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Abstract

Background: Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. CRC molecular
pathogenesis is heterogeneous and may be followed by mutations in oncogenes and tumor suppressor genes,
chromosomal and microsatellite instability, alternative splicing alterations, hypermethylation of CpG islands,
oxidative stress, impairment of different signaling pathways and energy metabolism. In the present work, we have
studied the alterations of alternative splicing patterns of genes related to energy metabolism in CRC.

Results: Using CrossHub software, we analyzed The Cancer Genome Atlas (TCGA) RNA-Seq datasets derived from
colon tumor and matched normal tissues. The expression of 1014 alternative mRNA isoforms involved in cell energy
metabolism was examined. We found 7 genes with differentially expressed alternative transcripts whereas overall
expression of these genes was not significantly altered in CRC. A set of 8 differentially expressed transcripts of
interest has been validated by qPCR. These eight isoforms encoded by OGDH, COL6A3, ICAM1, PHPT1, PPP2R5D,
SLC29A1, and TRIB3 genes were up-regulated in colorectal tumors, and this is in concordance with the bioinformatics
data. The alternative transcript NM_057167 of COL6A3 was also strongly up-regulated in breast, lung, prostate, and
kidney tumors. Alternative transcript of SLC29A1 (NM_001078177) was up-regulated only in CRC samples, but not in the
other tested tumor types.

Conclusions: We identified tumor-specific expression of alternative spliced transcripts of seven genes involved in
energy metabolism in CRC. Our results bring new knowledge on alternative splicing in colorectal cancer and suggest a
set of mRNA isoforms that could be used for cancer diagnosis and development of treatment methods.
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Background
Colorectal cancer (CRC) is the third most common can-
cer in the world [1]. It accounts for more than 1,360,000
new cancer incidences and about 9% of all cancer deaths
worldwide [2], [http://gco.iarc.fr/]. The risk of CRC in-
creases with age, and CRC incidence rates are higher
among males, than females [3]. CRC starts in either the
colon or the rectum and is represented by several histo-
logical types. More than 90% of CRC are adenocarcin-
omas [4]. Generally CRC patients are characterized by a
lack of clinical symptoms in early stages, and this leads
to poor prognosis and high mortality rate [5]. Approxi-
mately 20% of patients with CRC have already developed
metastatic disease at the time of diagnosis [6, 7]. Colo-
rectal cancer metastases are found in the liver, lung,
skin, and brain [8]. The median survival of patients with
advanced metastatic disease is less than 24 months [9].
Although the medical management of CRC has im-
proved, there are limited therapeutic options for ad-
vanced CRC. Identification of new therapeutic targets
and biomarkers is imperative for the development of
CRC therapies and diagnosis.
Energy metabolism in cancer cells is characterized by

increased glucose uptake and aerobic glycolysis [10].
Even in the presence of oxygen, most cancer cells pro-
duce lactate instead of oxidation of glycolytic pyruvate
in the mitochondrial tricarboxylic acid (TCA) cycle [11,
12]. This phenomenon was originally observed by Otto
Warburg and termed the “Warburg effect” [13]. In-
creased aerobic glycolysis is associated with the alter-
ation of gene expression, protein modifications and
mutations [14]. Warburg effect is the tumor adaptation
mechanism to oxidative stress and hypoxia [15]. Each
type of cancer is characterized by a distinct metabolic
signature due to its unique transformation process [16,
17]. Elucidation of the metabolic specificities of several
cancers and metabolic differences between cancer and
normal cells has provided important biomarker findings
[18, 19].
The aim of the study was to identify tumor-associated

expression of alternatively spliced transcripts related to
energy metabolism in CRC. Obtained data suggest sev-
eral ones that could be involved in the development of
CRC through altered energy metabolism. Identified
tumor-specific mRNA isoforms may be used for the de-
velopment of cancer diagnosis and treatment methods.

Methods
Bioinformatics analysis
We analyzed TCGA RNA-Seq datasets (read counts) for
colon cancer using CrossHub software [20]. Here is a brief
description of TCGA RNA-Seq Version 2 pipeline. Illu-
mina reads were aligned to hg19 UCSC reference genome
using MapSplice [21]. The alignment results were

translated to transcriptome coordinates prior to transcript
level quantification using the UNC Bioinformatics Utilities
(https://github.com/mozack/ubu). RSEM was used to esti-
mate gene and transcript abundances [22]. The further
analysis of read count data was performed using CrossHub
[20]. Read counts were normalized with TMM (trimmed
mean of M-values) method and then two expression test
were performed: for two pools of samples and for paired
samples only (paired samples comprise only about 10% of
all TCGA samples). We excluded lowly expressed isoforms;
only genes with at least 70 reads in each of 50% samples
(either normal or tumor) have passed expression level
threshold. Then comparison of trimmed (4% from each
tail) mean of expression values between normal and tumor
tissues using t-test was performed. Behjamini-Hochberg p-
value adjustment was performed in order to calculate FDR.
We selected only isoforms with concordant results in
paired and pooled tests.
The selection of genes participating cell energy me-

tabolism was performed using Gene Ontology data-
base and the following keywords: glucose, glycolytic,
glycolysis, cell respiration, respiratory, TCA cycle,
oxidative phosphorylation, Krebs. Finally, a set of 277
genes with 1014 alternatively spliced transcripts was
selected for the further analysis. Unfortunately, TCGA
read count data were derived for the previous genome
assembly (hg19) using UCSC genome annotation.
When possible, UCSC transcript identifiers were con-
verted to RefSeq accession numbers. Using CrossHub,
we analyzed associations with disease stage, follow-up
status, TNM indexes. We paid special attention to the
alternatively spliced transcripts that are strongly over-
expressed in colon tumors against the background of
low changes in overall gene expression level or its
down-regulation.

Tissue specimens
A total of 40 colorectal, 30 breast, 30 non-small cell
lung, 30 prostate, and 30 kidney cancer specimens and
matched morphologically normal tissues were obtained
after surgical resection prior to radiation or chemother-
apy. The samples were frozen and stored in liquid nitro-
gen. The morphological classification of the tumor was
performed according to the American Joint Committee on
Cancer (AJCC) staging system [23]. Only samples with
70% or more tumor cells were studied. Written informed
consent was obtained from all patients. The study was
approved by The Ethics committee of Herzen Moscow
Cancer Research Institute, Ministry of Health of the
Russian Federation. The study was done in accordance
with the principles outlined in the Declaration of Helsinki
(1964). The sample information for colorectal tumors is
presented in Table 1.
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Isolation of RNA and cDNA synthesis
Total RNA was isolated from frozen tissues using RNeasy
Mini kit (Qiagen, Germany) according to manufacturer's
instructions. RNA quality was measured using the RIN
method (RNA Integrity Number) on Agilent RNA Bioana-
lyzer 2100 (Agilent Technologies, USA). The RNA quanti-
fication was carried out on a NanoDrop 1000 (NanoDrop
Technologies Inc., USA). cDNA synthesis was done using
M-MLV Reverse Transcriptase (Thermo Fisher Scientific,
USA) and random hexamers.

Quantitative PCR
Gene and transcript expression levels were estimated by
quantitative PCR (qPCR) analysis. All probes contained
the dye FAM at 5′-end and RTQ1 at 3′-end. Specific
primer pairs and probes were synthesized for the alter-
native splicing isoforms of target genes (Table 2).
Primers and probes for reference genes were designed as
previously described [24, 25]. PCR was carried out in
triplicates on AB 7500 Real-Time PCR System (Thermo
Fisher Scientific, USA) following the manufacturer's in-
structions. PCR program was as follows: 10 min at 95 °C
and then 50 two-step cycles 15 s at 95 °C and 60 s at
60 °C. The total reaction volume was 20 μL in triplicate.
PCR products were analyzed in 2% agarose gels, purified
and submitted for Sanger sequencing on ABI Prism
3100 Genetic Analyzer (Thermo Fisher Scientific, USA).

Analysis of qPCR data
The Relative Quantitation software (Thermo Fisher
Scientific, USA) and ATG (Analysis of Transcription of
Genes) tool were used to analyze the obtained qPCR
data taking into account the efficiency of the PCR ampli-
fication [26, 27]. The expression levels of target genes
were normalized to GAPDH and ACTB reference genes
and finally relative (T/N) expression level of target genes
was calculated using ΔΔCt method. The relative inner
variability between mRNA levels of reference genes do
not exceed two times, and, therefore, 2-fold or more
expression alterations of the target genes/isoforms were

considered significant. Inter-group and intra-group com-
parisons were performed using nonparametric Wilcoxon/
Mann-Whitney U–test and Kruskal-Wallis test. Differ-
ences with p < 0.05 were considered statistically signifi-
cant. The statistical procedures were performed with
BioStat software (AnalystSoft Inc., USA).

Results
Analysis of TCGA data with CrossHub
Differential expression profiles were derived for 277 genes
(1014 alternatively spliced transcripts) which participate
in cell energy metabolism. 285 tumor and 41 matched nor-
mal colon tissue samples were used in the analysis. Among
differentially expressed transcripts, we paid a special
attention to the following eight mRNA isoforms, which
were overexpressed in colon tumors: OGDH (uc011kby/
AK296400), COL6A3 (uc002vwo/NM_057167), ICAM1
(uc010xle/AK301412), PHPT1 (uc004cjq/NM_014172),
PPP2R5D (uc010jyd/NM_180977), SLC29A1 (uc003owz/
NM_001078177), TRIB3 (uc002wdm/NM_021158 and
uc002wdn/AK297546). Most of them are minor
mRNA isoforms that are selectively up-regulated against
the background of intact or under-expressed other iso-
forms and intact expression of entire gene (sum across all
transcripts). The list of LogFC, p-values, FDR, CPM,
RNA-Seq expression profiles and associations with clinical
characteristics is provided in the Additional file 1. Differ-
ential expression of these transcripts was further validated
with qPCR. Most of the selected isoforms have unique
splice event which do not occur in the other isoforms (e.g.
exon boundaries). This allows accurate detection and
quantification of these transcripts with spliced reads span-
ning this unique exon junction.
OGDH (oxoglutarate dehydrogenase) mRNA isoform

uc011kby lacks three exons and this unique feature
allows quantification of this transcripts with RNA-Seq
data. Compared to the reference isoform (UniProt ID
Q02218-1), the protein encoded with uc011kby tran-
script lacks three regions: 75–123 a.a., 139–172 a.a.,
and 211–263 a.a. Full-length isoform of OGDH is nor-
mally regulated by Ca2+, adenine nucleotides, and NADH.
Mutations in the second region (D154A for Q02218-1)
results in 6-fold decrease of calcium sensitivity [28]. Tran-
script uc003owz is very minor isoform of SLC29A1 mRNA
(CPM= 0.3 and 2.1 for normal and tumor accordingly).
The first exon of this transcript almost completely covers
CpG island in the promotor region of SLC29A1. Frequent
induction of this minor isoform suggests altered mecha-
nisms of SLC29A1 expression regulation in colon tumors.
Two other transcripts of interest, uc010xle and uc010jyd

are minor isoforms of ICAM1 (Intercellular Adhesion
Molecule 1) and PPP2R5D (Protein Phosphatase 2 Regula-
tory Subunit B' Delta) genes, respectively. Compared to
the major isoforms, they do not include some exons. As

Table 1 Clinicopathologic characteristics of CRC patients

Characteristic Total, n

Gender

Male
Female

23
17

Age

≤ 60
> 60

9
31

Clinical stage

I
II
III
IV

3
13
4
20
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the result, protein encoded with ICAM1 uc010xle has
deletion at 22–244 a.a. (UniProt P05362-1) which spans
two Ig-like C2-type domains. The signal peptide sequence
is almost completely kept (1–28 a.a.). This isoform is
strongly overexpressed in tumor (CPM is 0.6 and 5.2 for
normal and tumor) whereas major isoform is overex-
pressed only 1.5-times (CPM= 36 and 53). Protein
encoded with PPP2R5D transcript uc010jyd has deletion
at 10–107 a.a. (UniProt Q14738-1).

Up-regulation of eight alternative mRNA transcripts in
CRC
Quantitative expression estimation was performed for
eight alternative mRNA isoforms of seven genes in-
volved in energy metabolism in CRC (Fig. 1). Bioinfor-
matics results showed good concordance with qPCR
results. All the transcripts showed up-regulation in more
than 50% of CRC cases (Table 3). The highest frequency
and extent of the mRNA level increase were observed

Table 2 Primer and probe sets for qPCR analysis

Gene Transcripts (UCSC database) Direction Primer sequence, 5’→ 3’ Amplicon size, bp

COL6A3 universal Forward
Reverse
Probe

TCCAAGCCAAGAACGCAGA
TGACGCCCTCAGAGCCAT
ACGGAGCACCAGCACCAGTTTCAGG

204

uc002vwo / NM_057167
uc002vwq / NM_057165
(not expressed according to RNA-Seq data)

Forward
Reverse
Probe

ACACACGCCTTCAGGTTTGC
GACTGCGAAATTGACACTTCCG
CAGCAGCAGCAAGCAGCACAAGACTC

218

ICAM1 universal Forward
Reverse
Probe

CACCCCAGAGGACAACGG
TGGCACATTGGAGTCTGCTG
CCGGCCAGCTTATACACAAGAACCAGA

180

uc010xle / AK301412 Forward
Reverse
Probe

CGCTATGGCTCCCAGCAG
TGGCAGCGTAGGGTAAGGTTC
TCTGTTCCCAGGGACTCCAGAACGG

147

OGDH universal Forward
Reverse
Probe

AAGTCTAGTGAGAATGGCGTGGACT
CAAGGTAATGTTCCTGTCGGTGAC
TTCAGCCGCCCTCTGTGTGGCAT

219

uc011kby / AK296400 Forward
Reverse
Probe

GATGTACTGTGCTTGGCTGGAAA
GATGATCTCCCGCAGAGGAAGT
CAGGCCATAGAACCCTTATGTACACTTTTGGG

147

PHPT1 universal Forward
Reverse
Probe

AAGTACCCCGACTACGAGGTCA
GGCTCTGAAGTGGCTGCTG
CTAACGACGGCTACTGAGCACTCCCA

92

uc004cjq / NM_014172 Forward
Reverse
Probe

AAGGCTGCGACTGTGAGTGTCT
CTCAGTTGAAATGGCGTGCTG
CGGCTATTCCATGGCCTATGGTCCTG

122

PPP2R5D universal Forward
Reverse
Probe

CGGGACTTCCTCAAGACCATT
ATGATGCTGCCCAGGATCTC
CACATCTTCTACAGGTTCATCTACGAGACGGA

161

uc010jyd / NM_180977 Forward
Reverse
Probe

GGCCGAGATGCCCTATAAACT
TTGAGTCCTGCCCGCTTC
CTTCTGGATAAACAGCTCCTTCTCCTTTTTCAG

138

SLC29A1 universal Forward
Reverse
Probe

CATTTTGACCATCATCTGTTACCTG
GGTCCAACTTGGTCTCCTGCT
CCCCGCCTGGAATTCTACCGCTACTA

107

uc003owz / NM_001078177 Forward
Reverse
Probe

GAGCCTGAGGACCCTGCG
CGATGGGGATCACCCGTC
CAACGTGACCGCAGCCTGTTTTAGGC

127

TRIB3 universal Forward
Reverse
Probe

GCGTGATCTCAAGCTGTGTCG
GCCTTGCCCGAGTATGAGG
CAGCTTCTTCCTCTCACGGTCAGCGAAG

183

uc002wdm / NM_021158 Forward
Reverse
Probe

ACCTGCTGGTGCCCTGGAG
CGTTTCTGGACGGGACGCT
ACGGGGCGAGATGCGAGCCACC

168

uc002wdn / AK297546 Forward
Reverse
Probe

GTCATCCCAGCCTCGAACCT
TCCAACTCCAACCGCTTCTTC
TACCTGGCAACAGATGCGAGCCACC

191

Only UCSC hg19 target transcripts are listed
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for alternative transcripts of COL6A3 (uc002vwo/ NM_0
57167, 90% and 10.6-fold average increase), TRIB3 (uc00
2wdm/NM_021158, 90% and 10.5-fold average increase;
uc002wdn/AK297546, 67.5% and 3.6-fold average in-
crease), and SLC29A1 (uc003owz/NM_001078177, 77.5%
and 4.6-fold average increase) genes.

Simultaneous up-regulation of alternative mRNA transcripts
in colorectal, breast, lung, prostate, and kidney cancers
To evaluate the possibility of tumor-specific expression
of alternative transcripts, we analyzed their expression
in breast, lung, prostate, and kidney cancers. We re-
vealed the significantly increased expression of

Fig 1 Up-regulation of eight alternative mRNA transcripts in CRC. OGDH: uc011kby/AK296400, COL6A3: uc002vwo/NM_057167, ICAM1:
uc010xle/AK301412, PHPT1: uc004cjq/NM_014172, PPP2R5D: uc010jyd/NM_180977, SLC29A1: uc003owz/NM_001078177, TRIB3: uc002wdm/
NM_021158 and uc002wdn/AK297546
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alternative mRNA isoform uc002vwo/NM_057167 of
COL6A3 in all these tumors (Fig. 2). The mRNA level
of the transcript was up-regulated in 96.7% (29 of 30, p
< 0.05) of breast, 63.3% (19 of 30, p < 0.05) of lung,
76.7% (23 of 30, p < 0.05) of prostate, and 50% (15 of
30, p < 0.05) of kidney cancer samples.
We also observed the increased expression of two

alternative transcripts (TRIB3: uc002wdm/NM_021158
and ICAM1: uc010xle/AK301412) in all the cancers with
one exception (Fig. 3). We found that the uc002wdm/
NM_021158 (TRIB3) mRNA level was increased in
73.3% (22 of 30, p < 0.05), 50% (15 of 30, p < 0.05), and
93.3% (28 of 30, p < 0.05) cases of breast, prostate, and
kidney cancers, respectively. The stable expression of
uc002wdm/NM_021158 (TRIB3) was detected in most
cases of lung cancer. The up-regulation of uc010xle/
AK301412 (ICAM1) level was detected in breast (50%,
30 of 15, p < 0.05), prostate (50%, 30 of 15, p < 0.05), and
kidney (70%, 21 of 30, p < 0.05) cancers. The alternative
transcript uc010xle/AK301412 (ICAM1) was differen-
tially expressed in lung cancer; the mRNA level of one
was increased in 36.7% (11 of 30, p < 0.05) and decreased
in 40% (12 of 30, p < 0.05). The expression of uc003owz/
NM_001078177 SLC29A1 transcript was not significantly
changed in more than 50% cases of all tumors studied, but
was up-regulated in 77.5% (31 of 40, p < 0.05) colorectal
cancer samples (Fig. 4).

Table 3 Frequency of alterations and relative mRNA level of
eight alternative mRNA transcripts in CRC

Genes Frequency of mRNA level
changes, %

Median of mRNA level
changes, n-fold

↑ ↓

OGDH

uc011kby.1 52.5 (21/40) 15 (6/40) 3.1 ↑

COL6A3

uc002vwo.2 90 (36/40) 5 (2/40) 10.6 ↑

ICAM1

uc010xle.1 62.5 (25/40) 15 (6/40) 3.5 ↑

PHPT1

uc004cjq.3 50 (20/40) 5 (2/40) 3.2 ↑

PPP2R5D

uc010jyd.2 50 (20/40) 15 (6/40) 2.6 ↑

SLC29A1

uc003owz.1 77.5 (31/40) 2.5 (1/40) 4.7 ↑

TRIB3

uc002wdm.2
uc002wdn.2

90 (36/40)
67.5 (27/40)

2.5 (1/40)
2.5 (1/40)

10.5 ↑
3.6 ↑

Note: qPCR data. ↓/↑: mRNA level decrease/increase. P < 0.05 for all cases

Fig 2 Up-regulation of the COL6A3 alternative transcript uc002vwo/NM_057167 in breast, lung, prostate, and kidney cancers
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Fig 3 Relative mRNA levels of the TRIB3 alternative transcript uc002wdm/NM_021158 and ICAM1 alternative transcript uc010xle/AK301412 in
breast, lung, prostate, and kidney cancers
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Discussion
Alternative splicing plays a critical role in multiple cellu-
lar processes and development programs [29]. In recent
years, alternative splicing has been recognized to con-
tribute to many human disorders, including cancer [30].
Alternative splicing is one more mechanism that allows
expressing transcripts involved in the regulation of
apoptosis, signaling pathways and cellular metabolism
[31]. Changes in splicing patterns occur widely in cancer
cells and was shown to be associated with the resistance
to therapeutic treatments [32]. Alterations in the trans-
acting splicing regulatory elements are the most frequent
in cancer [33, 34]. Mutations in various splicing regulatory

factors such as U2AF1, ZRSR2, SRSF2, SF3B1, and RBM10
have been described in multiple tumor types [35–37].
Overexpression of a positive splicing factor, serine/argin-
ine-rich (SR), was found in colorectal, thyroid, small intes-
tine, kidney, and lung cancers [38]. On the other hand, an
alternative splicing repressor, heterogeneous nuclear ribo-
nucleoprotein (hnRNP), was primary down-regulated in
these tumor types. Mutations in cis-acting splicing ele-
ments were shown in both oncogenes (KIT, CDH17, and
BRCA1/2) and tumor suppressors (LKB1 and KLF6), which
have causal role in cancer initiation and progression [34,
39, 40]. Cancer-associated alterations of splicing patterns
have been also reported for other cancer-related genes

Fig 4 The relative mRNA level of the SLC29A1 alternative transcript uc003owz/NM_001078177 in colorectal, breast, lung, prostate, and kidney cancers
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[39]. For instance, it has been shown that splicing pattern
of Ron and Rac1 genes were altered in tumors and overex-
pression of their tumor-associated isoforms was sufficient
to culture cell transformation [41, 42]. The alternatively
spliced isoforms of MDM2/HDM2 gene, that is a regulator
of p53 protein, have been identified in many cancers.
Moreover, some of their protein products were shown to
have transforming properties [43, 44].
Alternative splicing is known contributor to cancer

pathogenesis. For instance, activation of splicing factor
hnRNP by EGFRvIII mutation promotes glycolytic gene
expression in glioblastoma [45]. Alternative splicing of
pyruvate kinase M (PKM) pre-mRNA generates the
PKM2 isoform in all cancer cells [46]. PKM2 is a critical
enzyme for aerobic glycolysis that mediates Warburg
effect and facilitates tumor growth [47]. PKM2 is highly
expressed in embryonic and tumor cells, whereas PKM1
is primarily expressed in normal tissues [47, 48]. Splicing
repressors hnRNPA1 and hnRNPA2 have been found to
regulate PKM alternative splicing in cancer cells [49].
Down-regulation of these factors in cancer cells resulted
in an increase in the PKM1/PKM2 protein ratio and
decrease in lactate production [31]. These data indicate
that alternative splicing is involved in the switch from oxi-
dative phosphorylation to aerobic glycolysis in cancer.
Mitochondrial damage modulates alternative splicing in
neuronal cells leading to changes in the abundance of
certain isoforms [50]. Thus, mitochondrial dysfunction, as
a notable feature of cancer, may be also the mechanism
underlying the changes in alternative splicing patterns.
Our study revealed tumor-associated changes in alterna-

tive splicing patterns of seven genes involved in energy
metabolism, including OGDH, COL6A3, ICAM1, PHPT1,
PPP2R5D, SLC29A1, and TRIB3. OGDH gene encodes a
subunit of the multi-enzyme 2-oxoglutarate dehydrogen-
ase complex (OGDHC) that is the first and rate-limiting
component of one [51]. OGDHC plays a major role in
TCA cycle and involved in the regulation of the glutamine
and glutamate metabolism [52]. OGDHC is often implied
to be inactive in cancer [53]. Oncogenic mutations reduce
the enzyme activity of NADP+-dependent isocitrate
dehydrogenases isoforms 1 and 2 (IDH1/2) resulting in
increased 2-hydroxyglutarate levels and decreased
concentrations of the OGDHC substrate 2-oxoglutarate
[54, 55]. In a previous study, we showed that OGDHL,
encoding one more component of the OGDHC, is down-
regulated by promoter hypermethylation in CRC [56]. The
promoter hypermethylation in OGDHL gene was also
observed in breast, cervix, lung, oesophagus, and pancreas
cancers [57, 58]. It has been shown that re-expression of
OGDHL induced apoptosis through a PI3K/AKT pathway
in cervical cancer cells [51]. The alterations in OGDHC
expression were shown to be functional in various cancer
cells [53]. Thus, we assumed that up-regulation of OGDH

alternative mRNA transcript may indicate the presence of
active OGDH complex in colorectal cancer that is
required to control energy and glutamine metabolism.
Overexpression of SLC29A1 alternative transcript was

found in colorectal cancer and was not significantly
changed in breast, lung, prostate, and kidney can-
cers. Transporter SLC29A1 has been reported relating
to multidrug resistance (MDR). Significant up-
regulation of SLC29A1 in colorectal, astroglial, and
breast cancer cells contributed to cisplatin resistance
and increased cell viability [59]. On the other hand,
knockdown of SLC29A1 reduced sensitivity of leukemia
and lung cancer to drugs since it plays a role in cellular
uptake [60, 61]. Increased SLC29A1 mRNA level was
suggested as a critical factor of pancreatic and biliary
tract cancer cells sensitivity to chemotherapy [62, 63].
The expression of SLC29A1 alternative transcripts in
cancer has not been previously analyzed. We first ob-
served the tumor-specific up-regulation of the
uc003owz/NM_001078177 SLC29A1 transcript in CRC.
The functional role of a protein encoded by the tran-
script in CRC is not obvious. The further investiga-
tion will address how the transcript is associated with
the resistance and sensitivity of colorectal cancer cells
to therapy by various agents and may be useful for predic-
tion of its efficacy.
Using qPCR method, we showed the tumor-specific

overexpression of uc002vwo/NM_057167 COL6A3 alter-
native transcript in colorectal, breast, lung, prostate, and
kidney cancers. Collagen VI, a protein of the extracellu-
lar matrix (ECM), is significant in the progression of
cancer and resistance to chemotherapy [64, 65]. COL6A3
encodes one of the three α chains of type VI collagen
which is involved in the regulation of metabolic health
by ECM [66, 67]. Recent studies have demonstrated that
COL6A3 was up-regulated in gastric, pancreatic, and
ovarian cancers [68–71]. Exon array analysis revealed
the expression of COL6A3 alternative long isoform in
colon, bladder, pancreatic, and prostate cancers [72, 73].
Intercellular adhesion molecule 1 ICAM1 (CD54) is

known to play a major role in immune response, inflam-
mation, regulation of energy balance, and angiogenesis
[74–77]. Increased levels of ICAM1 were reported in
several human malignances and cancer cell lines [78]. In
melanoma and gastric cancer, ICAM1 expression was
associated with an increase in metastases [79, 80]. This
can be explained by ICAM1-mediated activation of
leukocytes and induction of cell migration [81]. On the
other hand, immunohistochemistry studies reported bet-
ter prognosis for patients with ICAM1-positive tumors
(including lymphoma, ovarian, colorectal, head and neck
cancers) [82–84]. Cancer cell can expresses and release
soluble ICAM1, that is regulated by TNF-α and INF-γ
[85]. It is an essential mechanism used by tumors to
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escape immune recognition [86, 87]. For example, ele-
vated serum levels of ICAM1 in colorectal cancer pa-
tients were correlated with tumor stage and tendency to
metastasis formation [84, 88, 89]. Thus, ICAM1 seems
to have different roles in tumorigenesis. Tumor-specific
expression of ICAM1 alternative splice variants was not
previously reported. We found up-regulation of uc010xle/
AK301412 ICAM1 alternative splice isoform in colorectal,
breast, prostate, and kidney cancers that may be important
prognostic factor.
PHPT1 and PPP2R5D genes encode proteins belonging

to phosphatase activity and glucose metabolism [90–92].
PHPT1 has been found to be overexpressed in lung
cancer and playing a role in cancer progression, migra-
tion and invasion [93, 94]. PPP2R5D gene, encoding a
regulatory B subunit of protein phosphatase 2A (PP2A),
was reported to be involved in Myc activation and deg-
radation [95]. We first showed up-regulation of PHPT1
and PPP2R5D alternative transcripts in colorectal
cancer.
The protein encoded by TRIB3 gene is tribbles

pseudokinase-3 that has been proposed as inhibitor of
AKT and interaction partner of transcription factors
(including ATF-4, CHOP9, and several MAPKs) that
regulate cell growth, differentiation and metabolism
[96–100]. Schwarzer and co-authors showed that TRIB3
emerges as a transcriptional target of PI3K/Akt signaling
pathway and is involved in regulation of glucose metabol-
ism [101]. Recent studies reported that increase in TRIB3
expression promoted cancer cell death through apoptosis
[102–105]. Genetic inhibition of TRIB3 resulted in activa-
tion of mTORC2/AKT/FOXO pathway and was associ-
ated with more aggressive phenotype in several animal
models of cancer [106]. However, TRIB3 was up-regulated
in CRC samples, gastrointestinal and colorectal cancer cell
lines [107]. These data are consistent with the overexpres-
sion of both TRIB3 alternative splice variants in CRC
observed in this study. Thus, tumor-associated changes in
alternative splicing lead to overexpression of certain
TRIB3 splice isoforms which can be involved in develop-
ment of colorectal cancer.

Conclusion
In the present study, using our previously developed
bioinformatics tools and TCGA data, we evaluated alter-
native splicing profiles of genes associated with energy
metabolism in CRC samples and then validated the
results by qPCR. Differential expression of the tran-
scripts of seven genes (OGDH, COL6A3, ICAM1,
PHPT1, PPP2R5D, SLC29A1, and TRIB3) was confirmed.
Alternative transcript uc003owz/ NM_001078177 of
SLC29A1 was characterized with tumor-specific overex-
pression in CRC that can be associated with drug resist-
ance and sensitivity. Changes in alternative splicing

patterns of OGDH gene may play an important role in
the regulation of energy and glutamine metabolism in
CRC. Overexpression of COL6A3 alternative transcript
in all examined tumor types indicates its significant con-
tribution to disease development and pathogenesis. In-
crease in expression of PHPT1, PPP2R5D, and two
TRIB3 transcripts indicates that tumor-associated
changes in alternative splicing can affect glucose metab-
olism in colorectal cancer. Several alternative transcripts
may be suggested as potential cancer biomarkers, al-
though further studies must be performed to confirm
these results.
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Additional file 1: Table S1. Differential expression profiles of genes
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