoter regions,
agreeing with the general idea that CG is the major
methylation type in the A. thaliana genome. Moreover,
mutant drm2 had the most obvious effect (decreased
methylation level) on the overall CHH methylation sta-
tus in both gene body and promoter regions, whereas
the drm3 mutant had the mildest effect. We further ex-
amined the gene body CHH methylation level using a
criterion of gene body CHH methylation level difference
≥0.15 from the control group (Col-1 + Col-2). Gene lists
from the three comparisons performed in the “DMGs”
module were analyzed in the module “GeneList
Analysis” using the Venn diagram and heatmap plot
approaches with 2D clustering (Fig. 4). The control-to-
drm3 (Ctl_drm3) DMGs number were the smallest set.
The heatmap-2D clustering result indicated that the
profile of DMGs selected by gene body CHH level were
alike in drm2 and nrpe1 (polV).

Discussion
The report of a BS-Seq mapping tool is often a table to
count mappings on each C base in the reference gen-
ome, numerating the “C” and “C + T” events with or
without the sequence context notation. Although the
mapping info has been degenerated a lot from the ori-
ginal alignment result, the file size of the mapping report
is still hard to handle in a web-based analysis tool. The
measurement introduced in this study is a further reduc-
tion on the methylation landscape from the single-base
level to the gene level. Each measurement is an average
of five observations (a particular C context) and each
observation is based on at least four events (mapped
reads). A deviation of 0.1 in the measurement reflects a
change in the methylation state of 10% of the Cs in the
observation. Although we cannot tell whether the
changes are concentrated in a few sites or more dis-
persed among the observed sites, using this straightfor-
ward approach, we reanalyzed a published dataset and
observed the same trends in the methylation landscapes
caused by gene silencing.
DMRs identified from different studies are not easily

inferred as equivalent because the methods applied are
not guaranteed to be compatible to each other. There-
fore, a reanalysis of published datasets is necessary for
reusing data. It is cost-effective to perform data mining
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before conducting a new experiment. In a more practical
scenario, researchers can try to find a compatible dataset
from some metadata depository, such as SRA/NCBI,
TAIR, or MPSS [44] and conduct the analysis together
with their experimental data to increase the power of
the data. An interesting aspect of reanalyzing openly
accessed data is to dig out some novel findings not men-
tioned in the article, because either the authors were not
interested in them, or the findings were not covered in
the article’s scope.
In summary, we present TEA, a streamlined WGBS

analysis platform with versatile analysis and display
modules. It provides a straightforward methodology to
explore the methylation status in different sequence con-
texts. The openly accessible TEA provides a dynamic
URL for one-month access. Further extension of this
work will include more model organisms in the platform
and more sophisticated and robust models to select
DMGs. To alleviate the burden of upstream BS-seq data
alignment, we are going to integrate the preprocessing
step into the Galaxy platform.

Conclusions
TEA is a user-friendly platform for WGBS analysis. It is
fast and efficient to select the DMGs because it shrinks

the input methylation data from the single-base level to
a gene-level methylation profile. It provides several ways
to help users exploit and discover their uploaded high-
throughput data. It can also facilitate data sharing
among cooperators. An unregistered usage is available
for creating a working platform with a dynamic URL for
one-month access. TEA is freely available for academic
users. We welcome researchers to ask for cooperation,
keeping the data on a password-controlled access web-
site or an open-access website.

Acknowledgements
The research was funded by Ministry of Science and Technology (MOST),
Taiwan, for financially supporting this research through MOST 103-2311-B-
001 -033 -MY3 and Innovative Translational Agricultural Research Program
(ITAR) from Academia Sinica, Taiwan to CYL, MOST 101-2321-B-001-043-MY2
and MOST 102-2811-B-001-046 to SHC, MOST-103-2313-B-001-003-MY3 and a
grant from Academia Sinica to PYC.

Declarations
This article has been published as part of BMC Genomics Volume 17
Supplement 13, 2016: 15th International Conference On Bioinformatics
(INCOB 2016). The full contents of the supplement are available online at https://
bmcgenet.biomedcentral.com/articles/supplements/volume-17-supplement-13.

Funding
Publication charges for this article have been partly funded by MOST-103-
2313-B-001-003-MY3 to PYC and partly supported by a grant from Academia
Sinica to PYC.

Fig. 4 A reanalysis of the case study dataset. a Using the criterion of differentially methylated (Δ = 0.15) on the methylation index CHH-gene,
DMGs were selected from drm2, drm3, and nrpe1 (polV) mutants in comparison with the control group. b The left panel is a Venn diagram to
show the overlap of genes among the three DMG sets. A resizable 2D heat map plot of the union set indicates the profile pattern (similarity)
among the five datasets

The Author(s) BMC Genomics 2016, 17(Suppl 13):1027 Page 147 of 193

https://bmcgenet.biomedcentral.com/articles/supplements/volume-17-supplement-13
https://bmcgenet.biomedcentral.com/articles/supplements/volume-17-supplement-13


Availability of data and materials
Not applicable.

Authors’ contributions
SYS and CYL, composed the whole infrastructure, conducted the
experiments, and drafted the manuscript together with SHC. YSC and PYC
designed and implemented the algorithm of the methylation level. IHL, SYS
and YBW worked on TEA website construction and implemented the tools
and workflows for data visualization and deep analysis. SHC, SYS and CYL
participated in discussions and conceptualization as well as revising the draft.
All the authors read and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Bioinformatics Program, Taiwan International Graduate Program, Institute of
Information Science, Academia Sinica, Taipei, Taiwan. 2Institute of
Information Science, Academia Sinica, Taipei, Taiwan. 3Institute of Biomedical
Informatics, National Yang-Ming University, Taipei, Taiwan. 4Institute of Plant
and Microbial Biology, Academia Sinica, Taipei, Taiwan. 5Division of
Biostatistics and Bioinformatics, Institute of Population Health Sciences,
National Health Research Institutes, Zhunan, Miaoli, Taiwan. 6Institute of
Fisheries Science, College of Life Science, National Taiwan University, Taipei,
Taiwan.

Published: 22 December 2016

References
1. Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE. Highlights of the

DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res.
2014;42(1):3–19.

2. Furner IJ, Matzke M. Methylation and demethylation of the Arabidopsis
genome. Curr Opin Plant Biol. 2011;14(2):137–41.

3. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from
epigenomics. Nat Rev Genet. 2008;9(6):465–76.

4. Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary
analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9.

5. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev.
2002;16(1):6–21.

6. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies
and beyond. Nat Rev Genet. 2012;13(7):484–92.

7. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA
methylation patterns in plants and animals. Nat Rev Genet. 2010;11(3):204–20.

8. Finnegan EJ, Dennis ES. Isolation and identification by sequence homology
of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic
Acids Res. 1993;21(10):2383–8.

9. Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in
Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad
Sci U S A. 1996;93(16):8449–54.

10. Jones L, Ratcliff F, Baulcombe DC. RNA-directed transcriptional gene
silencing in plants can be inherited independently of the RNA trigger and
requires Met1 for maintenance. Curr Biol. 2001;11(10):747–57.

11. Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL. Demethylation-
induced developmental pleiotropy in Arabidopsis. Science. 1996;273(5275):
654–7.

12. Vongs A, Kakutani T, Martienssen RA, Richards EJ. Arabidopsis thaliana DNA
methylation mutants. Science. 1993;260(5116):1926–8.

13. Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, Caro E, Vashisht AA,
Terragni J, Chin HG, Tu A, et al. Dual binding of chromomethylase domains
to H3K9me2-containing nucleosomes directs DNA methylation in plants.
Cell. 2012;151(1):167–80.

14. Jackson JP, Lindroth AM, Cao X, Jacobsen SE. Control of CpNpG DNA
methylation by the KRYPTONITE histone H3 methyltransferase. Nature. 2002;
416(6880):556–60.

15. Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S,
Jacobsen SE. Requirement of CHROMOMETHYLASE3 for maintenance of
CpXpG methylation. Science. 2001;292(5524):2077–80.

16. Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE.
Non-CG methylation patterns shape the epigenetic landscape in
Arabidopsis. Nat Struct Mol Biol. 2014;21(1):64–72.

17. Matzke MA, Kanno T, Matzke AJ. RNA-directed DNA methylation: the
evolution of a complex epigenetic pathway in flowering plants. Annu Rev
Plant Biol. 2015;66:243–67.

18. Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic
pathway of increasing complexity. Nat Rev Genet. 2014;15(6):394–408.

19. Hebestreit K, Dugas M, Klein HU. Detection of significantly differentially
methylated regions in targeted bisulfite sequencing data. Bioinformatics.
2013;29(13):1647–53.

20. Hansen KD, Langmead B, Irizarry RA. BSmooth: from whole genome bisulfite
sequencing reads to differentially methylated regions. Genome Biol. 2012;
13(10):R83.

21. Stockwell PA, Chatterjee A, Rodger EJ, Morison IM. DMAP: differential
methylation analysis package for RRBS and WGBS data. Bioinformatics. 2014;
30(13):1814–22.

22. Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, Garvin T, Kessler M,
Zhou J, Smith AD. A reference methylome database and analysis pipeline to
facilitate integrative and comparative epigenomics. PLoS One. 2013;8(12):
e81148.

23. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A,
Mason CE. methylKit: a comprehensive R package for the analysis of
genome-wide DNA methylation profiles. Genome Biol. 2012;13(10):R87.

24. Kishore K, de Pretis S, Lister R, Morelli MJ, Bianchi V, Amati B, Ecker JR,
Pelizzola M. methylPipe and compEpiTools: a suite of R packages for the
integrative analysis of epigenomics data. BMC Bioinformatics. 2015;16:313.

25. Park Y, Figueroa ME, Rozek LS, Sartor MA. MethylSig: a whole genome DNA
methylation analysis pipeline. Bioinformatics. 2014;30(17):2414–22.

26. Sun D, Xi Y, Rodriguez B, Park HJ, Tong P, Meong M, Goodell MA, Li W.
MOABS: model based analysis of bisulfite sequencing data. Genome Biol.
2014;15(2):R38.

27. Dolzhenko E, Smith AD. Using beta-binomial regression for high-precision
differential methylation analysis in multifactor whole-genome bisulfite
sequencing experiments. BMC Bioinformatics. 2014;15:215.

28. Liang F, Tang B, Wang Y, Wang J, Yu C, Chen X, Zhu J, Yan J, Zhao W, Li R.
WBSA: web service for bisulfite sequencing data analysis. PLoS One. 2014;
9(1):e86707.

29. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R,
Dreher K, Alexander DL, Garcia-Hernandez M, et al. The Arabidopsis
Information Resource (TAIR): improved gene annotation and new tools.
Nucleic Acids Res. 2012;40(Database issue):D1202–10.

30. Kim MY, Zilberman D. DNA methylation as a system of plant genomic
immunity. Trends Plant Sci. 2014;19(5):320–6.

31. Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE.
Comprehensive analysis of silencing mutants reveals complex regulation of
the Arabidopsis methylome. Cell. 2013;152(1–2):352–64.

32. Guo W, Fiziev P, Yan W, Cokus S, Sun X, Zhang MQ, Chen PY, Pellegrini M.
BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC
Genomics. 2013;14:774.

33. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for
Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–2.

34. Yong WS, Hsu FM, Chen PY. Profiling genome-wide DNA methylation.
Epigenetics Chromatin. 2016;9:26.

35. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A,
Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR, et al. The NIH roadmap
epigenomics mapping consortium. Nat Biotechnol. 2010;28(10):1045–8.

36. Consortium EP. An integrated encyclopedia of DNA elements in the human
genome. Nature. 2012;489(7414):57–74.

37. Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, Bock C,
Boehm B, Campo E, Caricasole A, et al. BLUEPRINT to decode the epigenetic
signature written in blood. Nat Biotechnol. 2012;30(3):224–6.

38. [http://ihec-epigenomes.org/] Accessed on May, 2016.
39. Down TA, Piipari M, Hubbard TJ. Dalliance: interactive genome viewing on

the web. Bioinformatics. 2011;27(6):889–90.
40. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ,

Marra MA. Circos: an information aesthetic for comparative genomics.
Genome Res. 2009;19(9):1639–45.

The Author(s) BMC Genomics 2016, 17(Suppl 13):1027 Page 148 of 193

http://ihec-epigenomes.org/


41. Zhong X, Hale CJ, Nguyen M, Ausin I, Groth M, Hetzel J, Vashisht AA,
Henderson IR, Wohlschlegel JA, Jacobsen SE. Domains rearranged
methyltransferase3 controls DNA methylation and regulates RNA
polymerase V transcript abundance in Arabidopsis. Proc Natl Acad Sci U S A.
2015;112(3):911–6.

42. Greenberg MV, Deleris A, Hale CJ, Liu A, Feng S, Jacobsen SE. Interplay
between active chromatin marks and RNA-directed DNA methylation in
Arabidopsis thaliana. PLoS Genet. 2013;9(11):e1003946.

43. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 2011;17(1):10-12.

44. Li P, Demirci F, Mahalingam G, Demirci C, Nakano M, Meyers BC. An
integrated workflow for DNA methylation analysis. J Genet Genomics. 2013;
40(5):249–60.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

The Author(s) BMC Genomics 2016, 17(Suppl 13):1027 Page 149 of 193


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The measurement of methylation level
	System implementation
	Heat map for 2D presentation in color
	Venn diagram for all possible logical relationships
	Gene Ontology terms and KEGG pathway enrichment calculation
	Demo datasets


	Results
	Deploying the working platform
	Data modules
	Data displaying approaches
	Demo case: BS-Seq data reanalysis

	Discussion
	Conclusions
	Acknowledgements
	Declarations
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

