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Abstract

Background: Phytophthora infestans is a plant pathogen that causes an important plant disease known as late
blight in potato plants (Solanum tuberosum) and several other solanaceous hosts. This disease is the main factor
affecting potato crop production worldwide. In spite of the importance of the disease, the molecular mechanisms
underlying the compatibility between the pathogen and its hosts are still unknown.

Results: To explain the metabolic response of late blight, specifically photosynthesis inhibition in infected

plants, we reconstructed a genome-scale metabolic network of the S. tuberosum leaf, PstM1. This metabolic
network simulates the effect of this disease in the leaf metabolism. PstM1 accounts for 2751 genes, 1113 metabolic
functions, 1773 gene-protein-reaction associations and 1938 metabolites involved in 2072 reactions. The optimization
of the model for biomass synthesis maximization in three infection time points suggested a suppression of
the photosynthetic capacity related to the decrease of metabolic flux in light reactions and carbon fixation
reactions. In addition, a variation pattern in the flux of carboxylation to oxygenation reactions catalyzed by

infestans and S. tuberosum.

reconstruction, Flux balance analysis

RuBisCO was also identified, likely to be associated to a defense response in the compatible interaction between P.

Conclusions: In this work, we introduced simultaneously the first metabolic network of S. tuberosum and the first
genome-scale metabolic model of the compatible interaction of a plant with P. infestans.
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Background

Plants use various strategies to resist pathogen attack
and to avoid the development of diseases, such as,
massive transcriptional reprogramming, production of
reactive oxygen species (ROS), reinforcements of the cell
wall and synthesis of antimicrobial secondary metabo-
lites and pathogenesis-related proteins involved in resist-
ance [1-3]. In those cases when plants resist pathogen
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attack, plants they are considered resistant to that spe-
cific disease, and pathogens are referred to as avirulent
on that plant. This type of plant-pathogen interaction is
thus known as incompatible. On the other hand, some-
times plant pathogens develop strategies to evade plant
defense responses, become virulent and establish the
disease. In those cases, the plant-pathogen interaction is
known as compatible and the infected plant is consid-
ered non-resistant or susceptible [4, 5]. To some plant
pathogens, these evasion mechanisms are, at least,
partially known [1, 6], while to some others, these mech-
anisms remain unknown. This latter is the case of
Phytophthora infestans, one of the most destructive
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pathogens of Solanum tuberosum. This susceptibility is
triggered by effector proteins of the pathogen [1], some
of which are inhibitors that target defense-related pro-
teins, and processes such as programmed cell death in
plants [7].

P. infestans is a hemi-biotrophic plant pathogen caus-
ing the disease known as late blight of potato, which was
the same plant disease responsible for the Irish famine
in the mid-nineteenth century [8]. S. tuberosum is the
fourth leading food crop (after corn, rice, and wheat) for
human consumption [9], and it is one of the most pro-
duced crops worldwide. Historically, potato late blight is
the main factor affecting potato crop production [10,
11]. After its first pandemic in the middle of the nine-
teenth century, P. infestans has remained as the most
destructive pathogen in plantations of this crop, leading
to annual losses that would have been enough to feed
several hundred million people [12]. The economic value
of this loss and the cost of crop protection are estimated
at 6.7 billion dollars a year [13].

Successful biological systems analysis requires that we
understand the functional interactions between the key
components of biological organisms and how these
interactions change in disease states. Computational
modeling has been widely used in order to understand
the complexity that arises from the understanding of
such interactions, by means of the application of math-
ematics, physics and computer science. Computational
models allow us to understand how new properties
emerge from the interconnection between system com-
ponents and thus to study their behavior in response to
stimuli and changes in the environment [14]. Even
though computational modeling of potato late blight has
been studied since the early 1950s, it was not until a few
years ago that important molecular information to feed
these models was accessible to the research community.
Typically, this information has been gathered by hetero-
geneous approaches, which have covered several
research fields such as structural and comparative gen-
omics, protein-protein interactions and differential gene
expression [15]. In particular, in the field of gene expres-
sion, several investigations have been carried out using
microarray based assays on cDNA clones [16], transcrip-
tome analysis through DeepSAGE [17] and RNA-Seq
analysis [18].

These approaches have generated large amounts of
data, allowing us to understand, to a certain extent,
some of the main mechanisms involved in potato late
blight. Nevertheless, due to the heterogeneity of this
information, a full view of the disease is still fragmen-
ted. For this reason, and to get a better understanding
of the molecular mechanisms underlying the compat-
ible interaction inside the host cell, it is highly suitable
and necessary to gather and integrate this information
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into a single computational model of the disease. This
model should capture the time-dependent nature of
this biological system, integrate various ranges of
spatial and temporal scales, and allow us to explore
the possible molecular mechanisms underlying the
compatible interaction.

To this end, in recent years, the scientific community
has made multiple efforts to integrate functional gen-
omic characterization and biochemical knowledge into
models known as genomic-scale metabolic reconstruc-
tions (GEMR). These models are based on a detailed
knowledge of the system’s individual components
(functional annotation), to allow the reconstruction of
the system through a bottom-up approach. The aim is
to understand the properties that arise from the inter-
actions between the metabolic system’s components in
response to environmental stimuli, and their behavior
through time [19-22].

During the past years, this approach has been widely
implemented in plants, with the development of
GEMRs for several species, including Arabidopsis
thaliana [23-26], Hordeum vulgare [27], Zea mays
[28-30], Sorghum bicolor 28], Saccharum officinarum
[28]; Brassica napus [31, 32], Oryza sativa [33], and
Solanum lycopersicum [34]. In general, the develop-
ment of these models can be synthesized into four
fundamental steps: 1) Automatic reconstruction based
on a genome annotation and biochemical databases. 2)
Manual refinement of the reconstruction through a
literature review with the aid of biochemical and
metabolic databases. In this step, each gene and each
reaction are verified, so that they are correctly located
and connected. 3) Mathematical and computational
formalization of the biochemical information, where
the system’s specific conditions and limits are defined.
This model is validated through multiple iterations
and is used to prospectively simulate the system’s
phenotypic behavior. 4) Verification, evaluation, and
validation of the reconstruction. In other words, if we
want, for example, to simulate the production of bio-
mass precursors in an organism, during this step the
reliability of the model to correctly portrait this is
then evaluated.. Often, this evaluation leads to the
identification of incorrect metabolic functions in the
reconstruction (network gaps), which are once again
evaluated by steps 2 and 3. Therefore, the whole
process is iterative and the model is generally suscep-
tible to being continually refined [35].

Once the mathematical model is generated in step 3,
the phenotypic predictions of the organism’s metabolic
activity can be established through modelling methods
based on restrictions, which include an in silico simula-
tion of the model under inferred metabolic objectives
and a set of restrictions that represent genetic or
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environmental conditions [36, 37]. A widely used
method is flux balance analysis (FBA), which performs
the linear optimization of a metabolic network in
steady-state, in order to predict an optimal set of flux
values that are coherent with the maximization or
minimization of the chosen objective (which depends on
the purpose of the study) and under restrictions imposed
on the reaction fluxes [38].

Given that genomic information used to generate the
metabolic reconstructions does not consider the real
expression of each gene or the subcellular localization of
gene products, flux restrictions based on different
“omics” data (such as transcriptomics, proteomics, and
metabolomics) must be integrated into the GEMRs, in
order to recreate specific metabolic phenotypes [30, 39,
40]. This approach has a powerful scope for gaining
knowledge of the molecular and biochemical mecha-
nisms of plants under specific environmental or genetic
conditions. In addition, this approach allow us to
contextualize high-throughput data, as well as to guide
hypothesis-driven discovery or to identify novel network
properties [21].

In this study, we report the first genome-scale recon-
struction of S. tuberosum and generate a genome-scale
metabolic model of the compatible interaction between
S. tuberosum and P. infestans, through the incorporation
of expression data of the pathosystem into the model.
Previous work on the compatible interaction had already
identified a decrease in photosynthetic activity of
infected plants, however, the underpinnings behind it
remain unknown [16]. Hence, this model was aimed to
follow up on those findings and to try to understand the
molecular bases of this typical photosynthesis turn off
during plant disease. Furthermore, the model will be
useful for understanding other molecular mechanisms
involved during the pathosystem activity and for propos-
ing novel directed hypotheses, guiding research to con-
duct metabolic engineering in the plant, and identifying
emerging properties of the compatible interaction, which
otherwise could not be observed through the study of
individual molecules and processes.

Results and discussion

The reconstruction of the genome-scale metabolic model
followed six major steps: (1) automatic reconstruction of
draft network via homology searches for the identification
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of metabolic activities and biochemical reactions; (2) man-
ual and semiautomatic refinement of the reconstruction
(3) establishment of gene-protein-reaction (GPR) associ-
ation; (4) generation of a genome-scale metabolic model
in steady state; (5) incorporation of gene expression data
of the compatible interaction into the metabolic model;
(6) flux balance analysis using a pre-defined objective
function. In addition, model predictions were contrasted
against experimental observations.

Metabolic reconstruction

The draft network included 1288 reactions and 1482
metabolites, 217 of which were dead-ends that de-
creased the metabolic network’s connectivity. A manual
search of the dead-ends metabolites allowed us to iden-
tify 448 biochemical reactions, with biological and/or
genomic evidence for potato, which refined 40 meta-
bolic pathways totally or partially, including glycolysis/
gluconeogenesis, pyruvate metabolism, glyoxylate and
dicarboxylate metabolism (photorespiration module),
oxidative phosphorylation, carbon fixation in photosyn-
thetic organisms, amongst others (Additional file 1).
Additionally, and based on previous reports, we manu-
ally reviewed complete or partial pathways that induced
a defense response in the plant, such as those related to
accumulation of salicylic acid (ubiquinone and other
terpenoid-quinone biosynthesis) and jasmonic acid
(alpha-linolenic acid metabolism) [41], as well as other
pathways related to PAMP (pathogen associated mo-
lecular patterns) signaling cascades (Additional file 1).
By implementing automatic-specific-organism gap fill-
ing and semiautomatic-specific-organism gap find and
gap fill, we were able to include 508 reactions in the
reconstruction. The manual refinement and semiauto-
matic processes of the reconstruction are summarized
in Table 1.

General model properties

Hereby, we present a metabolic model of S. tuberosum in
SBML format, hereafter denoted PstM1 (Additional file 2).
This model accounts for 2765 genes, 1113 metabolic
functions, 1773 GPR associations and 1938 metabolites
involved in 87 central and peripheral metabolic
pathways and 2072 reactions, of which 1254 could carry
a non-zero flux given different objective functions and
the specified biomass components. The required

Table 1 Summary of the manual and semi-automatic refinement connectivity reconstruction

Refinement New reactions New metabolites New pathways Complete and partially complete pathways
Manual 448 215 6 42

Automatic and Semiautomatic 508 324 X X

Total 956 539 6 42
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enzymatic activities (according to Enzyme Commission
- EC) to catalyze the reactions in the model are shown
in Fig. 1. Among the 2072 reactions, 2059 represent
biochemical conversions and 13 represent exchange
reactions with the environment, to describe the uptake/
secretion of inorganic compounds (NO3, NO,~, Nitrile,
CO,, 0, S04, H,S, PO,*", Hy0, SO.*7, SeO,*”, NHj,
Fe,") and light (photon). FBA solutions showed that
the model was able to simulate leaf biomass synthesis,
which was represented by the conversions of biomass
precursors: protein (amino acids), sugars, nucleotides,
cell wall (cellulose, lignin precursors) and fatty acids
(hexadecanoic acid).

Comparisons with other C3 plant models

The model properties of PstM1 were compared with the
versions of the genome-scale metabolic model of tomato
(Solanum lycopersicum) [34], a closely-related species to
potato, and other two C3 plant species, Arabidopsis
thaliana [24, 25, 42] and rice (Oryza sativa) [33]. The
PstM1 model contained 185 more reactions representing
biochemical conversions than the initial model version
of tomato. Furthermore, contained 666, 505 and 336
more total reactions than A. thaliana [24], A. thaliana
[25] and rice [33] respectively. This difference is likely
because we carried out a comprehensive refinement
process and used different databases and resources to
improve the connectivity of our metabolic reconstruc-
tion network. However, our model had 518 less reactions
than the latest version of the A. thaliana model [42],
which was updated from a comprehensively annotated
database. In addition, our model had 71 fewer reactions
than the total reactions set in the tomato model, where
the additional reactions represent metabolite transporter
processes. The PstM1 is not a compartmentalized
model, since the main objective of this work was to
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evaluate the metabolic mechanisms associated to a pos-
sible decrease in photosynthetic capacity. Therefore, we
focused on biochemical conversion reactions, such as
light reactions and the Calvin cycle, which are catalyzed
in only one more compartment than the intracellular
transport process.

Our potato model contained fewer blocked reactions
than the other C3 plant models compared here. How-
ever, the percentage of the reactions used for biomass
synthesis in all these models was similar. The percentage
for the potato model was 60.5%, compared to 56.5% for
the tomato model, 67.3% for the A. thaliana model [25],
and 57.3% for the rice model. During the time course of
infection with P. infestans that were evaluated in this
work, a total of 995 (48%) reactions in the potato model
simulations could carry flux from nutrients to the speci-
fied biomass components, and in the simulations of the
tomato model, between 16.8 and 17.3% of the reactions
carried flux to represent three specific metabolic scenar-
ios. It is probable that the reason for a higher number of
reactions used in the potato model simulations is that
the objective function was the maximization of leaf bio-
mass synthesis, with the purpose of evaluating the pos-
sible metabolic scenarios in three moments (0, 1 and
3 days post inoculation) of the compatible interaction
between potato and P. infestans. While in the tomato
model, the objective function was the total flux
minimization for three metabolic scenarios: hetero-
trophy, phototrophy and photorespiration.

Metabolic phenotype analysis of compatible interaction
between S. tuberosum and P. infestans

To determine the metabolic profile for each infection
time point, we performed a FBA with flux boundaries
established from the gene expression data (see Methods).
Our study evidenced a decrease in the objective function

31%

16%

8%

Fig. 1 Required enzymatic activities to catalyze the reactions in the model
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(biomass synthesis of leaf) during the compatible inter-
action: 28% 1 day post inoculation (dpi) and 33% at
3 dpi, from the initial time O dpi (Fig. 2). These model
predictions can be understood if we take into account
that for the first interaction days, the pathogen grows
well intercellularly and then intracellularly [16, 43]
mainly in the leaves [44]. We hypothesize that this
pathogenic invasion causes loss of metabolic reactions
capacity of the primary metabolism to synthesize macro-
molecules in the leaf [45-47].

Photosynthesis and carbon fixation metabolism
Photophosphorylation, the synthesis of ATP in photosyn-
thesis, occurs in chloroplasts [48]. Noncyclic photophos-
phorylation requires photosystem I and photosystem II,
and involves water oxidation, oxygen evolution and reduc-
tion of an acceptor. In contrast, cyclic photophosphoryla-
tion is driven only by photosystem I and works with light
of wavelengths over 680 nm, and does not require water
oxidation and oxygen evolution [49]. S. tuberosum PstM1
includes the definition of the following balanced
photosynthetic light reactions taken from literature
sources [33, 50, 51]:

B Biomass Synthesis

1.8 O Noncycling Photophosphorilation

Metabolic Flux (mM gDW™" h™")

0 dpi

1 dpi
Infection time point

3 dpi

Fig. 2 Metabolic fluxes of the biomass synthesis and noncyclic
photophosphorylation reactions during compatible interaction
between S. tuberosum and P. infestans. The flux reaction of
biomass synthesis and noncyclic photophosphorylation decrease
at 1 and 3 dpi
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7 Photon|c| + 3 ADP|c] 4 3 Orthophosphate[c] => 3 ATP[c]

(1)

28 Photon|c| + 9 ADP[c] + 7 NADP + [c] (2)
+9 Orthophosphate|c] + 9 H20]c]
=> 7 Oxygen|c] + 7 H + []
+7 NADPH[c| + 9 ATP[c]

Our results showed that the metabolic flux for noncy-
clic photophosphorylation slightly diminished through-
out the infection time points (Fig. 2) and that the flux
for the cyclic photophosphorylation reaction was con-
sistently zero. In this steady-state model we assumed
that at 0 dpi the metabolic flux in the noncyclic photo-
phosphorylation reaction synthetized enough ATP and
NAPH for CO, fixation; therefore, the metabolic flux in
the cyclic photophosphorylation was not required [52].
The cyclic photophosphorylation reaction supplies only
ATP [53] and its metabolic flux can be zero, because this
reaction requires a balance in its input and output of
electrons. Electron transport is zero when its compo-
nents are completely reduced [48]. Our results suggest
that during the interaction of the plant with the patho-
gen, there can be a reduction in the metabolic capacity
of noncyclic photophosphorylation, and cyclic photo-
phosphorylation could not supply the ATP deficit. These
light reactions in a healthy plant convert light energy
into chemical energy that is used for many cellular reac-
tions that contribute to biomass synthesis [54, 55]. The
low capacity in light reactions observed here could affect
the flux of precursor reactions of biomass and, conse-
quently, affect the capacity to synthesize biomass in the
model. However, the flux of noncyclic photophosphory-
lation decreased less than biomass synthesis, which
could be explained by the reduction of energy from pho-
tophosphorylation that is consumed by maintenance re-
actions different from the precursor reactions of
biomass. Some of these maintenance reactions are asso-
ciated with growth, for example, to maintain the electro-
chemical gradients across the plasma membrane,
whereas others are independent of the specific growth
rate of the cells [55].

The decrease in photosynthetic ability during compat-
ible interaction between P. infestans and S. tuberosum
has been reported in other studies. For example, in a
previous study, the decline in the efficiency of photo-
system II [56] and downregulation of genes encoding
proteins involved in photosynthesis was shown [16].
During the optimization of a metabolic network in
steady state, we are able to predict the reaction flux,
which is the overall rate of metabolite conversion [57].
We evaluated the fluxes distribution of the fixation car-
bon pathway to evaluate the photosynthetic capacity of
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the plant during all infection time points. The corre-
sponding metabolic flux distribution patterns are shown
in Fig. 3. A table listing the simulated flux values for
each infection time point is given in Additional file 3. In
general, the metabolic fluxes in the carbon fixation cycle
(also known as the Calvin cycle) during potato late
blight was characterized by the decrease and loss of re-
action fluxes necessary to convert the inorganic carbon
in organic carbon (Fig. 3). At 0 dpi, the metabolic fluxes
of the reactions in the fixation carbon cycle varied be-
tween 5.79 and 51.42 mmol g ~' DW h™', suggesting
interconversion of metabolites in all reactions in this
pathway. At 1 and 3 dpi, the variation of the metabolic
fluxes in response to the compatible interaction was
from 0 to 28 mmol g ~' DW h 'and from 0 to
25.7 mmol g ~' DW h™ !, respectively. At 3 dpi, six reac-
tions completely lost their flux capacity, showing a
higher decrease of the global metabolic capacity in this
time compared with the two previous times of infection.

The Calvin cycle involves three main phases: 1) carb-
oxylation of ribulose-1,5-bisphosphate (RuBP) to form
3-phosphoglycerate (PGA), mediated by Ribulose-1,5-
bisphosphate carboxylase/oxigenase enzyme (Ru-
BisCO); 2) reduction of PGA to the level of a sugar
(CH,0O) by formation of glyceraldehyde 3-phosphate
(GAP) using NADPH an ATP produced in the light re-
actions; and 3) the regeneration of RuBP [72]. Here-
after, these stages are described for the three times of
infection and the subsequent changes in the metabolic
behavior are specified.

The highest flux of carboxylation of RuBP was ob-
tained in the model optimization of O dpi (Fig. 3a). At
this time, we observed that the RuBisCO enzyme had
the highest carboxylase activity. In contrast, at 1 dpi, this
enzymatic activity decreased, but increased the oxygen-
ase activity of the RuBisCO, reducing the energy effi-
ciency of photosynthesis in the plant [58, 59]. The
subsequent metabolism of glycolate produced by the
oxygenation of the RuBP is known as photorespiration,
and is associated with high light intensity, uptake of O,
and increased H,O, production [60, 61]. In the solution
of this metabolic model at 1 dpi the uptake of photons is
not enhanced, but H,O, production is increased; the
H,0, is one of the major and the most stable reactive
oxygen species (ROS) that regulates basic acclimation,
developmental and defense processes in plants [62], in-
cluding programmed cell death (PCD) [63]. One of the
most rapid defense responses against pathogen attack is
the oxidative burst, which consists of the production of
ROS, primarily superoxide and H,O,, at the site of
attempted invasion [64]. The quick generation of H,O,
in potato tuber tissue following inoculation with P. infes-
tans was previously reported [65]. Our results suggest
that the increase in photorespiration compared to the
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decrease in carboxylation of RuBP could be associated
with the plant’s requirement to trigger a quick defense
mechanism, given that photorespiration would appear to
be the fastest process for generating H,O, [66].

At 3 dpi, the oxygenation of the RuBP flux reaction
disappeared, allowing an increase in the carboxylase ac-
tivity of the RuBisCO. However, the flux of the carboxyl-
ation reaction was reduced by 55% compared to 0 dpi.
Despite of the defense response through the oxidative
burst observed in the previous time, the metabolic flux
to H,O, production here was zero. During incompatible
plant-pathogen interaction, an initial and very rapid ac-
cumulation of H,O, is followed by a second and pro-
longed burst of HyO, production [67]. In addition, the
activity and levels of the ROS detoxifying enzymes are
suppressed by salicylic acid (SA) [68]. The suppression
of ROS detoxifying mechanisms is crucial for the induc-
tion of PCD [69, 70], which potentially limits the spread
of disease [67]. In our model simulation, only one peak
of Hy,O, production occurred (Fig. 3b). Interestingly, this
behavior has been previously reported during compatible
plant-pathogen interactions [71]. In addition, the meta-
bolic flux that represents the synthesis of SA in PstM1 is
consistently zero at the time points of infection evalu-
ated. This can indicate that ROS-scavenging mecha-
nisms are not downregulated in the metabolic model.
Thus, just one peak of oxidative burst observed at 1 dpi
is not sufficient to trigger an effective defense response
in the plant; first, because a prolonged production of
H,0, is required, and second, because ROS production
without suppression of ROS detoxification does not re-
sult in the induction of PCD [69, 70].

In the reaction of GAP formation, the fluxes fall deeply
from O to 1 dpi (Fig. 3), where the anabolic capacity of
this reaction is null. At 3 dpi, the metabolic flux in-
creased incipiently, likely due to the recovery of carb-
oxylation of the RuBisCO. The GAP molecules can be
used for the synthesis of sucrose or starch, and alterna-
tively can be used to regenerate RuBP [72, 73]. We com-
pared the fluxes of the starch synthesis reaction with the
fluxes of PGA transformation in GAP through all time
points of infection, based on the idea that starch produc-
tion is a good indicator of a healthy plant, which will
only store extra reservoirs of starch in tissues if all their
energy requirements are already fulfilled [74]. In
addition, depending on the developmental stage of the
plant, the starch has been identified as an important in-
tegrator in plant growth regulation to cope with contin-
ual changes in carbon availability when the rate of
photosynthesis is modified by environmental constraints
[74, 75]. The comparison between these two reactions
showed the same change trend in metabolic fluxes
(Fig. 4). At 1 dpi, the metabolic flux to synthesize GAP
and starch was the lowest, and at 3 dpi, the flux of this
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reaction increased incipiently. Our results indicated that
the loss of carbon fixation capacity of the RuBisCO and
the subsequent decrease in GAP formation from PGA,
can be related to the decreased efficiency of starch
biosynthesis.

Previous studies have shown that starch biosynthesis
regulation is linked with the expression of ADP-Glc
pyrophosphorylase (AGPase) in leaves [75, 76]; likewise,
AGPase activity is generally activated by PGA [77].
Therefore, AGPase activation or inactivation by PGA
production allows starch synthesis to be adjusted in re-
sponse to changes in photosynthesis [78]. Our model
suggests that the metabolic flux of the AGPase activity
decreased slightly through infection time points (view
Additional file 3). This can be associated with the gen-
eral decline in the efficiency of starch synthesis in re-
sponse to the decrease of biosynthesis of GAP from
PGA. Although the AGPase activity and starch biosyn-
thesis both tend to decrease, they show particular ten-
dencies that are not comparable between them,
especially from 1 to 3 dpi (view Additional file 3). Hence,
additional regulatory mechanisms could be required to
achieve changes in the rate of starch biosynthesis, as
previously reported [75, 79-82].

In the Calvin cycle, the RuBP is both consumed and
synthesized [83]. The synthesis of RuBP is known as re-
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Fig. 5 General scheme of the refinement of potato metabolic network. The lines indicate the trajectory from data sources to the refined

metabolic network
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generation, and involves a series of reactions from GAP,
that are energetically favorable and do not consume
ATP or NADPH, except in the phosphorylation reaction
to transform ribulose 5-phosphate into RuBP [84]. The
flux distribution of these reactions was affected during
compatible interaction (Fig. 4) mainly at 3 dpi, where a
null flux is obtained for three reactions. The net flux of
transformation of ribulose 5-phosphate in RuBP reaction
decreased approximately by 55% at 1 and 3 dpi com-
pared to O dpi. This can be a consequence of both, the
decrease in the metabolic flux of its precursor’s reactions
in the cycle as well as the decrease of the metabolic cap-
acity of ATP production for the light reactions. In
addition, we observed that at 0 and 3 dpi the metabolic
fluxes of the regeneration and carboxylation of RuBP are
directly proportional. At 1 dpi, the metabolic flux of the
regeneration was directly proportional to the sum of the
flux for carboxylation and oxygenation. Overall, these
7results can indicate that in our model the RuBP is syn-
thesized in the same rate that it is consumed. This ob-
servation agrees with previous studies that demonstrated
that, in a photosynthetic steady state model, the rate at
which RuBisCO consumes RuBP equals the rate at
which RuBP is regenerated [85, 86].

Conclusions

In this work, we simultaneously introduced the first
metabolic network of S. tuberosum and the first
genome-scale metabolic model of the compatible inter-
action of a plant with P. infestans. The metabolic flux of
the light reactions and carbon fixation cycle, including
photorespiration and starch synthesis, suggests a sup-
pression of the photosynthetic capacity as consequence
of the compatible interaction between P. infestans and S.
tuberosum. Our results suggest that the suppression of
the photosynthetic capacity could be associated with a
quick defense mechanism, which is not sufficient to trig-
ger an effective defense response in the plant. The results
shown here are in silico metabolic predictions, which
closely match previous studies of plant physiology.

The PstM1 generated in this study can be used to
simulate different metabolic scenarios of the potato
plant, integrating gene expression data through con-
straints into fluxes of the reactions. For its part, the
genome-scale metabolic model of the compatible inter-
action of potato plant allows the prediction of other
metabolic mechanism involved during patosystem
activity and is an useful tool for proposing novel directed
hypotheses, guiding research to conduct metabolic en-
gineering in the plant, and identifying emerging proper-
ties of the compatible interaction, which otherwise could
not be observed through the study of individual mole-
cules and processes. Moreover, PstM1 reconstruction
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alone can also be informed by new biological data in
order to highlight different processes relative to potato
metabolism.

Methods

Metabolic reconstruction

An initial automatic draft reconstruction was first cre-
ated by means of RAVEN [87] software toolbox based
on the PGSC potato genome sequence [88]. Both auto-
matic reconstructions were then conciliated and merged
through in-house scripting. This merged reconstruction
was taken as a starting point for manual reconstruction
and then subjected to a manual refinement based on lit-
erature and available biological data.

Metabolic reconstruction refinement

The reconstruction refinement stage was divided into six
phases: (1) manual gap refinement of the metabolic
network and manual refinement of the reversibility and
directionality of the reactions; (2) automatic-specific-
organism filling; (3) semiautomatic-specific-organism
gap find and gap fill; (4) establishment of the directional-
ity and reversibility of the reactions through Gibbs free
energy of reaction value (ArG’?) [89]; (5) inclusion of
exchange reactions; and finally (6) definition of gene-
protein-reaction associations (Fig. 5).

During manual refinement, the network’s connectivity
was verified in a pathway by pathway basis, as well as in
a metabolite by metabolite basis [35]. For this, a search
for dead-end metabolites in the reconstruction was per-
formed by means of the R package minval [90]; these
metabolites correspond to those that are consumed in
the set of biochemical reactions, but are not synthesized
and vice versa. Based on the identified dead-end metab-
olites, missing reactions in the reconstruction were
manually tracked within the KEGG Pathway Maps data-
base [91, 92], which associates organism-specific gen-
omic information to metabolic pathways maps. For all
those reactions not reported for S. tuberosum in the
KEGG Pathways database, we verified that their catalyz-
ing enzymatic activity was reported in the Plant Meta-
bolic Network (PMN) database specific for potato
(PotatoCyc) [93]. In addition, based on biochemical lit-
erature, carbohydrate and energetic metabolic pathways
were further refined. During the entire manual review
process of the network’s connectivity, reactions without
any type of biological and/or genomic evidence for this
plant were removed, and the reversibility and direction-
ality of 120 reactions were corrected.

In order to verify that the metabolic pathways reported
in this reconstruction were present in the metabolism of
S. tuberosum, we used the KEGGREST R package, which
allowed us to obtain all of the metabolic pathways re-
ported for this organism in the KEGG pathways database
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[94]. By comparing the metabolic pathways obtained
from KEGG with those in the reconstruction, we found
12 non-reported pathways, which were then removed.
Since some of the reactions belonging to these pathways
were catalyzed by enzymatic activities reported in Pota-
toCyc, these were included in the reconstruction without
being associated to any specific metabolic pathway.

During the process of automatic-specific-organism fill-
ing, a database construction of all the biochemical reac-
tions reported for S. tuberosum in KEGG was done
using the g2f R package [95]. Later, only missing reac-
tions were added to the reconstruction, using the sot_g2f
in-house script [96]. Since the network still showed
gaps, a semiautomatic-specific-organism gap finding
and gap filling process was performed using the g2f
package. For this, once again we identified all of the
dead-end metabolites in the network and automatic-
ally tracked them to a reference database that con-
tains all of the biochemical reactions stored in KEGG.
The gap fill search method was restricted to retrieve
only reactions that showed metabolites in the recon-
struction. Finally, through manual validation, we in-
cluded only reactions with enzymatic activities
reported for S. tuberosum in PotatoCyc.

The reversibility and directionality of the reactions
that were not manually corrected were determined
through A,G’° values obtained from EQuilibrator [97]
and MetaCyc [98] databases. These databases estab-
lish the value for A,G’° by calculating the Gibbs free
energy of formation of a compound (A '), through
the group contribution method for thermodynamic
analysis [89]. The parameters used to calculate A/G™
in Equilibrator are pH 7.0 and ionic strength 0.1, and
in MetaCyc these are pH 7.3 and ionic strength 0.25.
Since the parameters are located in a pH range of
7.0-7.3 and ionic strength of 0.1-0.25, the reversibil-
ity R script [99] was implemented, which allowed us
to compare the ArG’® values from both databases.
When both reversibilities were below -1, the GEMR
reversibilities were established as forward irreversible.
Due to lack of biological evidence and discrepancies
between the ArG'® values of the databases, the
remaining reactions were determined as reversible.

During the fifth phase of the reconstruction refine-
ment process, we included 13 exchange reactions
which transport metabolites that cannot by synthe-
sized by the cell, from the limits of the system to the
cytoplasm, that are precursors to other metabolites
[24]. Finally, once the reconstruction was refined in
terms of its reactions, metabolic pathways and revers-
ibility, GPR associations were integrated using the g2f
package. This package constructs GPRs based on
KEGG ORTHOLOGY of the reactions present in the
reconstruction.
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Transformation of reconstructed network into a genome
scale metabolic model

From the genome-scale metabolic reconstruction of
potato, a SBML version was generated using the Py-
thon package COBRApy [100]. Consecutively, the
SBML file was imported to the R package Sybil
[101], where the whole set of reactions present in
metabolic reconstruction was transformed into a steady
state metabolic model S;; v;= 0. Where S; is the entries of
the stoichiometric matrix (Additional file 4). Rows in S
represent metabolites and columns represent reactions,
and v; is the metabolic flux vector for each reaction. Sub-
strates in the reaction have negative coefficients, while
products have positive ones. This matrix also takes into
account transport reactions across the cell membrane,
which are represented as reactions interconverting
intracellular and extracellular compounds. In the meta-
bolic model, the reaction fluxes are subjected to constrains
(= Vimin S VS Vinax) [25, 27].

Objective function was defined by the biomass synthe-
sis reaction in the leaf OF;y,,qss (Additional file 4), pre-
viously reported in the genome-scale metabolic model of
Arabidopsis thaliana [25]. This objective function was
mathematically written as a combination of metabolic
coefficients of the biomass composition estimated for
slow-growing species [102, 103].

Incorporation of gene expression data into the genome-
scale metabolic model

Gene expression data of the compatible interactions
was obtained from the study of Gyetvai et al. [17].
We used the normalized libraries of the untrans-
formed cultivar Désireé at three infection time points
with P. infestans (zero (0 dpi), one (1 dpi) and three
(3 dpi) days post inoculation), with three biological
replicates. The tag annotation was performed by
BLASTN [104]. The source for the tag annotation
was the available RNA sequence of “Potato 3.0” [105].
The unique genes and maximum value counts per
gene were performed with the script summarization.r
[106]. As the last step for building the gene expres-
sion database, all refseq gene identifiers were trans-
formed to Entrez identifiers, by means of the R
package UniProt.ws [107].

From the previously built gene expression data-
base, we generated an expression set for each infec-
tion time point by means of the R package Biobase
[108]. The gene expression values were incorporated
directly into fluxes constraints of the reactions in
the model using the R package ex2flux [109], which
implements a method to integrate gene expression
values into each GPR associated to the reactions of
the model.
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Metabolic flux model optimization

FBA represents a constraint-based modeling approach
that allows the prediction of metabolic steady-state
fluxes, by applying mass balance constraints into a stoi-
chiometric model [38]. The reactions in the model can
be represented by a linear system of equations, then,
problems such as maximizing specific chemical produc-
tion or growth can be solved by linear programming [21,
110]. With the purpose of obtaining a computational
distribution of metabolic fluxes, FBA was employed as-
suming maximization of the objective function, by
means of the R package Sybil (Eq. 3) maximization
OF bioamass

subject to
ZSUVf =0
i=12.m j=1,2.n (3)
~Vimin svs Vimax

To constrain the space of all the possible steady-state
flux distributions in the optimization, we imposed
thermodynamic constraints to reaction reversibility as
well as upper and lower bounds constraints on reactions
fluxes from known expression values for the particular
enzyme that catalyzes the reaction.
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