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Abstract

Background: Methylation of cytosine bases in DNA is a critical epigenetic mark in many eukaryotes and has also
been implicated in the development and progression of normal and diseased cells. Therefore, profiling DNA
methylation across the genome is vital to understanding the effects of epigenetic. In recent years the lllumina
HumanMethylation450 (HM450K) and MethylationEPIC (EPIC) BeadChip have been widely used to profile DNA
methylation in human samples. The methods to predict the methylation states of DNA regions based on microarray
methylation datasets are critical to enable genome-wide analyses.

Result: We report a computational approach based on the two layers two-state hidden Markov model (HMM) to
identify methylation states of single CpG site and DNA regions in HM450K and EPIC BeadChip. Using this mothed,
all CpGs detected by HM450K and EPIC in H1-hESC and GM12878 cell lines are identified as un-methylated, middle-
methylated and full-methylated states. A large number of DNA regions are segmented into three methylation states
as well. Comparing the identified regions with the result from the whole genome bisulfite sequencing (WGBS)
datasets segmented by MethySeekR, our method is verified. Genome-wide maps of chromatin states show that
methylation state is inversely correlated with active histone marks. Genes regulated by un-methylated regions are
expressed and regulated by full-methylated regions are repressed. Our method is illustrated to be useful and
robust.

Conclusion: Our method is valuable for DNA methylation genome-wide analyses. It is focusing on identification of
DNA methylation states on microarray methylation datasets. For the features of array datasets, using two layers two-
state HMM to identify to methylation states on CpG sites and regions creatively, our method which takes into
account the distribution of genome-wide methylation levels is more reasonable than segmentation with a fixed
threshold.
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Background

Methylation of DNA cytosine residues at carbon 5
(5meC), a common epigenetic mark in many eukaryotes,
is often found in the CpG and CpHpG (H=A, T, C) se-
quence context. Methylation modification has various
biological functions. Interactions between transcription
factors (TFs) and methylated DNA are considered to
play an important role in regulating gene expression [1—
4]. DNA methylation of gene regulatory elements, such
as promoters and enhancers, are generally considered to
be incompatible with activated gene expression [5, 6].
However, DNA methylation levels of CpGs increase in
the gene bodies of actively transcribed genes in plants
and mammals [7-9]. As one of the popular research
areas in gene regulation, DNA methylation is also con-
sidered to be involved in the pathogenesis of a number
of tumors [10].

With the development of biological technology, large-
scale DNA methylation profiling has been generated
from different sequencing and microarray techniques,
such as WGBS [11], RRBS (reduced representation bisul-
fite sequencing) [12], HM450K [13] and EPIC [14]. Ana-
lysis of DNA methylation process mainly includes the
data normalization and identification of differentially
methylated sites or regions. Many pipelines have been
developed to solve these two issues. QN (quantile
normalization), ASMN (all sample mean normalization)
and PBC (peak-based correction) are often used to
normalize the Illumina methylation array data [15-17].
ChAMP is a pipeline designed for HM450K chip analysis
[18]. To detect the differentially methylated regions,
Martin J. Aryee developed a flexible and comprehensive
R package named Minfi [19]. Identifying DNA methyla-
tion status is also important for understanding its func-
tion. DMRcate was designed to identify differentially
methylated regions for replicated methylation measure-
ments from the Illumina HM450K BeadChip [20]. At
present, the fixed threshold is used to determine the
state of DNA methylation. Generally, if the DNA methy-
lation level at a CpG site is higher than 80%, then it is
classified as methylated, less than 20% as un-methylated
and others as partially methylated [21-23]. Another
study considered methylation levels below 60% as low
methylation [1]. Katherine E. Varley sets more than 90%
as fully methylated sites and less than 10% as unmethy-
lated sites [24].

HMM-Fisher, which was designed to identify differen-
tial CpG sits on bisulfite sequencing data, can dynamic-
ally recognize the methylation states [25]. The Hidden
Markov Model was used to divide the CpG sites into
fully methylated site, lowly methylated site and
unmethylated site. Strong spatial correlation is a domin-
ant feature shown in the DNA methylation data and
DNA methylation is regulated in longer genomic regions
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[19, 26]. Identification of DNA methylation state on
DNA regions is more meaningful than identification of
DNA methylation state at an individual site. Methyl-
SeekR was designed to identify the active regulatory re-
gions from WGBS data and divide the genomic regions
into partially methylated, low-methylated and unmethy-
lated regions [27].

Here, we developed a new method to recognize the
methylation states for individual CpG site and genomic
region from the methylome data generated by HM450K
and EPIC. In H1-hESC and GM12878 cell lines, our
method identified numerous sites and genomic regions
with full, median and un-methylation. By comparing
MethylSeekR result from the same cell lines, the full
methylation regions and unmethylation regions have
very high coincidence rate.

Methods
Data description and preprocessing
The DNA methylation datasets generated from Illumina
HM450K array, EPIC array platform and WGBS were
downloaded from the Encyclopedia of DNA Elements
(ENCODE) project and GEO Datasets Database (see
Additional file 1). We processed the HM450K and RPIC
data using the ‘minfi’ Bioconductor package [19]. Probes
were excluded if the detection p-value greater than 0.05.
The target CpG sites annotated to the sex chromosomes
or common SNPs were removed from subsequent ana-
lysis. The methylation level of each site was measured as
beta-value which was the ratio of signal compared with
the sum of the methylated and unmethylated probes.
The WGBS data of H1-hESC and GM12878 cell lines
were performed in two biological replicates. First, we
merged the two sets of methylation data by summing
the read counts. At each CpG site the methylation level
was calculated as the ratio of the counts of methylated
reads to total reads. Then MethylSeekR was used to
identify the UMRs (unmethylated regions), LMRs (low-
methylated regions) and PMDs (partially methylated do-
mains) on the WGBS datasets. The other genomic re-
gions were treated as FMRs. The Pearson correlation
coefficients of methylation level between WGBS and
HM450K datasets for two cell lines and between EPIC
and WGBS datasets for GM12878 cell line were calcu-
lated on the common CpG sites for different platform.

Identification of methylation states on CpG sites

In the HM450K and EPIC, the methylation level distri-
bution of CpG site was bimodal (one peak correspond-
ing to the unmethylated sites and the other to the
methylated sites) and ranging from 0 to 1. The import-
ant feature of DNA methylation is that the DNA methy-
lation levels of adjacent CpG sites were very similar in
many regions and they also can be very different in some
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regions. The Markov models can be modeled by setting
a high and low transition probability respectively. And
there were less middle-methylated CpG sites compared
with methylated and un-methylated sites. Therefore,
two-state HMM model was used to emulate the DNA
methylation states and the CpG sites were grouped into
two classes, high-methyl and low-methyl. Then we
checked the DNA methylation levels of high-methyl and
low-methyl sites. If the methylation level distributions
were bimodal, we used the two-state HMM again to div-
ide low-methyl sites into UMSs and MMSs and divide
high-methyl sites into FMSs and MMSs. If the methyla-
tion level distributions show only one peak, we regard
the low-methyl sites as UMSs, and the high-methyl sites
as FMSs.

Identification of methylation states on genomic regions

In this study, we tried to segment the DNA genomic re-
gions as UMRs (unmethylation regions), MMRs (me-
dian-methylated regions) and FMRs (full-methylated
regions) based on the sparse DNA methylation datasets
generated from HM450K and EPIC. Figure 1A showed
that our method can identify some UMRs, MMRs and
FMRs in H1-hESC cell line. The CpGs are un-methyl-
ated in the UMRs, and the methylation levels in FMR
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are always higher than MMRs. As HM450K only covers
over 480,000 CpGs (2% of CpGs in whole genome) and
EPIC covers 850,000 CpGs, the HM450K and EPIC data-
sets are relatively sparse. We set up some conditions to
group the CpGs into genomic regions.

The strategy was shown in Fig. 1B. In the first step, we
merged the CpG sites based on the gap and methylation
states between adjacent CpGs. Obviously, the CpG dens-
ities of CpG islands and other regions are different, so
the gap distances should have different threshold. Add-
itional file 2 showed the distribution of gap distances be-
tween adjacent probes in HM450K and EPIC datasets
both within and outside of CpG islands. According to
the distribution, we grouped the CpG sites within 300 bp
of the CpG island into genomic regions in HM450K and
EPIC datasets. For the outside regions of CpG island,
thresholds for gap distances are 11,300 bp in HM450K
and 4800 bp in EPIC datasets. Since few CpG sites were
not enough to support a regional methylation state, gen-
omic regions less than three CpG sites were filtered. In
the third step, for the extension, the same gap cutoff was
used to merge the regions again to avoid the fragmenta-
tion of the region only with a change in the methylation
state of one or two CpGs. Using the same HMM model
of CpG sites methylation states, the genomic regions
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were identified to UMRs, MMRs and FMRs based on
the average methylation levels.

Using HMIM to model DNA methylation

HMM was used to identify DNA methylation states. The
identification of high-methyl and low-methyl CpG sites
was used as an example to explain the model. The hid-
den states of CpGs’ methylation have both high-methyl
and low-methyl states. For k CpGs, the hidden methyla-
tion state sequence is referred as:

H = {hla ”'ahk—hhk}'

For k CpGs, the methylation level sequence is used as
observed sequence and referred as:

O = {017 ”'70/(—170/(}'

To train the HMM, the initial transition probability
and the emission distribution of each individual hidden
state need to be initialized based on prior information.
Baum-Welch algorithm [28] is used to find local optima
for parameters. According to the bimodal distribution of
CpG methylation, the cutoff of DNA methylation was
set as 0.6 empirically. The low-methyl and high-methyl
states are referred as L,,, and H,,, respectively. Depend-
ing on the methylation level, the CpG sites were initially
divided into two groups:

. Lyse, lf 0; > 0.6
hi = {HW, if 0,06 M)

The transition probability was initialized by the fre-
quency of the methylation’s changes between the adja-
cent regions (or sites):

= Lme)

P(hi = Lmelhi—l
= Hme‘hi—l = Lme)

P(hi = Lme‘hi—l = Hme)
P(h; =

P(hl Hme‘hi—l = Hme)
(2)

P(hilhis) =

The normal distribution was used to approximate the
emission distributions. The variances and means of these
distributions were estimated based on two groups
methylation levels, respectively. Hence, the truncated
normal distribution was used as the initial emission
probability:

0; | hi
Tnormal (/ALW, 92.) if B = Lipe
Tnormal(pthe, Bf{m) if hi=H,

For each group of methylated regions (or sites), the
joint probability is:
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P(O, H) = P(O|H)P(H)
= P(m)P(o1|l) [ [ P(hilhia)P(oil) — (4)

i=2

Using Baum-Welch algorithm, the maximum likeli-
hood estimate of the parameters of the Hidden Markov
model were found. Based on the trained model, methyla-
tion states of sites (or regions) were predicted by Viterbi
algorithm [29].

Results

DNA methylation states of H1-hESC and GM12878 cell
lines

Method descripted above was used to identify methyla-
tion states of CpG sites and genomic regions in H1-
hESC and GM12878 cell lines. The identified sites and
regions are summarized in the Table 1. We found that
in each sample, 30-40% of identified CpGs were UMSs
and only 2-10% of identified regions were UMRs. This
distinction occurred due to the fact that the un-methyl-
ated CpGs are always located in short CpG islands
which have high frequencies of CpG dinucleotides. In
H1-hESC cell line the identified UMSs account for 37%
which is more than GM12878 (HM450K: 36.74%, EPIC:
31.67%) and the identified MMSs account for 13.45%
less than GM12878 (HM450K: 38.93%, EPIC: 41.19%).
EMRs account for 49.54% in HI1-hESC higher than
GM12878 (HM450K: 24.33%, EPIC: 27.14%). Methyla-
tion levels genome-wide in H1-hESC are higher than
that in GM12878.

As shown in Fig. 2, the identified CpG sites and re-
gions have their own special DNA methylation distribu-
tion. For CpG sites, the cutoff separating UMSs from
MMSs is around 0.2, and the cutoff separating MMSs
from FMSs is around 0.75 in GM12878. For CpQG sites,
the cutoff separating UMSs from MMSs is around 0.2,
and the cutoff separating MMSs from FMSs is around
0.88 in H1-hESC. Such difference was due to the fact
that the genome-wide methylation level in H1-hESC cell
line is higher than GM12878. This approach takes it into
account that the changes and distribution of methylation
levels of surrounding CpG sites by using HMM models.
It can be viewed as a soft segmentation which is more
reasonable when comparing with the segmentation with
a fixed threshold. The threshold between UMSs and
MMSs methylation levels of in H1-hESC is higher than
the threshold in GM12878. For regions, the threshold
between the methylation levels of UMRs and MMRs is
around 0.5 in H1-hESC which is also higher than that in
GM12878. The distribution of DNA methylation on
MMRs in H1-hESC is also higher than in GM12878.
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Table 1 The coverage of the identified sites and regions
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Cell_type UMSs MMSs FMSs UMRs(bp) MMRs(bp) FMRs(bp)
H1-hESC(HM450K) 168,926 61414 226,136 19,208,170 45,047177 200,680,915
GM12878(HM450K) 168,035 178,077 111,277 11,817,492 133,011,338 115,296,960
GM12878(EPIC) 258,499 336,134 221,514 11,178,153 264,470,336 99,186,974

High consistency with the result of MethylSeekR

To the best of our knowledge, our method is the only avail-
able method to identify methylation states for HM450K and
EPIC datasets. Therefore, it cannot be compared with exist-
ing methods designed for array datasets. To evaluate our
method, we compared our result with the regions identified
by MethylSeekR on WGBS datasets in the same cell lines.
However, the definition of methylation states is different be-
tween our method and MethylSeekR. There is no definition
of FMRs in MethylSeekR, but in the first step of Methyl-
SeekR to segment WGBS as regions is filtering the region
containing continuous CpG sites with methylation levels
higher than a cutoff of methylation level. These regions are
regarded as FMRs. The condition is looser than the FMRs in
our method. The low-methylated regions in MethylSeekR lie
in intergenic and intronic regions distal to transcription start

sites. Because the array design only contains few CpGs in
these regions, our method cannot identify low-methylated
regions. Notably, we can identify a new methylation state
with moderate methylation levels with our model.

First, correlation of datasets generated from two differ-
ent platforms of H1-hESC and GM12878 cell lines were
calculated. Pearson correlation coefficient (0.9640) be-
tween HM450K and WGBS datasets in H1-hESC cell
line is higher than the coefficient (0.9059) between
HM450K and WGBS datasets in GM 12878 and the coef-
ficient (0.9134) between EPIC and WGBS datasets in
GM12878 (Fig. 3A). And then, methylation states of
WGBS in H1-hESC and GM12878 cell lines were identi-
fied by MethylSeekR. As shown in Fig. 3B, the FMRs
and UMRs recognized by our method are highly coinci-
dent with the regions identified by MethylSeekR on

Fig. 2 The distribution of DNA methylation level of sites and regions in different methylation states in two cell lines. (@) The distribution of DNA
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WGBS dataset. As the correlation of datasets on
GM12878 is lower than H1-hESC, the coincidence of
identified regions is lower than H1-hESC. In two cell
lines, more than 93% FMRs and 85-96% UMRs are con-
sistent with WGBS. Less than 8% FMRs and 16% UMRs
overlap with the regions with different methylation
states. Due to the definition of FMRs in MethylSeekR is
looser than our method, the MMRs which are newly
identified and have different methylation distribution
from FMRs and UMRs overlapped with full methylation
regions in MethylSeekR highly.

Next, we calculated the width of the regions, and
found that regardless of datasets, the lengths of regions
are mostly in a range from 10,000 to 30,000 (Fig. 3C).
The UMRs we identified are longer than UMRs identi-
fied by MethylSeekR in HI-hESC. In GM12878, the

FMRs and MMRs identified from EPIC are longer than
the result obtained from WGBS and HM450K. And
UMRs identified from EPIC are shorter than the result
obtained from WGBS and HM450K. As the gap of con-
ditions in the process to merge CpG sites are different
and the CpG sites coverages are different between the
EPIC and HM450K, the lengths of regions are different.

Distribution of gene expression related with UMRs, MMRs
and FMRs

To explore gene expression pattern of the gene regulated
by the UMRs, MMRs and FMRs overlapped on gene
promoters, we integrated the DNA methylation states
with genome-wide gene expression data from the same
cell lines. When setting the promoter regions 1000 bp
upstream and 400 bp downstream of transcription start
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sites (TSS), the distances between the middle of pro-
moters (300 bp upstream of TSS) and the middle of
identified regions were calculated (Fig. 4A). If the dis-
tance is less than the cutoff, the gene is regarded as be-
ing regulated by the identified regions. When the
distance cutoff was 700 bp, we retrieved the target genes
regulated by UMRs, MMRs and FMRs in H1-hESC and
GM12878 and plotted the distribution of gene expres-
sion (Fig. 4B). In two cell lines, the UMRs-regulated
genes showed apparent up regulation and the MMRs-
and FMRs-regulated genes showed no expression. In
H1-hESC, 72.82% genes with promoters overlapped on
UMRs have gene expression higher than 300. Besides,
only 30% genes with promoters overlapped on MMRs
and 17.81% genes with promoters overlapped on FMRs
are higher than 300 in gene expressions in H1-hESC. In
GM12878, the gene expressions higher than 300 contain
70.94, 2847 and 23.65% genes with promoters over-
lapped on UMRs, MMRs and FMRs, respectively.

After adjusting the cutoff from 400 tol000bp, we
retrieved the mean of gene expressions regulated by
identified regions. Figure 4C showed the UMRs-
regulated genes up-regulated expression apparently.

Page 7 of 10

MMRs-regulated genes are higher than FMRs-regulated
genes in both two cell lines. DNA methylation typically
acts to repress gene transcription in a gene promoter by
blocking transcription factors binding. Therefore, UMRs
overlapped gene promoters show high activity. FMRs are
the opposite. MMRs are between FMRs and UMRs. The
quantitative relationship between gene promoter methy-
lation and gene expression needs further exploration.

Different methylation states have different chromatin
states

At last, we compared the identified regions with chro-
matin state segmentations which were learned by com-
putationally integrating ChIP-seq data for nine factors
plus input using hidden Markov model [30]. Consistent
with the classical view, DNA methylation states of active
promoter regions are always un-methylated, and the het-
erochromatin regions are high methylated (Fig. 5A). The
UMRs in H1-hESC mainly occupy promoter regions, 4_
strong_Enhancer and 6_weak_Enhancer, and FMRs
mainly occupy 13_heterochrom_IO, 9_weak_txn, 7_
weak_enhancer and 8_insulator regions. Only small
amount of FMRs and MMRs occupy weak promoters
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and poised promoters. As shown in Fig. 5B, GM12878
has a different pattern from that in H1-hESC. Greater
proportion of weak and poised promoters overlapped on
MMRs and FMRs in GM12878 than H1-HESC. Overall,
the methylation states of active promoter are UMRs,
which mainly occupied promoter regions, 4_strong_En-
hancer and 6_weak_Enhancer. However, the relationship
between chromatin states and DNA methylation states is
slightly different in different cell lines.

Discussion

In this study, we presented a novel computational
method for identifying DNA methylation states of CpG
sites and DNA regions from HM450K and FPIC datasets
by using HMM model. In our method, we combined the
benefits of HMM models and DNA methylation levels
context to identify methylation states dynamically.
HMM-Fisher used three-state HMM to identify the
methylation states of sequencing data. For methylation
array, the distribution of methylation sites is not as same
as bisulfite sequencing data. In array, a large number of
CpG sites are distributed in both full-methylated and
un-methylated states. We used two layers two-state
HMM to replace three-state HMM directly. This strat-
egy can avoid misidentifying MMSs effectively. Our
method is the first one to identify DNA methylation
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states on array datasets. By comparing with the result
from using MethylSeekR with WGBS in same cell lines,
we can confirm the accuracy of the method. The advan-
tage of our method is revealed especially when applied
to the relatively sparse dataset generated from HM450K.
We can infer the DNA methylation states reasonably
based on a few detected CpG sites.

Our method can be viewed as a soft segmentation on
DNA methylation array dataset. Generally, researchers
set a fixed threshold to determine the methylation states
of CpG sites or regions. However, it is unreasonable to
set a fixed threshold to determine the methylation states
in different cell lines. As shown in Fig. 2, thresholds are
mutable in different cells. The genome-wide DNA
methylation in HI1-hESC cell line is higher than
GM12878. In our method, the DNA methylation of
MMRs in H1-hESC are higher than that in GM12878.
By comparing with the result identified by MethylSeekR
based on WGBS, we confirmed our method is
reasonable.

This method was also applied to EPIC. On the same
cell line, we predicted the DNA methylation states from
the datasets generated from HM450K and EPIC array,
respectively. EPIC is designed to determine more CpG
sites in regions which identified as potential enhancers
by FANTOMS5 [31] and ENCODE. That information is
not covered in HM450K array. By comparing the result
from two types of arrays, FMSs and MMSs determined
in EPIC are two-fold of that in HM450K and UMSs in
EPIC are 1.5-fold of that in HM450K. In terms of DNA
regions, identified MMRs in EPIC are two-fold of that in
HM450K. It could be associated with the additional
measurement regions. As the HM450K has covered
more then 95% CpG islands, the UMRs regions identi-
fied are approximately the same in length. There are
three outcomes due to the fact that the EPIC has more
CpG sites. The cutoff of gaps in merging regions is
shorter than it of HM450K. The boundaries of the iden-
tified regions are detected more accurately. The length
of MMRs is shorter than HM450K. Comparing our re-
sults to MethylSeekR, EPIC is more accurate in identify-
ing FMRs than HM450K.

Conclusions
In this work, we introduced a two-layer two-state HMM
to identify methylation states of CpG sites and regions
assessed by HM450K and FPIC datasets. Our approach
combined the background of genome-wide methylome,
dividing the CpG sites and regions into three methyla-
tion states, avoiding a fixed threshold to recognize
methylation states.

In addition, we applied this innovative approach to
identify methylation states for array datasets in H1-hESC
and GM12878 cell lines. This approach is evaluated by
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comparing with the result identified by MethylSeekR
based on WGBS dataset. We also observed the methyla-
tion level distribution of the same methylation states in
different cell lines are different. By comparing the ex-
pression of genes with promoters in different methyla-
tion states, the expression of genes in the UMRs is much
higher than that in the FMRs and MMRs. We also ob-
served differences in chromatin status in different meth-
ylated regions. These suggest that this novel
computational method can avoid setting fixed threshold
when identifying methylation states on CpG sites and re-
gions for array datasets effectively and correctly.
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