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Abstract

Background: Inferring phylogenetic trees for newly recovered genomes from metagenomic samples is very useful
in determining the identities of uncultivated microorganisms. Even though 16S ribosomal RNA small subunit genes
have been established as “gold standard” markers for inferring phylogenetic trees, they usually cannot be assembled very
well in metagenomes due to shared regions among 16S genes. Using single-copy marker genes to build genome trees
has become increasingly popular for uncultivated species. Predefined marker gene sets were discovered and have been
applied in various genomic studies; however these gene sets might not be adequate for novel, uncultivated, draft, or
incomplete genomes. The automatic identification of marker gene sets among a set of genomes with different assembly
qualities has thus become a very important task for inferring reliable phylogenetic relationships for microbial populations.

Results: A computational pipeline, ezTree, was developed to automatically identify single-copy marker genes for a group
of genomes and build phylogenetic trees from the marker genes. Testing ezTree on a group of proteobacteria species
revealed that ezTree was highly effective in pinpointing marker genes and constructing reliable trees for different groups
of bacterial genomes. Applying ezTree to genomes that were recently recovered from metagenomes also showed that
ezTree can help elucidate taxonomic relationships among newly recovered genomes and existing ones.

Conclusions: The development of ezTree can help scientists build reliable phylogenetic trees for uncultivated species
retrieved from environmental samples. The uncovered single-copy marker genes may also provide crucial hints for
understanding shared features of a group of microbes. The ezTree pipeline is freely available at https://github.com/
yuwwu/ezTree under a GNU GPLv3 license.
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Background
Metagenomics and single-cell genomics have been estab-
lished as promising methods for mining and investigating
novel organisms from a wide variety of environments. The
term “microbial dark matter” was proposed to describe
uncultivated organisms that can only be sequenced and
studied from microbial communities [1], and a new view of

the tree of life was proposed to plug more than 1000 newly
recovered uncultivated genomes into existing phylogenetic
trees [2]. Increasing numbers of studies have focused on
analyzing novel genomes extracted from a huge variety of
microbial communities [3–12], thus expanding and pushing
our knowledge toward understanding these organisms and
the roles they play in the environments.
One of the most popular techniques for investigating

microbial communities is metagenomics, which seeks to
directly obtain genomic sequences from the environments.
Computational binning techniques [13–22] were developed
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to extract individual organisms directly from metagenomes.
To understand the microbial diversity of the recovered
genomes and place them in the tree of life, phylogenetic
marker genes have been used to build trees for the newly
identified species. 16S ribosomal RNA small-subunit genes,
one of the most widely adopted phylogenetic markers,
have been established as “gold standard” for probing
the taxonomy of newly recovered organisms and con-
structing phylogenetic trees [23, 24]. However, due to
shared regions of 16S rRNA genes, it is still a very challen-
ging task for de Bruijn graph-based metagenomic assem-
blers, such as Meta-IDBA [25], SPAdes [26], Ray Meta
[27], and MEGAHIT [28], to assemble intact 16S rRNA
genes from metagenomes [29]. As a result, genomes re-
covered from metagenomes usually lack 16S genes (or
consist of only very short gene fragments), making it im-
possible or very difficult to build phylogenetic trees using
16S sequences.
Whole-genome information was proposed for refining

phylogenetic relationships between or among individual
species [30–33]. Concatenated protein trees (trees based
on combined protein data alignments) were proposed to
compensate for 16S gene-based trees and are potentially
more robust and informative [34]. In order to build
concatenated protein trees, one needs to identify phylo-
genetic marker genes, defined as genes that appear once
and only once in every organism considered in the study
[35]. Genes satisfying this criterion have been used as
markers for reliably reconstructing phylogenetic relation-
ships for prokaryotic species, as demonstrated in previous
studies [36, 37]. Various attempts have been made to
discover such marker gene sets. For example, Ciccarelli
et al. identified 31 marker genes in 191 bacterial species
and built a highly resolved tree-of-life [36]. Different
marker gene sets were also reported by other people
[35, 37, 38]. The checkM software also discovered lineage-
specific marker gene sets and used them to check the com-
pleteness and contamination ratios of prokaryotic genomes
recovered from metagenomes [39].
Since individual genomes recovered from metagen-

omes are rarely complete, some of the genes from the
predefined marker gene sets may be missing from the
recovered genomes. Moreover, since constructing
phylogenetic trees usually involves dozens or even
hundreds of genomes, one may need to laboriously
check the copy number of each gene in every genome
in order to identify the marker gene set for building
phylogenetic trees. Even though reliable gene predic-
tion tools such as Prodigal [40] and FragGeneScan [41]
were developed to alleviate efforts to predict genes
from newly recovered prokaryotic genomes, tools to
automatically identify marker genes in a group of ge-
nomes are still needed to infer taxonomic relationships
for a set of genomes.

Herein, I introduce a computational pipeline for inferring
marker genes and phylogenetic trees from a set of prokary-
otic genomes. The pipeline takes a set of genomes, includ-
ing newly recovered, fragmented, or incomplete ones, and
is able to predict protein-coding genes from the input
genomes, identify marker genes shared by all genomes, and
produce concatenated protein alignments of marker genes
along with a maximum-likelihood (ML) phylogenetic tree.
Users with newly recovered genomes of any quality can
very easily and effortlessly employ this pipeline to build a
tree and infer the taxonomy of recovered species.

Methods
The pipeline was designed to take in a set of prokaryotic
genomic sequences in fasta format. Genomic sequences
can be complete, fragmented, or even incomplete. If users
prefer, they may also input protein sequences instead of
entire genomes. The workflow of the pipeline includes pre-
dicting protein-coding genes from the genomes, assigning
functional profiles to the genes, identifying single-copy
marker genes for the set of genomes, and aligning se-
quences to produce a phylogenetic tree, as depicted in
Fig. 1. The implementation details of the pipeline are
described below.

Gene prediction and functional annotation
Gene prediction was performed using Prodigal [40] with
parameter “-p meta” to accommodate novel or newly
recovered fragmented genomes. The pipeline is able to
check whether inputs are genomic sequences or proteins
and skip the gene-prediction step for protein inputs. After
extracting protein-coding genes from the genomes, the
amino acid sequences were compared to PFAM hidden
Markov models [42] using HMMER3 [43] with e-value
cutoff set to 1e-10 (which was chosen to achieve a balance
between sensitivity and specificity, as illustrated in Fig. 2,
in which the greatest number of marker genes was identi-
fied at 1e-10 and 1e-15). Only the top hit for each gene
was retained in order to preserve only the most likely
mapping results and facilitate the search for single-copy
marker genes.

Single-copy marker gene identification
Gene annotations across all genomes were compared
within and between genomes to look for marker genes.
PFAM profiles that appeared more than once in each
genome were discarded; the remaining profiles were
further compared among all genomes. Only single-copy
PFAM profiles that were found in all genomes were kept
for further processing.

Sequence alignment and phylogenetic tree construction
Once single-copy marker genes were identified for the
set of input genomes, amino acid sequences of the genes
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were collected from all genomes and separately aligned
using MUSCLE [44]. Alignments were then concatenated,
one-by-one, to form a single alignment file. Gblocks [45]
was further employed to remove highly variable or gapped
positions in order to generate more-reliable trees. Finally
FastTree [46] was used to generate an ML tree from the
concatenated alignment with default options (JTT model,
1000 bootstraps).

Pipeline output
Given a set of genomes, the pipeline was designed to
identify 1) a list of marker genes; 2) a concatenated
alignment file; and 3) the tree in the Newick format built
by FastTree. The tree can be viewed using tools such as
MEGA7 [47], TreeView [48], and FigTree [49]. If users
wish, they can also take the alignment and use other
tree-reconstruction software such as RAxML [50], Mr.
Bayes [51], MEGA7 [47], PhyML [52], and IQ-TREE
[53] to produce their own trees.

Mapping PFAM profiles and cluster of orthologous
groups (COG) categories
PFAM profiles and COG categories were mapped through
the gene ontology (GO) website, which consists of COG-
to-GO and PFAM-to-GO mapping results [54]. The map-
ping was done in two steps: 1) “cog2go” and “pfam2go”
files were downloaded; and 2) COGs and PFAMs that
could be mapped to the same GO terms were extracted.
Definitions of COG categories were downloaded from the
NCBI COG website [55].

Availability
The pipeline along with a README and a tutorial PDF
file is publicly available at https://github.com/yuwwu/
ezTree under the GNU GPLv3 license. The set of Pro-
teobacteria genomes used in the evaluation can also be
downloaded from the github website.

Results
The ezTree pipeline was first evaluated using 23 Proteo-
bacteria genomes, among which six were draft genomes
(i.e., genomes with more than one scaffold; detailed gen-
ome information is listed in Additional file 1: Table S1).
ezTree successfully identified marker genes and built
phylogenetic trees for genomes that shared the same
species, genus, family, order, class, and phylum ranks, as
shown in Fig. 3. Tree structures were consistent with
known topologies, suggesting that ezTree was able to re-
construct phylogenetic relationships among the species.
The high bootstrap support values for all branches of
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Fig. 2 Number of single-copy marker genes extracted using different
e-value cutoffs. The test dataset is the proteobacteria dataset listed
in Additional file 1: Table S1

Fig. 1 Workflow of ezTree to look for single-copy marker genes and
use them to construct a phylogenetic tree for a set of input genomes
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the trees indicate that trees built from the identified
marker genes were very reliable.
Besides building trees, ezTree was also able to identify

shared single-copy marker genes from the examined
genomes. Numbers of identified marker genes are shown
in the upper part of Fig. 4. As expected, genomes with
the same species-, genus-, or family-level taxonomy shared
many more marker genes (1161, 1051, and 917 marker
genes, respectively, for species, genus, and family levels)
than those with the same order-, class-, or phylum-level
taxonomy (167, 149, and 103 marker genes, respectively,

for order, class, and phylum levels). The COG categories of
marker genes were identified by mapping PFAM profiles
against COGs (see Implementation for details). One of the
COG categories, “[J] Translation, ribosomal structure and
biogenesis,” clearly stood out as the most abundant gene
category for marker genes, as shown in the lower part of
Fig. 4. This is consistent with other marker gene-related
analyses, in which ribosomal proteins accounted for the
majority of marker genes. For example, Huson et al.
reported using 41 marker genes to guide gene-centric
assembly of orthologous gene families, in which 30 of
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Fig. 3 Reconstructed phylogenetic trees of a set of Proteobacteria genomes. Shared taxonomic ranks for each subset of genomes are (a) species;
(b) genus; (c) family; (d) order; (e) class; and (f) phylum
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41 (73%) marker genes were ribosomal proteins [56].
A new tree-of-life was also built on a set of 16 ribosomal
protein sequences of organisms [2]. Note that only a
fraction of genes can be mapped to COG categories
due to the mapping between PFAM and COG; however,
the consistency between this and past works cannot be
overlooked.
The ezTree pipeline was also used to identify marker

genes and phylogenetic relationships for several newly
recovered genomes from metagenomes. In 2016, Wawrik
et al. reported that the bacterial species Smithella sp.
SDB coupled with hydrogenotrophic methanogens could
degrade water-insoluble paraffins [57]. The draft ge-
nomes of Smithella sp. SDB, Methanosaeta sp. SDB,
Methanolinea sp. SDB, and Methanoculleus sp. SDB
were downloaded and applied ezTree to them along with
other genomes downloaded from NCBI. For Smithella
sp. SDB, ezTree successfully identified 31 marker genes
(Additional file 1: Table S3) from a group of Syntropho-
bacterales, and the tree (Fig. 5; genome information is

available in Additional file 1: Table S2) for the involved
genomes was consistent with the 16S tree (Fig. 2 of
Wawrik et al.’s paper [57]). Note that among the 17 Syn-
trophobacterales genomes, only four were complete ge-
nomes; the numbers of scaffolds of the draft genomes
ranged from as low as 22 to as high as 1037. This clearly
demonstrates the ability of ezTree to identify marker
genes and build trees from draft genomes of any assem-
bly quality.
ezTree also identified 75 single-copy marker genes for

the three Methanomicrobia SDB genomes (genome in-
formation can be found in Additional file 1: Table S4;
marker genes are listed in Additional file 1: Table S5).
The tree built from concatenated proteins also clearly
placed the three SDB genomes in their corresponding
places, as shown in Fig. 6. Bootstrap values were very
significant for most branches, lending support to the
reliability of the constructed tree. It was interesting to
observe that species of Methanolinea and Methanosaeta
recovered by Wawrik et al. [57] were more closely
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Fig. 4 Numbers and COG annotations of the marker genes predicted from Proteobacteria genomes. Upper: The number of single-copy marker
genes identified for Proteobacteria genomes shown in Fig. 3. Lower: Heatmap of predicted cluster of orthologous group (COG) categories of
marker genes
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related to known species, while the Methanoculleus sp.
SDB was more distantly related to other Methanoculleus,
hinting that the recovered Methanoculleus sp. SDB spe-
cies may have the potential to become a new genus
under the Methanomicrobiaceae family.
Last, ezTree was applied to a Myxococcales species re-

covered from enriched cellulolytic microbial consortia
derived from green waste compost [22]. This recovered
genome was the most abundant species in one of the
two microbial communities and was found in 2014 to be
distantly related to Sorangium cellulosum, as shown in
Fig. 5 of Wu et al.’s MaxBin paper [22]. Applying ezTree
to a set of Myxococcales genomes yielded 56 marker
genes (Additional file 1: Table S7), and the resulting tree
built from the marker genes (shown in Fig. 7) indicated
that the recovered Myxococcales species was more
closely related to Labilithrix luteola DSM 27648 and
Sandaracinus amylolyticus DSM 53668, which were de-
posited in NCBI on August and May 2015, respectively.
Detailed information of the involved genomes can be
found in Additional file 1: Table S6. In other words, with
more genomes deposited in NCBI, the Myxococcales
species can now be pinpointed to the Sorangiineae sub-
order. The tree also hinted that the Myxococcales species
probably does not belong to either Labilithrix or

Sandaracinus genera, as the three species formed distinct
branches on the tree. More genomes are still needed to
fully uncover the identity of this uncultivated species.

Discussion
A computational pipeline, ezTree, was developed to auto-
matically infer single-copy marker genes and build reliable
phylogenetic trees for a set of genomes. ezTree accepts
both complete and draft genomes, including those with
hundreds or even thousands of contigs or scaffolds, and is
capable of automatically predicting and identifying phylo-
genetic marker genes. This functionality is very useful
since increasing numbers of genomes are being recovered
from metagenomes, and the first question we often ask is
“what is it” when we are facing a new genome. ezTree thus
provides an easy yet useful way to build trees and infer
phylogenetic relationships with other species for newly
recovered genomes.
One aspect worth noting is that ezTree needs no genome

annotation information; it automatically infers annotations
through the PFAM hidden Markov models. This feature re-
lieves scientists of the burden of annotating genomes by
themselves. In other words, after scientists obtain new pro-
karyotic genomes, they can put them—whether they are
complete or are merely draft genomes—into the ezTree

Fig. 5 Reconstructed phylogenetic tree of a set of Syntrophobacterales genomes. The SDB genome described in Wawrik et al. [57] is highlighted
in bold for clarity
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pipeline to infer the most likely taxonomic assignments of
the novel species.
Identifying marker genes is a very important task in

defining a taxonomic lineage; they can also be used to
detect the completeness and contamination levels of ge-
nomes recovered from environmental samples. The abil-
ity of ezTree to identify marker genes provides scientists
an easy route to investigate such information. For ex-
ample, testing ezTree on collections of proteobacteria
genomes and several newly identified genomes yielded
highly reliable species trees, and different numbers of
marker genes were also inferred by this process. These
marker genes may be very important in defining distinct
taxonomic ranks for a certain species, genus, family,
order, class, or phylum.
Another issue related to ezTree is the selection of evolu-

tionary models to build phylogenetic trees. Trees for the
proteobacteria genomes and the Myxococcales genomes
were built using different amino acid substitution models,
including JTT, WAG, and LG, to test whether the selection
of evolutionary models affects the tree topologies. Another
option, Gamma20 model, which rescales the branch lengths
and computes a Gamma20-based likelihood, was also in-
cluded in the test. As shown in Additional file 1: Figure S1
and Figure S2, the trees using different amino acid substitu-
tion models are almost identical to each other, suggesting
that issues related to model selection may be minor for

common cases. The ezTree pipeline also provides an
option to select models so that users may flexibly
choose different evolutionary models or compare one
model against the other.
To further validate marker gene sets, PFAM profiles of

marker genes were mapped to COG categories. The
greatest amount of mapped marker genes belonged to
the category “[J] Translation, ribosomal structure, and
biogenesis.” This result is consistent with other marker
gene sets discovered by other groups, in which riboso-
mal proteins were indispensable in marker gene sets,
and lent support to the robustness of the marker gene
sets identified by ezTree.
With the help of ezTree, we can now infer more-

accurate taxonomic assignments for newly recovered
genomes. An example can be seen in the inferred tree
of Myxococcales species recovered from adapted com-
post microbial communities. Without the availability
of Labilithrix luteola DSM 27648 and Sandaracinus
amylolyticus DSM 53668, we would only know that
this species is distantly related to Sorangium cellulo-
sum but have no idea about its actual taxonomy. Now
we can safely put it in the Sorangiineae suborder since
it closely grouped together with other genomes from
this taxonomic lineage. Perhaps after more genomes
are extracted either from pure cultures or from envir-
onmental samples and are deposited in NCBI, we can

Fig. 6 Reconstructed phylogenetic tree of a set of Methanomicrobia genomes. Three SDB genomes identified by Wawrik et al. [57] are
highlighted in bold
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eventually designate a more-accurate taxonomy for
this and other novel species.

Conclusions
The ezTree pipeline can be used to extract marker genes
and build concatenated-protein trees given a set of
complete or draft genomes. Without prior knowledge
except the genomic sequences, ezTree can infer single-
copy marker genes for genomes and use the genes to
build phylogenetic trees. Testing ezTree on multiple
genome sets indicated that ezTree can be used to build
highly reliable trees, providing crucial hints into defining
the taxonomic lineages of the newly recovered prokary-
otic genomes.

Availability and requirements
Project name: ezTree v0.1.
Project Home Page: https://github.com/yuwwu/ezTree
Operating Systems: Linux.
Programming Language: Perl.
Other requirements: None.
License: GNU GPLv3.
Any Restrictions to Use By Non-Academics: None.
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Additional file 1: Figure S1. The comparison of trees built for the set
of Proteobacteria genomes provided by FastTree. Figure S2. The comparison
of trees built for the set of Myxococcales genomes using different models
provided by FastTree. Table S1. List of Proteobacteria genomes and their
NCBI accession numbers used in the evaluation of ezTree. Table S2. List of
Syntrophobacterales genomes and NCBI accession numbers used in inferring
the tree for Smithella sp. SDB. Table S3. Single-copy marker genes identified
for Syntrophobacterales genomes. Table S4. List of Methanomicrobia
genomes and NCBI accession numbers used in inferring the tree for
Methanoculleus sp. SDB, Methanolinea sp. SDB, and Methanosaeta sp.
SDB. Table S5. Single-copy marker genes identified for Methanomicrobia
genomes. Table S6. List of Myxococcales genomes and NCBI accession
numbers used in inferring the tree for Sorangiineae bacterium NIC37A_2.
Table S7. Single-copy marker genes identified for Myxococcales. (PDF 827 kb)
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