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Abstract

Background: With the developments of DNA sequencing technology, large amounts of sequencing data have
been produced that provides unprecedented opportunities for advanced association studies between somatic
mutations and cancer types/subtypes which further contributes to more accurate somatic mutation based cancer
typing (SMCT). In existing SMCT methods however, the absence of high-level feature extraction is a major obstacle
in improving the classification performance.

Results: We propose DeepCNA, an advanced convolutional neural network (CNN) based classifier, which utilizes
copy number aberrations (CNAs) and HiC data, to address this issue. DeepCNA first pre-process the CNA data by
clipping, zero padding and reshaping. Then, the processed data is fed into a CNN classifier, which extracts high-
level features for accurate classification. Experimental results on the COSMIC CNA dataset indicate that 2D CNN with
both cell lines of HiC data lead to the best performance. We further compare DeepCNA with three widely adopted
classifiers, and demonstrate that DeepCNA has at least 78% improvement of performance.

Conclusions: This paper demonstrates the advantages and potential of the proposed DeepCNA model for
processing of somatic point mutation based gene data, and proposes that its usage may be extended to other
complex genotype-phenotype association studies.

Keywords: Copy number aberration, HiC, Somatic mutation, Cancer type prediction, Deep learning, Convolutional
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Background
Cancer is a category of disease that causes abnormal cell
growths and immortality. It usually incarnates into a
tumor form that potentially invades or metastasizes to
remote parts of the human body [1]. Cancer is known as

one of the major lethal diseases that leads to about 8.2
million, or 14.6%, of all human deaths each year [2].
Considerable research endeavors, therefore, have been
devoted to cancer diagnosis and therapy techniques to
alleviate the impact of cancer to human health, among
which, somatic mutation based cancer typing (SMCT) is
one of the most important research topics. SMCT aims
to determine the cancer types/subtypes based on a pa-
tient’s somatic gene mutations, so that a therapy plan
can be made accordingly. As the cost of DNA sequen-
cing has dropped in recent years, there has been a
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dramatic increase in DNA sequencing data, which pro-
motes the developments of SMCT to a large extent [3].
Unlike the conventional cancer typing methods that

are usually based on morphological appearances or
gene expression levels (i.e., mRNA profiles or protein
profiles) of the tumor, SMCT is able to differentiate
tumors that have similar histopathological appear-
ances [4], which makes it significantly more robust to
environmental influences, and more favorable in de-
livering accurate tumor typing results. There are sev-
eral types of somatic DNA mutations, namely point
mutation (or single nucleotide variation, SNV), small
insertion and deletion (INDEL), copy number aberra-
tion (CNA), and translocation. They have all been
shown to be associated with different cancers [5, 6].
We have previously demonstrated the cancer type
prediction capacity of deep learning using point mu-
tation alone [7]. In this work, we aim to investigate
how CNAs contribute to cancer type prediction. This
exploration has the following significances.

(1) The link between aneuploidy and cancer has long
been recognized over a century ago [8], and are
attracting more attentions in recent years [9].
Known as one of the principle contributors to
genetic heterogeneity in cancer and an important
determinant of clinical prognosis and therapeutic
resistance [10], chromosomal instability (CIN) is
a process in which CNAs arise from persistent
errors in chromosome segregation during cell
division.

(2) As the major form of chromosomal instability,
CNAs affect a larger fraction of the genome in
cancers than any other type of somatic genetic
alteration [11], and is critical in activating
oncogenes and inactivating tumor suppressors
[12–14]. For example, genomic imbalances have
been found in 5918 epithelial tumors [15].
Stephens et al. identified somatic CNA in breast
cancer genomes and found that there were more
rearrangements in some breast cancers than
previously appreciated [16].

(3) The technologies of profiling genome-wide CNV
are more developed than before, from DNA
microarray based [17] to whole-genome DNA
sequencing based [18] to exome sequencing
based [19], and the cost is dropping in a Moore’s
law fashion. Therefore, the combinatorial CNA
patterns learned in predicting cancer types/subtypes
can be easily used for developing cost-effective
diagnosis CNA marker panels.

Clinically, SMCT may significantly facilitate cancer-related
diagnoses and treatments, such as personalized tumor

medicine [4], targeted tumor therapy [5] and compound
medicine [20]. It can also aid cancer early diagnosis (CED) in
combination with the sampling and sequencing of circulating
tumor cells (CTCs) or circulating DNA (ctDNA) [6].
Over the past two decades, the boom of machine

learning techniques has facilitated the researches in bio-
informatics to a large extend, including SMCT. In order
to predict the cancer types/subtypes more effectively,
many machine learning approaches have been proposed
in existing cancer type prediction studies, which have
exhibited promising results [21–24]. For instance, re-
markable developments have been demonstrated in
tumor cases of colorectal [25], breast [26], brain [27],
and melanoma [28]. However, there are still major, unre-
solved challenges. More specifically, different genes re-
lated to specific types of cancer are generally correlated
and have complex interactions which may impede the
application of conventional simple linear classifiers such
as linear kernel support vector machine (SVM) [29].
Therefore, it is desirable to devise an advanced classifier
capable of extracting high level features within the dis-
criminatory subset. Although there have been recent
works utilizing sparse-coding [30] or auto-encoder for
gene annotation, no work has been devoted to applying
high-level machine learning approaches to SMCT [7].
In recent years, the developments of deep neural net-

work (DNN) [31] have equipped bioinformaticians with
powerful machine learning tools. DNN is a type of artifi-
cial neural network that aims to model abstracted
high-level data features using multiple nonlinear and
complex processing layers, and provides feedback via
back-propagation [32]. First introduced in 1989 [33],
DNN has garnered tremendous developments and is
widely applied in image classification [34], object
localization [35], facial recognition [36], and saliency de-
tection [37] etc. DNN has the potential to introduce
novel opportunities for SMCT where it perfectly fits the
need for large scale data processing and high level fea-
ture extraction. However, to the present, applying cus-
tomized DNN on SMCT is yet to be explored.
In this paper, we propose a novel SMCT method,

named DeepCNA, designed to address the absence-
of-high-level-feature issue above. DeepCNA is a DNN-
based classification model composed of two steps. It first
conducts several novel pre-processing steps on the CNA
data, which includes data clipping, zero padding, and
data reshaping; after the first step, the CNA data is for-
mulated in matrix format so that the subsequent ma-
chine learning techniques such as convolutional neural
network (CNN) can be applied in predicting the cancer
type of the target sample. Since 2009, Lieberman et al.
[38] developed the HiC technology that can capture the
high order chromatin conformation genome-wide; con-
sidering the CNAs can be intrinsically linked to each
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other in the context of chromatin 3D structure, we
adopt the HiC data into our DeepCNA pipeline as well.

Methods
Data preprocessing
Before conducting any experiments with the neural net-
works, the CNA data needs to be preprocessed and stan-
dardized. In our proposed method, three steps are
conducted as preprocessing:

(1) The CNA data is first empirically clipped into the
interval [0, 10], which regulates the data values into
desired range and dismiss extremely large values
that may impede the training.

(2) The clipped data is then zero-padded at tail to
have the desired length that fits the input of the
subsequent neural networks, which produces 1*1
features maps before the fc layers. Since our
raw CNA data has 29,915 features, for 1D CNN,
2853 zeros are padded to make the CNA sample
has the length 32,768 (29,915 + 2853 = 32,768);
while for 2D CNN, 1061 zeros are padded to
make the sample has the length 176*176
(29,915 + 1061 = 176*176).

(3) For 2D CNN, the CNA samples are then reshaped
into 176*176*1, just like single-layered images.

1D convolutional neural network
We first try the 1D CNN, which consists of multiple 1D
convolutional layers. Compared with fully connected
networks, our 1D CNN takes into account the local cor-
relations of different features, which significantly facili-
tates high-level feature extraction. Moreover, the weight
sharing of CNN is able to drastically lower the degree of
freedom of the network, and thus reduce its overall size,
making deeper networks practical.
The architecture of our 1D CNN is shown in Table 1. It is

a feed-forward neural network trained by back-propagation
[33]. The number of input channels depends on whether the
HiC data is used, i.e. if the HiC data is adopted, they
will be appended to the CNA data as additional input
layers. There are 6 convolutional layers and 2 fully
connected layers established as hidden layers for data
processing, together with ReLU [39] as the activation
function, and max pooling for progressive spatial size
reduction. A softmax function is applied after fc8 to
convert its outputs into probabilities, which are then
fed into the loss layer for logarithm loss computation.
The output number is determined by the number of
total cancer types; which is 25 in our case.
Unlike conventional DNN classifiers for 1D data

that entirely based on the bulky fully connected
layers [7], our 1D CNN introduces 1D convolution
that effectively exploits correlations among local data

with shared weights, which significantly reduces the
overall size of the network, and makes it practical
for deeper and more powerful networks for 1D input
data. The resulting deeper networks will thus offer
better performance in the high-level feature extrac-
tion of the CNA data, and lead to higher accuracy
in the cancer type classification.

2D convolutional neural network
Although the 1D CNN introduced in section 0 can
potentially improve the classification accuracy, fur-
ther exploitation of the CNN’s capacity in high level
feature extraction can still be explored. The great
success of the recently prevalent 2D CNN on image
classification tasks [34, 40] suggests a highly promis-
ing way for 1D data classification, i.e. convert the
1D data into image-like matrices and apply the 2D
convolution. Compared with 1D convolution, the 2D
convolution is able to analyze the pattern of the data
in a larger picture beyond the immediate local per-
spective, introducing potential correlations from
broader ranges of the data.
The CNA data vector and its corresponding HiC data

are reshaped into 176*176 before put into the network.
The architecture of our 2D CNN is shown in Table 2.
Similar to the 1D CNN, it also consists of multiple con-
volutional layers for feature extraction, ReLU as activa-
tion function, and max pooling for progressive spatial
size reduction.

Results
Dataset
Our experiments are all conducted on the newly pro-
posed COSMIC CNA dataset [41]. After disposition, we

Table 1 Architecture of our proposed 1D CNN

Layer Type Output size Conv (size,
channel, pad)

Max pooling

input in 32768*1*ch N/A N/A

conv1 c + r + p 8192*1*32 3*1, 32, 1 4*1

conv2 c + r + p 2048*1*64 3*1, 64, 1 4*1

conv3 c + r + p 512*1*128 3*1, 128, 1 4*1

conv4 c + r + p 128*1*256 3*1, 256, 1 4*1

conv5 c + r + p 32*1*512 3*1, 512, 1 4*1

conv6 c + r 1*1*4096 32*1, 4096, 0 N/A

fc7 fc + r + d 1*1*4096 1*1, 4096, 0 N/A

fc8 fc 1*1*25 1*1, 25, 0 N/A

loss sm + log 1*1 N/A N/A

Annotations - in: input layer; c: convolutional layer; r: ReLU layer; p: pooling
layer; fc: fully connected layer; d: dropout layer; sm: softmax layer; log: log loss
layer; ch: number of input channels (depending on whether the HiC data is
used); asterisk(*): multiplication
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obtain a CNA matrix C, which has the dimension 14,703
samples by 29,915 genes that covers 25 cancer types
(primary sites). An element cij in C indicates the somatic
copy number of sample i in gene j. To deal with outlier
issues, all the copy numbers that are greater than 10 are
clipped into 10. For the chromatin 3D structure data, we
adopt HiC data of two human cell lines, hESC and
IMR90, with resolution 40 KB and 500 KB from Bin
Ren’s lab [42].

Constant parameters
For both the 1D CNN and the 2D CNN, the output
size of their loss layer is set to 25, which is equal to
the number of cancer types to be classified. As for
the network parameters, the total training iteration is
set to 20,000; the base learning rate is set to 0.001,
which shrinks by 10 fold for each 5000 iterations; the
weight decay is set to 0.002; and the training batch
size is set to 200.

Evaluation metrics
In all of our experiments, we adopt the 10-fold cross
validation accuracy as our evaluation metric for the
performance. To make the comparison among differ-
ent methods fair, the same data division is used. The
dataset is randomly divided into 10 equal subgroups,
and for each fold of the cross validation, 90% (13,222)
of the samples are used for training, while the rest
10% (1481) for testing.

Implementation
Both the 1D CNN and the 2D CNN are imple-
mented in Python under the Caffe framework [43],
which is an open source framework for CNN train-
ing and testing. The machine used for our experi-
ments is a PC with Intel 6-Core i7-5820 K 3.3GHz
CPU, 64GB RAM, GeForce GTX TITAN X 12GB

GPU, and 64-bit Ubuntu 14.04.3 LTS. Software de-
pendencies include CUDA 8.0 and cuDNN 5.1.

Evaluation of design options
We first evaluate the impact of the HiC data. To keep
consistency, both resolution settings (40 KB and 500 KB)
of the two cell lines of HiC data (hESC and IMR90) are
always used together. In general, there are four possible
combinations:

(1) No HiC data (1 channel);
(2) hESC only (3 channels);
(3) IMR90 only (3 channels); and
(4) both hESC and IMR90 (5 channels).

The number in the parenthesis indicates the number
of input channels to the CNN. We use the 2D CNN as
the baseline model (1). The performances of the four
configurations above are shown in Fig. 1a. It is observed
that configuration (4) outperforms the other three configu-
rations, and is thus adopted in our following experiments.
After that, we evaluate the impact of the two major

design options in our proposed method, namely the net-
work architecture (1D or 2D CNN), and the usage of
HiC data (whether or not the HiC data is used). This in-
cludes four possible configurations:

(1) 1D CNN without HiC data (1 channel);
(2) 1D CNN with HiC data (5 channels);
(3) 2D CNN without HiC data (1 channel); and
(4) 2D CNN with HiC data (5 channels).

The number in the parenthesis indicates the number
of input channels to the CNN. The performances of the
four configurations above are shown in Fig. 1b. It is ap-
parent that the 2D CNN with HiC data leads to the
highest performance. This configuration hence determines
the final model of our proposed DeepCNA method.

Evaluation against widely adopted methods
To compare our proposed DeepCNA method against
the state-of-the-art, we select three most representa-
tive data classifiers that are prevalently used in
gene-based cancer type classifications, namely sup-
port vector machine (SVM) [29], k-nearest neighbors
(KNN) [44], and naïve Bayes (NB) [45]. All of the
three comparison methods are implemented with the
sklearn toolbox of Python. To conduct fair evalu-
ation against DeepCNA, the comparison methods
use raw CNA data (without HiC) as input, and the
10-fold cross validation accuracy as evaluation metric
as well. We set up the parameters of the three com-
parison methods as below.

Table 2 Architecture of our proposed 2D CNN

Layer Type Output size Conv (size, channel, pad) Max pooling

input in 176*176*ch N/A N/A

conv1 c + r + p 88*88*32 3*3, 32, 1 2*2

conv2 c + r + p 44*44*64 3*3, 64, 1 2*2

conv3 c + r + p 22*22*128 3*3128, 1 2*2

conv4 c + r + p 11*11*256 3*3, 256, 1 2*2

conv5 c + r 1*1*1024 11*11, 1024, 0 N/A

fc6 fc + r + d 1*1*1024 1*1, 1024, 0 N/A

fc7 fc 1*1*25 1*1, 25, 0 N/A

loss sm + log 1*1 N/A N/A

Annotations - in: input layer; c: convolutional layer; r: ReLU layer; p: pooling
layer; fc: fully connected layer; d: dropout layer; sm: softmax layer; log: log loss
layer; ch: number of input channels (depending on whether the HiC data is
used); asterisk(*): multiplication

Yuan et al. BMC Genomics 2018, 19(Suppl 6):565 Page 4 of 97



SVM: we test three different kernel types, namely
linear, polynomial (degree = 3) and RBF, while keep all
of the other parameters as default.
Table 3 shows the performances with different
kernels, in which the polynomial kernel leads to the
best result.
KNN: we alternatively change the number of neighbors
and the p value, and keep all the other parameters as
default. The performances are recorded in Table 4. It is
observed that n_neighbors = 5 and p = 2 lead to the
optimal performance.
NB: we test three different types of data
distribution assumptions, namely Bernoulli,
multinomial and Gaussian. The performances are
recorded in Table 5. Based on the results, the
multinomial distribution contributes to the best
performance.

We then proceed to the experiment between DeepCNA
and the comparison methods, the results of which are
plotted in Fig. 2a. Our method exhibits dominant advan-
tage against all of the three comparison methods. The per-
formance improvements are 78.3% (0.574 vs. 0.322), 103%
(0.574 vs. 0.283) and 141% (0.574 vs. 0.238) against SVM,
KNN and NB, respectively.

To further evaluate the effectiveness of HiC, we
re-evaluate the comparison methods, but add the HiC
data to the input. Considering that the three compari-
son models take 1D data as samples, we reshape the
HiC data into 1D, which is subsequently concatenated
to the tail of the raw CNA data. The new results are
plotted in Fig. 2b. Contrary to intuition, however, the
performances of the comparison methods get worse
with the HiC data concatenated. Their accuracies
have dropped by 11.8% (0.284 vs. 0.322), 18.0% (0.232
vs. 0.283) and 31.5% (0.163 vs. 0.238) for SVM, KNN
and NB, respectively.

Discussion
The results in Fig. 2 clearly exhibit the dominant advan-
tage of DeepCNA against the three widely adopted com-
parison methods. We attribute the success of our method
to its utilization of the CNN, and especially the convolu-
tional layers in the network.
Conventional 1D data classification methods mainly

rely on classic machine learning classifiers (e.g. SVM)

Fig. 1 Performances of our proposed method with different design options. a With different HiC data configurations. From left to right: baseline
model (2D CNN); baseline with hESC only; baseline with IMR90 only; baseline with both types of HiC data. The last configuration leads to the
optimal performance. b With different network and HiC combinations. From left to right: 1D CNN without HiC data; 1D CNN with HiC data; 2D
CNN without HiC data; 2D CNN with HiC data. The last configuration leads to the optimal performance

Table 3 Evaluation of SVM with different kernel types

Kernel Linear Polynomial RBF

Accuracy 0.317 0.322 0.275

Table 4 Evaluation of KNN with different number of neighbors
and p value

p\n_neighbors 3 4 5 6 7

1 0.257 0.259 0.262 0.265 0.266

2 0.263 0.273 0.283 0.279 0.277

3 0.254 0.259 0.264 0.258 0.262
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[46, 47] or fully connected neural networks [7], which
conduct data classification without the use of high level
features. These methods perform well on small-scaled
samples, but encounter difficulty on large-scaled sam-
ples, such as the data in our experiments. On the other
hand, the weight sharing of the convolutional layers
significantly reduces the overall size of CNN, which
greatly facilitates the establishment of deeper and more
powerful neural network architectures. The deeper net-
works may effectively extract the high level features
within the large-scaled input data, leading to higher per-
formances in the classification tasks.
It is also notable that due to the intrinsic limita-

tions, the classic machine learning classifiers do not
always offer higher performances as the feature
number of the input increases. This is evidenced in
Fig. 2b, where the introduction of the HiC data dete-
riorates the accuracies of the three comparison
methods, unlike the case in our method where HiC
data improves the performance.
One potential extension of this work relies on incorp-

orating heterogeneous data sources, such as somatic
point mutation, small insertion and deletion, chromatin

translocation, DNA methylation, gene expression, as well
as copy number aberration. This requires high quality
samples which contain as many heterogeneous data
sources as possible.

Conclusions
In this paper, we propose the DeepCNA method for
SMCT. DeepCNA consists of two major steps. The
pre-processing step regulates the CNA data with clip-
ping, zero padding, and reshaping; while the CNN step
takes the pre-processed data and generates the classifica-
tion result with high-level data feature learning.
We conduct experiments on the newly proposed COSMIC

CNA dataset, which contains 25 types of cancer. Controlled
variable experiments indicate that the 2D CNN with both
cell lines of HiC data (hESC and IMR90) contributes to the
optimal performance. We believe that HiC data brings
the gene spatial information such as co-localization into
the deep learning model, and due to the possibility that
co-localized genes may have similar CNV profiles,
combining these two types of information into the pre-
dictor improves the overall prediction power as they
cross-validate to each other.
We then compare DeepCNA with three widely adopted

data classifiers, the results of which exhibit the remarkable
advantages of DeepCNA, which has achieved significant
performance improvements in terms of testing accuracy
against the comparison methods.
We have demonstrated the advantages and potentials

of the DeepCNA model for somatic point mutation

Table 5 Evaluation of NB with different data distribution
assumptions

Distribution Bernoulli Multinomial Gaussian

Accuracy 0.161 0.238 0.139

Fig. 2 Performances of our proposed method against three widely adopted data classifiers. a The comparison methods use raw CNA input data
(without HiC). From left to right: Our method, SVM (polynomial kernel), KNN (number of neighbors = 5 and p = 2) and NB (multinomial
distribution). Our method shows significant advantage against the comparison methods. b The comparison methods use both CNA and HiC as
input data. From left to right: Our method, SVM (polynomial kernel), KNN (number of neighbors = 5 and p = 2) and NB (multinomial distribution).
Our method shows even greater advantage against the comparison methods
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based gene data processing, and suggest that the model
can be extended and transferred to other complex
genotype-phenotype association studies, which we believe
will benefit many related areas. As for future studies, we
will refine our model for other complex and large-scale
data, as well as broadening our training dataset, so that
the classification result can be further improved.
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