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Abstract

Background: Hot spring bacteria have unique biological adaptations to survive the extreme conditions of these
environments; these bacteria produce thermostable enzymes that can be used in biotechnological and industrial
applications. However, sequencing these bacteria is complex, since it is not possible to culture them. As an
alternative, genome shotgun sequencing of whole microbial communities can be used. The problem is that
the classification of sequences within a metagenomic dataset is very challenging particularly when they include unknown
microorganisms since they lack genomic reference. We failed to recover a bacterium genome from a hot
spring metagenome using the available software tools, so we develop a new tool that allowed us to recover most of
this genome.

Results: We present a proteobacteria draft genome reconstructed from a Colombian’s Andes hot spring metagenome.
The genome seems to be from a new lineage within the family Rhodanobacteraceae of the class Gammaproteobacteria,
closely related to the genus Dokdonella. We were able to generate this genome thanks to CLAME. CLAME, from
Spanish “CLAsificador MEtagenomico”, is a tool to group reads in bins. We show that most reads from each bin
belong to a single chromosome. CLAME is very effective recovering most of the reads belonging to the predominant
species within a metagenome.

Conclusions: We developed a tool that can be used to extract genomes (or parts of them) from a complex metagenome.
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Background
Bacterial populations have colonized almost every pos-
sible niche on Earth, including those considered harsh
for most organisms. These extreme environments are
those with a chemical composition or constraints
imposed by the physical conditions where most organ-
isms cannot survive. Thermophiles are present in several
ecosystems where temperatures rise above 50 °C and

reach up to 90 °C. They can grow optimally under
these conditions [1], since they have the adaptations
and the necessary enzymatic machinery to deal with
the complications of living in these extreme environ-
ments. Therefore thermophiles are a potential source
of thermostable proteins suitable for several industrial
and biotechnological applications; then, the screening
of novel thermophilic enzymes has become an
important field of research. Although several
thermostable enzymes have been recently described
and characterized (e.g. [2–4]), thermophiles are still
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highly unexplored [5], especially because the majority
of prokaryotic diversity cannot be cultured [6]. There
have only been a few attempts to characterize en-
zymes or microorganisms from Neotropics hot
springs (e.g. [7–11]) and just a handful of them (i.e.
[10, 11]) used metagenomic approaches based on
Next Generation Sequencing - NGS [12].
Since metagenomic NGS (from now on just metage-

nomic) approaches generate millions of short DNA reads
of a few hundred bases [13], the challenge is to recon-
struct the different species individual chromosomes from
these reads. In a typical genomic experiment, most of the
short reads belong to a single organism, and they can be
assembled reliably using the tools that have been devel-
oped for this purpose (e.g. Newbler [14], Velvet [15], and
Ray [16]). However, in a metagenomic experiment there is
a mixture of reads from multiple species of a community
[17]; moreover, the number of genomes and the abun-
dance of reads from each species, in the sample, is un-
known. These characteristics make the assembly process
difficult, since there is a high risk of assembling reads
from different organisms as a single chromosome. Tools
like MetaVelvet [18], Ray Meta [19], MetAMOS [20], and
SPAdes [21] use different approaches to address these is-
sues and improve the assembly opportunities. However,
these tools are far from perfect, and chimeric chromo-
somes can be assembled [22].
In order to reduce chimeric assemblies, researchers

group reads in bins, based on their sequence similarity,
to reduce the data complexity and to increase the likeli-
hood of obtaining a reliable assembly. Tools like AM-
PHORA2 [17], MEGAN [23], MG-Rast [24], Kraken
[25], Clark [26] or MetaBinG [27] use reference-based
methods (i.e. supervised) that bin the reads or contigs
into taxonomic clades based on pair-wise comparisons
against reference databases, or pre-computed models.
Similarly, there are reference-free methods (e.g. un-
supervised) like MetaProb [28], BiMeta [29], MetaClus-
ter [30], AbundanceBin [31] or CompostBin [32], that
group reads using their genetic mutual similarities or
their k-bases frequency composition, avoiding the
pair-wise comparison step against reference databases.
Supervised methods work fine in reconstructing
genomes from well characterized or low-diversity com-
munities, whose taxa have a good representation in
reference databases; they exclude reads that come from
less explored communities. In contrast, unsupervised
methods are better when the species are poorly repre-
sented in databases, especially with long reads or
contigs that increase the likelihood of finding genetic
markers into a sequence to bin them correctly.
Although there are research publications that propose

a draft genome of an unknown species extracted from a
metagenome (eg [33, 34]), only few studies have

reported the reconstruction of the complete genome of
a thermophilic microbe (e.g. [35–37]). In these works,
the process has been made mainly manual, using a com-
bination of: Velvet [15], the study of the total coverage,
k-mers characteristics and selecting contigs manually
based on BLAST [38] results. In general, de-novo assem-
bly of metagenome reads tends to generate short and
chimeric contigs that are difficult to classify. Thus, the
challenge of analyzing a metagenome is still open; we
propose a tool that overcomes some of the limitation of
traditional binning methods, mainly for metagenomes
formed by unknown species.
Here, we introduce CLAME, a tool that groups meta-

genome reads in bins mainly from a single chromosome.
The idea is to reduce the metagenomic complexity, to
decreases the possibility of creating chimeric contigs and
to improve the assembly speed. CLAME, from the
Spanish “CLAsificador MEtagenomico”, is a C++ pro-
gram that bins reads using a graph representation of the
metagenome dataset. On the graph, reads are repre-
sented as nodes (vertices) and the overlap between two
similar reads is represented as the edge that connects
them. CLAME creates edges only on large exact
matches between reads. This makes it very unlikely that
two reads from different chromosome molecules can be
clustered together. We found that this technique cre-
ates bins mostly from a single chromosome, while
assigning most reads of one particular chromosome on
a single bin. It is important to note that CLAME is not
an assembly tool, it is a binning tool that groups reads
as a preliminary step before genome assembly. We cali-
brated CLAME using public available NGS data from
454 and Illumina MiSeq platforms, and we tested it
with a metagenomic dataset obtained from a never
before studied Andean hot spring. CLAME allowed us
to generate a high-quality draft genome (available in
CLAME’s GitHub and on the NCBI’s project PRJNA431299)
of a Gammaproteobacteria closely related to Dokdonella
genus, which seems to represent a new lineage within the
family Rhodanobacteraceae.

Methods
CLAME groups metagenomic reads in bins using their
biological and shotgun sequencing properties. The
fundamental biological idea of CLAME is that exact
matches, of a large number of bases, between reads is
very unlikely if the reads do not come from same DNA
chromosome. Furthermore, assuming that in a metagen-
ome there is a genome sufficiently covered, and given
that the sequencing errors is low (on platforms like Illu-
mina Mi-seq or Roche’s 454), most reads from a DNA
chromosome will have exact matches between them.
This way CLAME reliably bins together most reads of
each chromosome from a metagenome.
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Initially, CLAME produces a graph with nodes (verti-
ces) and edges, G = (V,E); while the reads are the nodes,
the edges are the reads alignments. An edge between
two reads is created only if they have an exact alignment
of a large number of bases. Ideally, two reads from dif-
ferent DNA chromosomes will not align together, at
least not in a considerable number of bases, and thus,
the graph will represent the different organisms or chro-
mosomes as organized subgraphs. The binning will thus
follow naturally by traversing the graph, creating a bin
for each connected subgraph. However, conserved re-
gions, such as the ribosomal RNA genes, may generate
edges between reads with different species memberships.
CLAME considers the user-defined thresholds on the
number of edges of a node when creating the bins. The
user can define several thresholds to configure CLAME’s
sensibility to the abundance of the species present which
depends on the characteristics of the experiment. A
detailed CLAME methodology is illustrated in Fig. 1 and
explained in the next subsections.

Read alignment stage
The read-overlap detection stage creates the edges of the
graph. Algorithms like Needleman-Wush [39] and
Smith-Waterman [40] were designed to find the optimal
local alignment, the problem is that they have O(n2)
computational times, where n is the number of bases of

the reads. Thus, they are very slow for big datasets. To
speed up alignment analysis, there are several algorithms
that rely on a suffix/prefix tree representation of the
dataset, such as suffix tree, enhanced suffix array or
FM-index [41]. On these algorithms, all the reads are
used to create a tree representation of them, and then,
each read can be aligned to all others by searching it in
the representation. In this case, the computational time
can be reduced from O(n2) to O(m + n), where m is the
time to build the suffix tree, which is order n, and this
way, the computational time can be reduced significantly.
CLAME uses a custom version of the suffix tree

method: the Succinct Data Structure Library 2.0 [42].
With this library, we can find all the alignments of a
query searching for a path in the tree. In the tree, de-
scending from the root, each edge on the path matches
a query. If there is a path for a query, it means that there
is a substring and the reads in the path are the matches.
To reduce computational time, CLAME only searches
for exact alignments of b bases (forward and the reverse
complement). The parameter “b” is the number-of-bases
minimum-length alignment accepted, and it is set by the
user. Using this information, CLAME creates the graph.
It is represented as an adjacency list in which the first
column represents the node and the second, the edges
(the nodes that align in at least b bases). In an ideal case,
the overlap stage must separate the graph, in sub-graphs,

Fig. 1 CLAME methodology. Stage 1) read alignment: the metagenome is composed by reads from different genomes (represented by the red
and green colors); each read, represented by a single rectangle, is aligned against all the reads; an adjacency list shows all the alignments for
each read. Stage 2) edges analysis: The graph representation indicates the relation of the reads; the reads that belong to a shared region can
connect the subgroups (the green reads are connected to the green reads by the relation between read 1 and read 2); these connections usually make
the number-of-edges histogram depart from a normal like form; then the histogram helps the user to set the number-of-edges thresholds on a range, in
which a normal distribution is observed; It allows users to make bins with reads belonging to a normal-like connection profile. Stage 3) graph traversal and
bin generation: the bins are generated by traveling the graph and reporting each subgraph (e.g. {1, 9, 6, 5, 8} green reads and {0, 3, 7, 4} red reads)
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according to the number of chromosomes present in the
metagenome. However, since there are sequencing errors
and highly conserved genes, some reads can align in more
than one species/chromosome, creating bins that include
reads from more than one chromosome. To deal with this
issue, CLAME uses edge analysis stage.

Edge analysis stage
We have observed that the number of edges of a node is
related to the abundance of that sequence on the meta-
genome. Furthermore, they follow a normal-like histo-
gram. Using the adjacency list, generated in the read
alignment stage, CLAME reports the reads’ number-of
edges histogram of each bin. The number-of-edges
histogram helps the user to set the thresholds, since a
normal distribution is expected for the reads of a same
chromosome, then the user can look at the graph and
set the thresholds accordingly, to deal with the following
problems. 1) nodes with a number of edges several times
larger than the mean: Our experiments show that they
are mainly produced by conserved zones of the DNA
that are similar in several species. 2) nodes with a num-
ber of edges much smaller than the mean: we have
observed that they are produced mainly by chimeric
reads. Both of these problems make that reads from
different DNA chromosomes end up being related.
Since the objective of CLAME is to create bins of

reads from the single DNA chromosome, we allow the
user to set thresholds on the number of edges. It allows
users to eliminate reads with larger and smaller than the
normal number of edges. CLAME takes users’ edge
thresholds to redefine the graph and get connected
subgraphs. The bins are generated by traveling the graph
and reporting each subgraph.

Graph traversal and bin generation
CLAME uses a greedy breadth-first search strategy to
traverse the graph and to report each subgraph as a bin.
It starts at an arbitrary node of a graph and explores the
neighbor nodes first, before moving to the next neigh-
bors’ level. It takes into consideration the edge thresh-
olds to decide if the node is added to the bin or further
analyzed. The process ends when no more reads can be
added to the bin. At this point all the reads visited are
reported as members of the same bin and a new seed is
taken. This is done until all reads have been added to a
bin. At the end, the bins and their reads are reported on
output fasta files. CLAME allows the user to define a
minimum bin size (number of reads) to avoid report
singletons or very small bins.

Simulated simple metagenome
A synthetic metagenome dataset was created using
289,917 reads of Brucella canis and 375,122 reads of

Mycobacterium tuberculosis, both generated with the
ROCHE’s 454 titanium platform and associated with the
NCBI’s bioprojects PRJEB4803 and PRJEB8877, respect-
ively. The reads were quality trimmed at Q30 using Prin-
seq [43]. The cleaned reads were concatenated on a
simple multi-fasta file to get a total of 665,039 mixed
reads that formed the Brucella-Mycobacterium synthetic
metagenome. These reads were binned using CLAME,
with at least 70 bases alignment. The parameters were
determined experimentally, such that CLAME generated
2 bins for this metagenome (see Additional file 1 and
Additional file 2 for the details).
B. canis and M. tuberculosis number of edges histo-

gram is shown in Fig. 2, it was plotted with the in-house
Python script plotHist.py; this script can be found as
part of CLAME. Quality control for each bin was
checked, by matching the content (read codes) of each
bin against the original fastq files.
We also used MetaBinG [27], MetaProb [28], BiMeta

[29], and AbundanceBin [31] tools to bin the metagen-
ome. For the tools in which the number of bins or
species can be specified, this parameter was set up to
2. Quality control for each tool was checked, by
matching the content (read codes) of each bin against
the original raw files. Table 1 shows the results of all
the binning tools.

Simulated multi-species metagenome
We created a metagenomic dataset based on the bacter-
ial genomes of five species which were downloaded from
the NCBI database: Synechocystis, SRA code DRR106442,
Dokdonella, SRA code SRR4217676, Hymnobacter, SRA
code SRR1334914, Microbacteria, SRA code SRR5493999
and Rhizobium, SRA code SRR5165471. For each species,
the raw reads downloaded were merged into an extended
single multifasta file using the Flash tool [44] (min-
imal identity parameter of 65 bases). In order to
simulate different abundance levels, similar to the real
spring-water metagenome, different amounts of ex-
tended reads were randomly taken from each dataset.
Table 2 shows: the number of raw reads, the tax-
onomy of each species, the number of reads used
(after using Flash to join read pairs), the size of the
genome reported and the depth of each genome used.
The final dataset was produced by concatenating the
selected sequences into a single multifasta file.
CLAME was executed using 70 bases alignment and

no edge thresholds. The number of edges histogram is
shown in Fig. 3 (generated with the script plotHist.py).
Using the histogram CLAME was executed again
using 70 bases and edge thresholds for the range 1, 51,
10,000. Quality control for each bin was manually
checked, by matching the bins content versus the read
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codes from the original raw files (see Additional file 1
for the details).
We also executed MetaBinG [27], MetaProb [28],

BiMeta [29], and AbundanceBin [31] tools with this
metagenome. For the tools in which the number of bins
or species can be specified, this parameter was config-
ured to 5. Quality control for each tool was again
checked, by matching the content of each bin against
the original raw file codes. Table 3 compares these re-
sults versus CLAME’s results.

Illumina MiSeq metagenomic read set
This dataset corresponds to a real metagenomic se-
quencing experiment of human intestinal microbiota
after a separation stage, where the intestinal protozoa

Cryptosporidium hominis was enriched [45]. The ori-
ginal pair-ended reads cover the whole genome of this
protozoan parasite, which is contained in 8 chromo-
somes. The reported reads belonging to C. hominis
(1,066,460) were downloaded from SRA database
Accession ERX1047563. The metagenome raw reads
(9,052,596) (available in CLAME’s GitHub) were trimmed,
using a minimum quality cutoff of Q30 using Prinseq [43]
tool. Then the reads were merged into an extended single
multifasta file using the Flash [44] tool. There were
6,052,596 left after these steps.
The 6,052,596 reads were binned using CLAME with

100 bases alignment and custom edge thresholds. The
distribution of the number of edges on the metagenome
and the C. hominis’ read contribution was plotted using

Fig. 2 Number-of-edges histogram for the Brucella-Mycobacterium metagenome. The red line shows the metagenome histogram. The blue line
shows the B. canis’ histogram and the green line shows the M. tuberculosis’ histogram

Table 1 Bins reported by each tool on the simulated metagenome. It also shows the number of reads that belong to each genome
for each bin, and the time it took each tool to create the bins

Tool Bins Total reads by bin B. Cannis M. Tuberculosis Time(m)

CLAME 2 353,876 0 353,876 8

280,014 280,014 0

BiMeta 2 8990 8683 307 49

656,049 366,439 289,610

MetaProb 2 368,642 2901 365,787 12

296,397 287,062 9335

AbundanceBin 2 659,892 288,233 371,659 85

5142 1684 3458

MetaBinG 2 600,615 5215 295,400 97

338,650 267,794 70,856
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the python script plotHist.py (Fig. 4). We manually se-
lected the bins that included reads from C. hominis gen-
ome (see Additional file 1 for the details).
CLAME performance was measured using as a control

the C. hominis genome reference (SRA Accession
ERX1047563) by matching the coverage generated by
the original reads versus the coverage generated by the
binned reads. Bowtie2 [46] was used to map the reads to
the reference. Figure 5 shows the obtained coverage; the
data were plotted on the same figure using another
in-house script plot (plotMapping.py).
Additionally we analyzed the biggest bins produced

by CLAME (Tables 4 and 5). Each bin was assembled
using Newbler [14], it was set to minimum identity
(mi = 95) and minimum length (ml = 60). Annotation,
for the Large contigs (> 500 bases) was done using
AMPHORA2 [17], MEGAN [23] and RAIphy [47].
AMPHORA2 and RAIphy were executed with default
parameters. For MEGAN, we generated a BLASTn-
comparison file of the Large Contigs (> 500 bases)

against a local NT (downloaded on May 2017) in XML
format (see Additional file 1 for the details).

San Vicente hot spring metagenome
San Vicente is a hot spring within the Cerro-Machin-
Cerro-Bravo volcanic complex in Colombian Andes,
located at 4° 50.25’ N and 75° 32.35’ W at an altitude of
1715 masl. It is characterized by waters with discharge
temperatures above 60 °C (max. 91 °C), pH of 6.7 and
high concentrations of chlorides. To reduce the com-
plexity of the community, we incubated a sample of the
hot spring (discharge temperature 64 °C) in a non-se-
lective mineral medium, maintained at 45 °C with white
light during 15 days (Fig. 6). We extracted the commu-
nity DNA using PowerMax® Soil DNA Isolation Kit sup-
plied by MOBIO Corporation [48], following the
instructions of the manufacturer. The sample was
sequenced using ROCHE’s 454 Titanium technology in
3/4 PTP at the Centro Nacional de Secuenciación
Genómica - CNSG, Universidad de Antioquia, Medellin,

Table 2 Species and total reads used to create the simulated multi-species metagenome. It shows the size of the original database,
in reads and bases, the reads and bases used to create the metagenome, the size of the reported genome, and the depth calculated as
the bases used divided by the genome size

Species NCBI reference Phylum/Class Total reads Total bases
(Mbp)

Used reads Used bases
(Mpb)

Genome size
(Mpb)

Depth(x)

Synechocystis DRR106442 Cyanobacteria/Cyanobacteria 589,689 21.9 112,805 41.5 3.5 11.7

Dokdonella SRR4217676 Proteobacteria/Gammaproteo-bacteria 376,022 80.5 376,022 80.5 4.6 17.41

Hymnobacter SRR1334914 Bacteroidetes/ Cytophagia 2,917,298 958.5 37,599 12.3 5.0 2.4

Microbacteriaceae SRR5493999 Actinobacteria/Actinobacteria 1,815,433 382.4 37,599 7.9 3.2 2.4

Rhizobium SRR5165471 Proteobacteria/Alphaproteo-bacteria 1,152,754 242.2 37,599 7.9 4.5 1.7

Fig. 3 Number-of-edges histogram for the simulated multi-species metagenome. The red line shows the metagenome histogram. For each species an
alone histogram is shown in different color lines
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Colombia. A total of 926,130 reads (available in CLAME’s
GitHub and on the NCBI’s project PRJNA431299) were
generated with a 300 bp average length. Raw reads
were trimmed using Prinseq [43] tool to keep reads
at least 50 bases long, and that at the 3′ the quality
is at least 30 (see Additional file 1 for the details).

Finally, a total of 900,370 quality reads were obtained
for further processing steps. The analysis followed in
two directions: 1) A de-novo metagenome assembly
of the cleaned reads using popular state of the art
tools (see below) and further comparison and annota-
tion; 2) the binning of the quality reads using

Table 3 Bins reported by the binning tools on the simulated multi-species metagenome. It also shows the number of reads that belong
to each genome for each bin, and the time it took each tool to create the bins

Tool Bins Total reads by bin Synechocystis Dokdonella Hymnobacter Microbacteriaceae Rhizobium Time (m)

CLAME 7 21,182 21,182 0 0 0 0 3

18,054 18,054 0 0 0 0

209,642 0 209,642 0 0 0

12,152 0 12,152 0 0 0

13,927 0 13,927 0 0 0

10,405 0 10,405 0 0 0

24,315 0 0 0 24,315 0

BiMeta 1 601,624 112,805 376,022 37,599 37,599 37,599 32

MetaProb 5 361,966 1 341,866 108 7236 12,755 11

27,977 508 12,139 1707 214 13,409

113,349 111,889 695 641 6 118

38,400 294 729 34,383 2446 548

59,932 113 20,593 760 27,697 10,769

MetaBinG 5 410,033 30,727 302,805 23,480 19,944 33,081 120

73,263 799 57,637 3915 9490 1423

61,401 56,764 2344 772 1211 310

24,966 18,955 3042 1079 870 1021

10,826 12 3800 6444 436 134

Fig. 4 Number-of-edges histogram for the Illumina metagenome. The red line shows the metagenome histogram. The blue line shows the C.
hominis’ histogram
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CLAME and further assembly and annotation using
the biggest bin.
De-novo assembly was done with Newbler [14], Ray

[16] and MetaVelvet [18] (see Table 6). Newbler assem-
bly was set to minimum identity (mi = 95) and mini-
mum length (ml = 60). Ray and MetaVelvet assembly
software tools were configured to use 31 k-mers. Anno-
tation, for the Large contigs (> 500 bases) reported by
Newbler, was done using AMPHORA2 [17], MEGAN
[23] and RAIphy [47]. AMPHORA2 and RAIphy were
executed with default parameters. For MEGAN, we
generated a BLASTx-comparison file of the Large
contigs (> 500 bases) against a local NR in XML format
(downloaded on April 2016) (see Additional file 1 and
Additional file 3 for the details). Figure 7 summarizes
these results.
Binning process with CLAME was executed using70

bases alignment and without edge threshold restrictions.
Using the Edge analysis stage, CLAME was executed again
using 70 bases and restriction for the range 30 edges lower
bound and 130 edges upper bound (see Fig. 8). Only the
biggest bin was conserved for further analysis.

Assembly for the biggest bin was done using Newbler
[14], Ray [16] and MetaVelvet [18] (see Table 7 and
Fig. 9). Newbler parameters were: minimum identity 95
and minimum length 60. Ray and MetaVelvet assembly
software tools were configured to use 31 k-mers. Large
contigs generated by Newbler were classified with AM-
PHORA2 [17], MEGAN [23] and RAIphy [47] (Figs. 10
and 11). For MEGAN, we previously generated a
BLASTx-XML comparison file of the Large contigs
(> 500 bases). The assembly completeness for Newbler’s
contigs was measured in terms of gene content and
Universal Single-Copy Orthologs presence (see Add-
itional file 1 and Additional file 2 for the details).
Putative open reading frames (ORFs) were detected

using CheckM [49], Prodigal [50] and Genmark [51]
tools (Table 8). Quality control for the ORFs reported
by Prodigal was done using BLASTp [38] against the
NR database from NCBI. Then we employed MEGAN
[23] to assign each ORFs into a taxonomic level
(Fig. 12). Universal Single-Copy Orthologs analysis
was done using BUSCO tool [52], (see Additional file
1 and Additional file 2 for the details).

Fig. 5 C. hominis whole genome coverage of the reads. The red line shows the coverage produced by the 728,463 original reads of the metagenome
on each chromosome of the C. hominis genome. The blue line is the coverage of the 497,328 reads extracted from the selected bins with more than
500 reads

Table 4 Assembly statistics of the biggest bins reported by CLAME on the Illumina metagenome

Bin number Total reads Large contigs Expected genome size (Mbp) AVG contig length (bp) Largest contig (bp) N50 GC (%)

12 932,332 3211 6.0 1867 60,200 2639 37.67

9 514,053 447 3.6 8112 85,325 22,568 56.58
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Initial taxonomical classification of the organisms
represented within the resultant assembled contig set
was done searching contigs that contain 16S riboso-
mal gene sequences. The selected contigs were manu-
ally curated, annotated (Table 9) and used to build an
evolutionary tree (Fig. 13). The phylogenetic tree was
inferred by using the Maximum Likelihood method
with the Jukes-Cantor model [53] and the process
described by Brumm et al. [54]. We conserved the
same number of replicates (500) and bootstrapped
tree topology to represent the evolutionary history of
the taxa analyzed. We used Brumm et al., strategy to
obtain the initial tree(s). However, our analysis
involved 29 nucleotide sequences, instead of 26
samples. There were a total of 547 positions in the
final dataset. All the analysis were developed on
MEGA 7.0 [55].
In order to get an insight into the functional annotation

of the predicted proteome of the Xanthomodaceae of the
San Vicente Hot spring, Gene Ontology annotation was
performed for the 2726 ORFs predicted by Prodigal
(Figs. 14, 15 and 16). It was done using BLASTp compari-
sons of all the predicted peptides against the NCBI’s pro-
tein NR database and BLAST2GO version 2.8 [56]
annotation tool. Additionally KAAS (KEGG Automatic
Annotation Server) [57] was employed to provide a detail
functional annotation of predicted genes.

We compared CLAME against MetaBinG [27], Meta-
Prob [28], BiMeta [29], and AbundanceBin [31] tools.
For the tools in which the number of bins or species can
be specified, we decided to set it to 5, according the
number of phyla found by the annotation tools described
previously. The biggest bins reported by each tool were
assembled using Newbler [14], it was setting at mini-
mum identity (mi = 95) and minimum length (ml = 60)
in all the cases. Table 10 compares these results versus
CLAME’s de-novo assembly for the biggest bin.
We also analyzed the other bins (with at least 2000

reads) produced by CLAME. These bins were assem-
bled with Newbler [14], minimum identity (mi = 95)
and minimum length (ml = 60), and annotated with
AMPHORA2 [17], MEGAN [23] and RAIphy [47].
AMPHORA2 and RAIphy were executed with default
parameters and for MEGAN we generated a BLASTn-
comparison file of the Large contigs (> 500 bases)
against a local NT (downloaded on May 2017) in XML
format (see Additional file 1 for the details).
In order to study the other species presents in the

metagenome, we elaborated an auxiliary dataset by de-
leting the reads binned in the first CLAME execution
and conserved the balance of the read in the original
dataset. A total of the 519,524 reads conform this sec-
ond dataset. CLAME was executed on this dataset
using 15 bases matching and edge thresholds for the
range 10 to 20 (Fig. 17), only bins with at least 2000
reads were reported. The parameters were configured
experimentally to get suitable bins. The biggest bin pro-
duced by CLAME was assembled with Newbler [14]
and annotated using AMPHORA2 [17], Megan [23]
and RAIphy [47] (Tables 11 and 12). AMPHORA2 and
RAIphy were executed with default parameters. For
MEGAN we generated a BLASTn-comparison file of
the Large contigs (> 500 bases) against a local NT
(downloaded on May 2017) in XML format.

CLAME computational performance
We show CLAME’s speed and memory performances on
Figs. 18 and 19. All the experiments were performed on a
computer equipped with 64 Intel(R) Xeon(R) CPU X7560
@ 2.27GHz and 500 GB of RAM. CLAME was imple-
mented in C ++ using OpenMP (Open Multi-Processing)
interface. We executed CLAME employing 1, 2, 4, 8, 16,
32 and 64 threads on each dataset previously explained.

Table 5 Annotation of Newbler’s Large contigs assembled from the biggest bins reported by CLAME on the Illumina metagenome
Contigs MEGAN RAIphy AMPHORA2

Total Contigs/Phylum Total Contigs/Species Total Contigs/Phylum Total Contigs/Species Total Contigs/Phylum Total Contigs/Species

3211 from the bin 12 2856/ Firmicutes 2409/ Veillonella 2896/ Firmicutes 2437/ Veillonella 39/ Firmicutes 38/ Veillonella

447 from the bin 9 301/Actinobacteria 300 /Bifidobacterium 259 /Actinobacteria 237 /Bifidobacterium 40 /Actinobacteria 39/Bifidobacterium

Fig. 6 Microscopic photograph of Cyanobacteria growth culture
from San Vicente water. A filamentous Cyanobacterium dominated the
community and several small cells suggest that the desired reduction
in the complexity of the community was achieved
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We selected the best of five executions. Valgrind [58] was
used to measure CLAME’s memory usage. We took the
maximal memory usage of each experiment.

Results
We calibrated CLAME using public available NGS
data of 454 and Illumina MiSeq platforms, then we
used it to study the metagenomic dataset obtained
from a hot spring in the Colombian Andean Moun-
tains (located in San Vicente, Risaralda, Colombia).

Simulated metagenome
We tested CLAME with the simulated metagenome,
which was created combining DNA sequencing from
Brucella canis and Mycobacterium tuberculosis. The
mixed data set, of 665,039 reads, was elaborated, as
described in the methods section, using 289,917 reads
of B. canis and 375,122 reads of M. tuberculosis. In
order to understand the profile of the number of
edges, we ran CLAME three times: only with M.
tuberculosis reads, only with B. canis reads, and with

the simulated metagenome (the combination of both).
Figure 2 illustrates the number of edges histogram,
produced by CLAME in the read alignment stage
using 70 bases alignment. CLAME generated two
main bins that contained 353,876 and 280,014 reads.
The first bin, with 353,876 reads, was formed exclu-
sively by reads of M. tuberculosis; they represent
94.3% of the original M. tuberculosis set. The second
bin, with 280,014 reads, was composed exclusively by
B. canis reads. They represent 96.5% of the original B.
canis read set. Most of the remaining reads were
short (smaller than 70 bases) and therefore they were
binned as singletons.
We compared CLAME’s performance against the

other binning tools. Table 1 summarizes the results
produced by CLAME, MetaBinG [27], MetaProb [28],
BiMeta [29], and AbundanceBin [31]. It shows that
although most tools produced individual bins for B.
canis and M. tuberculosis reads, only CLAME created
bins that contained reads from only one species. The
table also shows the time it took each tool to create
the bins, (all the tools were executed on one thread),
and it shows that CLAME is the fastest of all.

Table 6 Assembler statistic reported by each tool on the original hot spring dataset, without binning

Total large contigs
(> 500 bp)

Reads assembled Largest contig
(bp)

Expected genome
size (Mbp)

N50 AVG contig
length (bp)

Peak depth GC (%)

Newbler 11,739 804,983 (87%) 232,982 27 3267 2349 2.1 61

Ray 12,369 768,803 (83%) 72,115 14 1143 1134 4.8 61

MetaVelvet 17,720 797,792 (86%) 7084 19 1199 1104 2.6 61

Fig. 7 Phyla frequency reported by MEGAN, AMPHORA2 and RAIphy for the assembly of all the reads of the hot spring metagenome. The vertical
axis shows the percentage of contigs annotated in each phylum. Different colors are used to represent the reported phylum
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Simulated multi-species metagenome
Using the biological information from the San Vicente
hot spring, explained in detail in the next section, we
elaborated a synthetic metagenome that can simulate
the diversity found in that metagenome. We selected five
species from the NCBI database and elaborated a
synthetic metagenome as is described in the methods
section (see Table 2).
CLAME was tested using this synthetic multi-spe-

cies metagenome. In order to understand the number
of edges profile, we ran CLAME using 70 bases align-
ment and without edge thresholds. Figure 3 shows the
histogram produced, it can be seen that the Gamma-
proteobacteria has the major contribution while the
Cyanobacteria and the other species are present in
lower proportion. It also shows that the Gammapro-
teobacteria has less than 50 edges. The Actinobacteria
is the one with an average higher number of edges.
The bins produced by executing CLAME with edge
thresholds for the range (1, 50) is shown in Table 3.
The table shows the number of bins produced by
CLAME and the contribution of each species into the
reported bins. We observe that CLAME binned 65%
of Gammaproteobacteria reads into 4 bins. The big-
gest bin contains 209,642 reads (the 56% of the reads

belong to the Gammaproteobacteria). From there it is
possible to observe that CLAME recovers most part of
the predominant species. CLAME also recover the
35% of the Cyanobacteria in 2 bins and 65% of the
Actinobacteria in a single bin. It is important to note
the sensibility of CLAME to bin the reads without
mixing reads from different species.
We compare CLAME’s results against MetaBinG [27],

MetaProb [28], BiMeta [29], and AbundanceBin [31].
Table 3 shows the results of each tool, the number of
bins and their size. CLAME was the fastest of all, and
the only that doesn’t combine reads from more than 1
species in each bin. These results show CLAME’s ability
to separate reads from closely related species, even if the
species are of the same class.

Illumina MiSeq metagenomic read set
To test CLAME with a real dataset, we used a partially
annotated metagenome recovered from human feces.
The metagenome comprises 9,052,596 Illumina pair-
ended reads that were generated in one study focused
on the intestinal protozoan parasite Cryptosporidium
hominis [45]. The study reports that a total of 1,066,460
metagenome pair-ended reads belong to C. hominis. We
took the raw reads and prepared the dataset according

Fig. 8 Number-of-edges histogram for the hot spring metagenome. A normal distribution can be observed on the range 30 to 150 edges

Table 7 Assembler statistic reported by each tool on the hot spring dataset of the biggest bin produced by CLAME

Total large contigs
(> 500 bp)

Reads assembled Largest contig
(bp)

Expected genome
size (Mbp)

N50 AVG contig
length (bp)

Peak depth GC (%)

Newbler 178 380,796 (99%) 99,748 3.0 31,130 17,067 60 71

Ray 255 372,145 (97%) 72,110 3.0 19,598 20,242 23 71

MetaVelvet 712 371,284 (97%) 26,703 2.9 6816 4135 40 71
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Fig. 9 Comparative assembly of the thermal metagenome (before and after binning). The upper left graph shows the number of contigs produced
using all the reads (blue bar) versus the contigs produced from CLAME’s biggest bin (green bar). The upper right graph shows the expected genome
size. The lower left graph shows the N50 estimation. And the lower right graph shows the GC-percentage for the produced contigs

Fig. 10 Taxonomy classification at phylum level for the 178 contigs generated by Newbler, using the reads from CLAME’s biggest bin of the
thermal metagenome. The vertical axis shows the percentage of contigs annotated in each phylum. Different colors are used to represent
each phylum
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to the process described in the methods section. After
filtering and merging the reads, 6,052,596 reads were
included in the analysis, from those, 728,439 reads were
C. hominis.
CLAME was executed using 100 bases alignment with

the complete metagenome. Figure 4 shows the histo-
gram of the number of alignments of the metagenome
(in red) and the distribution of only C. hominis reads (in
blue). Note that C. hominis reads follow a normal-like
distribution in the range 15 to 100 edges. Consequently,
CLAME was configured with two thresholds, at 100 and
15 edges. It reports 731 bins with at least 500 reads. We
found that 407 of those bins were formed exclusively by
reads from C. hominis, for a total of 467,939 merged
reads. Those reads were (64%) of the reads reported in
the respective paper [45] as C. hominis reads. Bowtie2
[46] reported a 99.72% overall alignment rate to the
respective C. hominis reference genome. Figure 5 illus-
trates the coverage of the reads of those bins (blue line)
on the whole C. hominis genome, and the reads reported
as C. hominis on the paper (red line). The remaining C.
hominis reads (the 36%) were found in 1611 bins with
less than 500 reads.

Moreover, we analyzed the two main bins produced by
CLAME. Table 4 shows Newbler de-novo assembly for
the main bins. The biggest bin produced by CLAME
contains 932,332 reads. It reports 3211 Large contigs;
annotation of these contigs using AMPHORA2 [17],
MEGAN [23] and RAIphy [47] indicated that these
contigs belong to Veillonella bacteria (Table 5). The
second biggest bin produced contains 514,053 reads. It
produced 447 Large contigs; annotation of these contigs
using AMPHORA2 [17], MEGAN [23] and RAIphy [47]
indicated that these contigs belong to Bifidobacterium
bacteria (Table 5).

San Vicente hot spring
The waters of the San Vicente hot spring showed a rela-
tively low count of total cells (2 × 104 cells/mL) and we
could only recover a total of nine Cyanobacteria and
eight heterotrophic-thermophilic morphotypes using
traditional culture approaches. After the enrichment of
the sample at 45 °C for 15 days, we observed that a fila-
mentous Cyanobacterium dominated the community; al-
though several small cells were also present (Fig. 6)
suggesting that the desired reduction in the complexity
of the community was achieved.
DNA extraction and metagenome sequencing based

on this enriched sample, which is described in the
methods section, generated 926,130 reads that were
cleaned and assembled with commonly used software
and we obtained 900,370 quality reads. Table 6 presents
the general statistics of the contig set assembled by
Newbler [14], Ray [16] and MetaVelvet [18] for these

Fig. 11 Taxonomy classification at family level for the 178 contigs generated by Newbler, using the reads from CLAME’s biggest bin of
the thermal metagenome. The vertical axis shows the percentage of contigs annotated in each family. Different colors are used to represent each family

Table 8 Gene composition analysis for the Newbler’s Large contigs
assembled of CLAME’s biggest bin of the hot spring metagenome

CheckM Prodigal Genmark

Total ORFs 2726 2726 2661

Number of contigs 173 173 168

ORFs distribution 0.96 0.96 0.86
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reads. It illustrates that Ray produced the best peak
depth, however, it reported a greater number of contigs
than Newbler. MetaVelvet generated the highest number
of contigs and the lowest average contig length. Newbler
had the best N50 statistic on a low number of contigs
(with more than 500 bases), all of them with a peak
depth greater than two.
We took Newbler’s contigs with more than 500 bases

for further analyses; we explored them with the metage-
nomic annotation pipelines AMPHORA2 [17], MEGAN
[23] and RAIphy [47]. Figure 7 summarizes the results.
For all the tools, the Proteobacteria was the predomin-
ant phylum while Cyanobacteria, Actinobacteria, Bacter-
oidetes, Chloroflexi are present in lower abundance.
RAIphy assigns all contigs on a single phylum, however,
manual inspection showed a large number cases that
contradict the other tools. For AMPHORA2 the un-
known classification was the most frequent, leaving most
of the contigs without any taxonomical assignation. This
is expected since AMPHORA2 is focused on detecting
33 bacterial genes that are very useful for taxonomical

purposes. MEGAN is the one that classifies more contigs
(20%), however, the number of contigs annotated in each
phylum was not enough to propose a draft genome.
The original dataset, after cleaning, was binned

using CLAME. Figure 8 shows the edge histogram,
produced by CLAME, considering 70 bases alignment.
It shows a normal-like distribution in the range of 30
to 130 edges. Consequently, we ran CLAME with
these parameters. CLAME reported a total of 11 bins
with at least 2000 reads.
The biggest bin is composed by 380,846 reads (42.3%

of the total of reads). Table 7 summarizes the number
of contigs and characteristics of the assembly of these
reads using Newbler [14], Ray [16] and MetaVelvet
[18]. Figure 9 compares these results versus the original
assembly without the binning step. We can conclude
that the number of contigs decreased compared with
the initial assembly.
The 178 large contigs (> 500 bp), produced by Newbler,

were classified with AMPHORA2 [17], MEGAN [23] and
RAIphy [47]. Figure 10 shows that Proteobacteria is the

Fig. 12 Draft-genome contig depth, open reading frames (ORFs) position and BLASTp annotation (for the eleven largest contigs). The red line
illustrates the reads that align with each position of the contig. A color bar is used to illustrate the base position where each ORF is found. The
bar’s color represents the achieved annotation at the phylum level. Different colors are used to represent each phylum

Table 9 BLASTn top 7 hits report for the 16S rRNA gene sequence found in the Newbler’s contig00154 of the assembly of CLAME
largest bin of the hot spring metagenome

Score (Bits) Ident (%) E-Value Accession

Uncultured bacterium clone 16S-27F&1492R-C12-clone6 2241 99 0.0 KX348539.1

Uncultured bacterium clone B63 2228 99 0.0 AF407725.1

Uncultured bacterium clone EG90 2044 95 0.0 KC189660.1

Uncultured bacterium clone JN11 2039 95 0.0 JN868991.1

Uncultured bacterium clone LONG_SPR_11F 2026 95 0.0 KF836265.1

Metallibacterium scheffleri strain DKE6 1891 93 0.0 NR_118103.1

Dokdonella koreensis DS-123 1874 92 0.0 CP015249.1
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predominant phylum for all the tools, while the other
phyla have almost disappeared if we compare it with the
classification of the whole metagenome on Fig. 7. Figure 11
shows that most contigs were assigned to the Xanthomo-
nadaceae family. We used these contigs to produce the
Colombian thermophile Xanthomonadaceae_UdeA_SF1
draft genome (available in CLAME’s GitHub and on the
NCBI’s project PRJNA431299).
Table 8 summarizes, CheckM [49], Prodigal [50] and

Genmark [51] tools report. On the contigs assembled
from the biggest bin, there are more than 2600 open
reading frames (ORFs) that codify as possible genes, and
since there are 3.0 Mbp on the genome, it indicates that
there is close to 1 coding region per Kbp.
An additional quality control was done using MEGAN

[23] to assign each ORFs into a taxonomic level. As it is
shown in Fig. 12, for the first 11 largest contigs, most of
the ORFs were annotated as Proteobacteria (blue bars in
the graph). Moreover, we measured the assembly com-
pleteness in terms of gene content by means of Universal
Single-Copy Orthologs using BUSCO [52] tool. We found

32 of the 40 (80%) essential genes reported by BUSCO
were found in the proposed draft genome. Using the set of
standards for the minimum information regarding a
metagenome-assembled genome (MIMAG) proposed by
Bowers et al. [59] and the previous results, we can con-
clude that we introduce a High-quality draft genome.
Analysis of the complete 16S ribosomal gene, which

was contained in the contig00154, using BLAST [38]
against the NT database from the NCBI, indicates that
our 16S sequence is related to an uncultured bacterium
clone B63 recovered from Australia’s Great Artesian
Basin. The top 7 of the BLASTn results are shown in
Table 9. To refine the query, we reconstructed the 16S
phylogeny using the Ribosomal Data Project database
[60] as a curated reference, the Maximum Likelihood
method based on the Jukes-Cantor model [53] and the
Brumm et al. [54] process. It showed that our sequence
is closely related to several uncultured bacteria within
the family Xanthomonadaceae of the Gammaproteobac-
teria. Besides, the phylogeny reconstructed only based
on culture-type strains showed that the obtained 16S

Fig. 13 Draft-genome Phylogenetic tree inferred by using the Maximum Likelihood method with the Jukes-Cantor mode, based on our complete
16S ribosomal assembled gene (16sProto). The values in the branches indicates the percentage of replicate trees in which the associated
taxa clustered together in the bootstrap test. Branches with values with less than 50% bootstrap are collapsed
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sequence is consistently within Order Xanthomonadales,
separated from the outgroup Alkanibacter difficilis
Order Sinobacteriales and apart from the cluster
composed by the Genus Dokdonella and other Xantho-
monadales such as Rhodanobacter, Dyella, Aquimonas
and Pseudoxanthomonas (Fig. 13).
Gene Ontology annotation for the 2726 ORFs predicted

by Prodigal tool, using BLASTp [38] comparisons and

BLAS2TGO [56], indicates that 94 % of the predicted pep-
tides exhibited a hit with an E-value below the threshold
of 1E-5; and that only 668 proteins could be finally anno-
tated with at least a GO term.
Figures 14, 15 and 16 present the obtained results of

Gene Ontology annotation at level 4 for cellular com-
ponent, molecular function, and biological process. Ac-
cording to cell localization prediction, most of the

Fig. 14 Draft-genome gene ontology annotation in the cellular component category at level 4 for the 2726 ORFs predicted by Prodigal. The horizontal
axis shows the total of sequences assigned to each category

Fig. 15 Draft-genome gene ontology annotation in the molecular component category at level 4 for the 2726 ORFs predicted by Prodigal. The
horizontal axis shows the total of sequences assigned to each category
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proteins were assigned to the intracellular space, while
others were localized to different components such as
cell membrane, periplasmic space, and macromolecular
complexes. The Molecular function prediction shows,
at the top, the category organic substance biosynthetic

process, followed by anion and cation binding. Never-
theless, other categories like hydrolases, transferases,
transporters, peptidases, ligases, and lyases were well
represented. For the biological process annotation, 26
terms were assigned for 2581 hits, being organic

Fig. 16 Draft-genome gene ontology annotation in the biological process category at level 4 for the 2726 ORFs predicted by Prodigal. The
horizontal axis shows the total of sequences assigned to each category

Table 10 Newbler assembly statistics of the bins reported by each tools on the hot spring metagenome. It also shows the time it
took each tool to create the bins

Tool Total Bins Total reads Large contigs Expected genome
size (Mbp)

AVG contig
length (bp)

Largest contig
(bp)

N50 GC (%) Time (m)

CLAME 2 380,846 178 3.03 17,067 99,748 31,130 71 9

446 24 25,157 1048 2791 1054 66.17

BiMeta 5 113,070 2131 2.3 1082 28,701 1077 65 211

22,877 728 0.6 867 6907 860 38

273,565 995 2.98 3002 49,922 11,620 72

283,509 3499 5.95 1701 45,994 2185 70

207,349 3857 9.73 2523 41,372 4961 51

MetaProb 5 275,160 3423 5 1460 53,631 1561 69 21

60,580 1350 1.3 966 11,767 966 58

204,718 4262 9.45 2217 29,837 4059 51

47,618 766 0.7 901 6858 898 61

312,294 1486 4.7 3149 63,982 6146 72

AbundanceBin 3 459,353 950 3.7 3876 75,296 12,564 69 1063

190,112 6574 8.1 1240 8964 1475 56

250,905 8938 8.6 968 4762 1005 62

MetaBinG 3 521,865 7765 9.8 1253 30,729 1278 66 131

212,100 3115 4.6 1480 9988 1829 71

125,979 4764 6.7 1400 13,502 1647 51
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substance biosynthetic process at the top of the list with
217 hits. Also above 200 hits were, in order of abundance,
cellular biosynthetic process, organic cyclic compound
metabolic process, heterocycle metabolic process and cel-
lular nitrogen compound metabolic process.
Moreover, using the KEGG pathway annotation tool

KAAS [57] we were able to confirm that the glycolysis,
pentose phosphate, Glyoxylate, Fatty acid biosynthesis,
beta-Oxidation and TCA cycle enzymes were all present
and complete. For the genetic information processing
complexes, RNApol beta subunits, as well as alpha and
omega, were annotated, but the delta was missed in our
putative protein set. In the case of DNA replication,
bacterial subunits of the holoenzyme pol III were
detected except for the psi and theta subunits. Helicase,
primase, SSB, DNA ligase and RNAses HI, and HII were
also annotated by KAAS. Within the homologous
recombination system, RecA and RecJ proteins were also
missed by the annotator. Two-component systems were
also annotated; the family OmpR was the most frequent
with the histidine kinases PhoR, PhoQ, CreC, CusS, and
ArcB. The second most frequent was the NarL family
with orthologous for the kinases BarA, DesK, and VraS.
CLAME binning for the hot spring metagenome was

compared with the results of MetaBingG [27], MetaProb
[28], BiMeta [29], and AbundanceBin [31]. Table 10
shows the number of Large contigs (size > 500 bases)

and the genome size estimation produced by Newbler
de-novo assembly of all binning tools. We included the
same fields for the de-novo assembly of CLAME’s big-
gest bin. It produced fewer contigs than the assembly of
the others tools-results. Moreover, the genome size esti-
mation is the closest to the expected bacteria genome-
size.
The additional bins (with at least 2000 reads) pro-

duced by CLAME were assembled using Newbler [14]
and annotated with AMPHORA2 [17], MEGAN [23]
and RAIphy [47]. AMPHORA2 doesn’t report hits
because no marker can be found in these reads.
MEGAN and RAIphy results indicate that the reads can
be an additional part of the Proteobacteria.
Finally, removing the reads used for the draft genome,

a total of 519,524 reads were left. Experimentally, we
noted that using 15 bases alignment, produce a big bin
with mainly a single species. The edges-histogram is il-
lustrated in Fig. 17, and it shows that in the range 10 to
20 edges there is a second normal-like histogram. Con-
figuring CLAME with this thresholds, it produces a bin
with 146,967 reads. Table 11 illustrates that the de-novo
assembly for these reads, using Newbler [14], produces
5056 contigs. We annotated these contigs using AM-
PHORA2 [17], MEGAN [23] and RAIphy [47]. Table 12
summarized these results and indicate that they are clas-
sified mainly as Cyanobacteria. This results coincide

Fig. 17 Number-of-edges histogram for the thermal metagenome from the balance reads (without the reads used for the draft genome). A normal
distribution can be observed on the range 10 to 20 edges

Table 11 Thermal metagenome Newbler assembler statistics for the balance reads (without the reads used for the draft genome)

Bin number Total of reads Total large contigs Largest contig (bp) Expected genome size (Mbp) N50 AVG contig length (bp) GC (%)

0 146,977 5056 8852 5.9Mpb 1277 1163 51.58
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with the spring-water biological description made previ-
ously. Contamination can be explained by the reduce
number of bases used for the overlap detection stage.

CLAME computational performance
Figure 18 shows a close to lineal scalability of CLAME
up to 8 threads. It shows that the best performance for 8
cores is obtained by the C. hominis dataset because it
has the largest number of reads. Initial experiments have
showed that the speedup is limited by the suffix tree
generation, which is a sequential process. Figure 19
shows the memory usage of each experiment. It can be
seen, as expected, that the usage increases with the data-
set size.

Discussion
There are few research publications that propose a new
species draft genome extracted from a metagenome.
Probably the main reason is that it is not a simple task.
However, in many projects, the researchers are not

interested in getting a genome but just testing the pres-
ence of different species. It has been known that a
binning step is desired on metagenome studies. In this
work, we show that CLAME can bin reads fast and effi-
ciently. By being very strict, allowing only long and per-
fect alignments, and given the user thresholds, CLAME
creates bins of reads from a single DNA chromosome.
Furthermore, most reads are assigned to a bin despite
using a very restricted alignment. We showed that the
other binning tools were not very effective classifying
the metagenome reads that we were analyzing.
CLAME allowed us to extract most reads of a novel
Xanthomonadaceae bacterium from a hot spring
metagenome on a single bin. We validate the draft
genome using several tools.
Given its speed and performance, we present CLAME

as a metagenome-binning tool. CLAME works best for
bacterium genomes that are well covered on the meta-
genome and it mainly extracts the most abundant spe-
cies. For closely related species in a metagenome, but
with a significant difference in concentration, the user
can adjust thresholds to bin them in different groups.
In metagenomes with highly represented complex spe-

cies, like in the eukaryote C. hominis example, CLAME
created bins with mainly single species reads, but it gen-
erated too many bins. Due to the complexity of the C.
hominis genome, the authors of the original paper used
reads from two platforms (with different characteristics)
to assemble it. We show that CLAME can recover reads
that cover most of the protozoan parasite genome.
CLAME can be used to quickly create bins of reads that

Table 12 Annotation of Newbler’s Large contigs assembled
from the thermal metagenome from the balance reads (without
the reads used for the draft genome)

Phylum MEGAN RAIphy AMPHORA 2

Cyanobacteria 3214 (63.57%) 3339 (66.04%) 37 (0.73%)

Proteobacteria 167 (3.30%) 1161 (22.96%) 2 (0.04%)

Bacteroidetes 18 (0.36%) 36 (0.71%) 2 (0.04%)

Others 411 (8.13%) 520 (10.28%) 1 (0. 019%)

Unknown 1246 (24.64%) 0 (0.00%) 5014 (99.17%)

Fig. 18 CLAME speed performance. The horizontal axis shows the number of threads used. Vertical axis shows the speedup with respect to the 1
thread execution
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can be further assembled, reducing the processing time,
the risk of chimeric contigs and obtain better N50 stats.
Given the complexity of metagenomes, the different

sequencing methodologies, and the variable error rates
of the sequencing, it is difficult that a tool automatically
creates the bins. For this reason, in CLAME we added
several configuration parameters that allow the user to
tune it for the particular experiment. We used CLAME
to bin the reads of the most abundant species of meta-
genome from a hot spring.
The assembly of the biggest CLAME bin generated the

draft genome presented. According to the 16S rRNA
gene phylogenetic analysis, it corresponds to a novel
taxon within the Order Xanthomonadales. Although the
closest related sequences within the Ribosomal Database
Project are uncultured bacteria, the phylogenetic recon-
struction, including only isolated-type strains, clearly
shows that our genome is within the family Xanthomo-
nadaceae, close to Dokdonella spp. but separated from
the family Sinobacteriacea (i.e. outgroup Alkanibacter
difficilis). We propose it as a partial draft genome of
novel thermophile Xanthomonadal.
The de-novo assembled genome is around 3 Mb, with

2726 predicted ORFs; it is a small genome size com-
pared to Dokdonella and Dyella, both with genomes
around 4.5 Mb and 3519 and 3966 annotated proteins,
respectively. Our BUSCO annotation results show that
the genome is not complete, 32 genes of 40 essential
were found. The KEGG annotation pipeline further
confirmed this, since the subunits RNApol and DNApol
were not completely present in our annotated contigs.
However, the main metabolic pathways such as TCA,

glycolysis, pentose phosphate, Glyoxylate, Fatty acid
biosynthesis and beta-Oxidation were present and they
were completely annotated by the same database. In
addition, proteins from all different cell localizations
were annotated. BUSCO estimation of 80% complete-
ness of the genome might be adequate as a reference
lower limit, although we cannot predict if the genome
size of the novel Andean Xanthomonadaceae is as big
as the Dyella and Dokdonella genomes.
The global genome annotation did not show any

special adaptations of this prokaryote; its metabolic
profile is very similar to the other organism of this
Family, where we can find a Heterotrophic lifestyle
living at expenses of the Cyanobacteria that shared
the thermal water.

Conclusions
While several metagenomic binning tools were unable to
separate the synthetic and real problems that we pro-
posed, we show that CLAME was faster and better on
these problems. CLAME is a tool that helps researchers
to analyze metagenomes by creating bins of reads that
belong to a single DNA chromosome, without the need
of a reference genome. This is important since most of
the unculturable microorganisms do not have reference
genomes. Therefore, it can be used to improve metagen-
ome analysis by grouping reads from DNA fragments of
novel species, such as the Xanthomonadal presented in
this work. This draft genome is one of the first
thermophile members of this family, and it was possible
to obtain thanks to CLAME.

Fig. 19 CLAME memory performance. The horizontal axis shows the RAM memory usage for each dataset
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