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Abstract

Background: To infer gene regulatory networks (GRNs) from gene-expression data is still a fundamental and
challenging problem in systems biology. Several existing algorithms formulate GRNs inference as a regression
problem and obtain the network with an ensemble strategy. Recent studies on data driven dynamic network
construction provide us a new perspective to solve the regression problem.

Results: In this study, we propose a data driven dynamic network construction method to infer gene regulatory
network (D3GRN), which transforms the regulatory relationship of each target gene into functional decomposition
problem and solves each sub problem by using the Algorithm for Revealing Network Interactions (ARNI). To remedy
the limitation of ARNI in constructing networks solely from the unit level, a bootstrapping and area based scoring
method is taken to infer the final network. On DREAM4 and DREAM5 benchmark datasets, D3GRN performs
competitively with the state-of-the-art algorithms in terms of AUPR.

Conclusions: We have proposed a novel data driven dynamic network construction method by combining ARNI
with bootstrapping and area based scoring strategy. The proposed method performs well on the benchmark datasets,
contributing as a competitive method to infer gene regulatory networks in a new perspective.

Keywords: Gene regulatory network, Dynamic network construction, Regression, DREAM challenge

Introduction
Gene regulation plays an important role in gene tran-
scription [1, 2], gene differentiation [3], cell fate decisions
[4, 5], complex diseases [6]. To elucidate the structure of
gene regulatory networks (GRNs) has been a central effort
of the interdisciplinary field of systems biology. With the
advent of high-throughput technologies such as microar-
rays and RNA sequencing, tremendous amounts of data
have been generated, which makes it feasible to infer
GRNs from exclusive expression data or multiple classes
of data based on computational methods [7]. However,

*Correspondence: limin@mail.csu.edu.cn
1School of Computer Science and Engineering, Central South University,
Changsha, China
Full list of author information is available at the end of the article

inferring the GRN only from gene expression data remains
a daunting task due to the small number of available
measurements and the high dimensional, noisy data.

Various methods have been proposed for GRN infer-
ence [8–10], such as correlation and information theory
based methods, Boolean Networks (BNs), Bayesian net-
works, ordinary differential equations (ODEs), and regres-
sion based methods. These approaches can be divided
into two categories with different levels of granularity. The
first category predicts the presence or absence of gene
interactions to give a static network describing only the
topological information, correlation and information the-
ory based methods belong to this category. Other meth-
ods belong to the second category, which predicts the
rate of gene interactions describing both topological and
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dynamic information. ODEs and regression based meth-
ods are two kinds of most widely applied techniques in all
of the classes of GRN inference methods.

In correlation and information theory based methods,
other than the simple Pearson correlation [11] one of
the most favored metrics is mutual information (MI)
[12], which is capable of capturing complex non-linear
and non-monotonic dynamics between pairs or groups of
genes [13, 14]. ARACNE [15] employs Data Processing
Inequality (DPI) to discard indirect interactions from a
triplet of genes. Subsequently based on the same purpose,
conditional mutual information (CMI) [16], local over-
lapped gene clusters based conditional mutual informa-
tion (Loc-PCA-CMI) [17], part mutual information (PMI)
[18] and partial information decomposition (PID) [19] are
proposed to eliminate false positive or indirect regulatory
links as much as possible.

In BNs, the alternative states of a gene are represented
with discrete value 0 (inactive) and 1 (active), the regu-
latory interactions are described by Boolean logic [20].
Probabilistic Boolean Networks (PBNs) [21] brings in
probability into standard BNs to express uncertainty in
the regulatory logic. Typical variants, such as Stochastic
Boolean networks (SBNs) [22], aim to improve the com-
putational performance of PBNs. BNs’s weakness is that
the models only consider genes in discrete states. Thus the
detail information involved in real gene expressions can
not be captured effectively.

Bayesian networks, including traditional Bayesian net-
works [23, 24] and dynamic Bayesian networks (DBNs)
[25], model the gene regulation processes based on prob-
ability and graph theory. Bayesian networks regard regu-
lations of genes as the dependence probabilities between
random variables and learn the optimal structures from
gene profiles. Bayesian networks suffer from considerable
computational overheads, despite recent advances [26]
hence are not applicable to large genome-wide data sets.

ODEs provide an infinitesimal description of the regu-
lation dynamics [27], by relating the rate of change (time
derivative) of a gene to its expression value. Inferelator
[28], S-system model [29–31] are typical approaches in
ODEs. Generally, ODEs based methods are flexible by tak-
ing advantage of large parameters space estimation. As a
result, akin to Bayesian networks tremendous computa-
tion is required to fulfill the task.

Most regression based methods formalize the GRN
inference problem as a feature selection problem and con-
struct the GRN with some ensemble strategy. GENIE3
[32] is recognized as state-of-the-art on some benchmark
datasets [33], which is based on feature selection with
ensembles of random forests. TIGRESS [34] uses least
angle regression (LARS) with stability selection combined
to solve the GRN inference problem. The NIMEFI method
[35] explores the potential of several ensemble methods,

such as GENIE3, Ensemble Support Vector Regression (E-
SVR) and Ensemble Elastic Net (E-EL) [36], and combines
the predictions of these methods under a general frame-
work. bLARS [37] can be viewed as a variant method
of TIGRESS, in which regulation interactions are mod-
eled from a predefined family of functions, and the final
GRN is obtained by a modified LARS algorithm with
bootstrapping.

Recently, data driven dynamic network construction
especially in a physical system is a pretty attractive and
interesting topic. SINDy [38] assumes that there are only a
few important terms that govern the dynamics so that the
equations are sparse in the space of possible functions. It
then uses sparse regression to determine the fewest terms
in the dynamic governing equations required to accurately
represent the data. ARNI [39] is a model-independent
framework for inferring direct interactions in network
dynamical systems, which is relying only on their non-
linear collective dynamics. It solves nonlinear systems of
differential equations via functional decomposition and
expansions in basis functions.

Though bLARS, SINDy and ARNI are proposed in
different areas, they are somehow similar in the basic
thought. Table 1 shows the comparison of these methods
from three different aspects. Formal function decomposi-
tion means whether the method has a formal description
with equations of function decomposition; sparse group
constraints indicates whether the method utilizes sparse
group constraints with the candidate terms, while net-
work based construction indicates if the method aims to
recover a whole network structure. Both SINDy and ARNI
do not intend to address the problem of uncovering the
physical mechanism from network level, but solely from
the unit level instead. Motivated by the fact that none of
the methods covers all the three points, in this study we
propose a new data driven dynamic network construction
method, contributing as the first attempt including above
three aspects systematically. D3GRN casts the regulatory
relationship of each target gene into functional decompo-
sition problem and solves each sub problem in the way
of feature selection, by using the Algorithm for Reveal-
ing Network Interactions (ARNI). The whole network
structure is recovered by the bootstrapping strategy with
the area based scoring method. We compare the perfor-
mance of our method D3GRN to several state-of-the-art

Table 1 Comparison of the related methods

bLARS SINDy ARNI D3GRN

Formal function decomposition × � � �
Sparse group constraints � × � �
Network based construction � × × �
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methods in DREAM4 and DREAM5 gene reconstruc-
tion challenge, and the results show our method performs
competitively in terms of AUPR.

Method
Problem definition
GRNs can be viewed as directed acyclic graphs (DAGs)
if both up-streaming or down-streaming regulatory rela-
tionships among genes are not considered and the self-
regulatory mechanism is ignored. In a DAG, each node
corresponds to a gene and each edge represents a reg-
ulatory relationship between genes. The same as many
other ensemble methods (e.g., [32], [34, 35, 40–42]), which
does not utilize the information of different experimental
conditions (e.g, gene-knockouts, perturbations and even
replicates), we use a general framework for GRNs infer-
ence problem only based on gene expression data. As
the input gene expression data, we consider the measure-
ments for N genes in M experimental conditions. The
gene expression data A is thus defined as follows:

A =[ x1, x2, . . . , xN ] ∈ R
M×N (1)

where xi is a column vector of expression values of the i-th
gene in all the M experimental conditions.

GRN inference methods predict the regulatory links
between genes from gene expression data A. Most meth-
ods provide a ranking list of the potential regulatory links
from the most to the less confidence. Different DAGs can
be subsequently obtained by selecting varying threshold
values on this ranking list. As it is beneficial to the end-
user to explore the network at all sorts of threshold levels
[40], we focus only on the ranking issue in this study.
Of note, the ranking is the standard prediction format
of the “Dialogue for Reverse Engineering Assessments
and Methods” (DREAM) [43] challenges, wherein vari-
ous GRN inference methods have been proposed. Besides,
we do not consider the stability of the obtained networks
from the ranking.

In order to infer a regulatory network from the expres-
sion data A, we compute a weight score Sij for a potential
edge directed from gene i to gene j, where the edge indi-
cates that gene i regulates gene j on expression level and
the weight score Sij represents the strength that gene i
regulates ( including both upstream regulates and down-
stream regulates) gene j.

Network inference with ensemble regression methods
Motivated by the success of ensemble methods based on
feature selection (e.g., GENIE3 [32] and TIGRESS [34]),
the GRN inference problem with N genes can be decom-
posed into N sub problems, where each sub problem can
be viewed as a feature selection issue in machine learn-
ing [44]. More specifically, for each target gene, we wish
to determine the subset of genes which directly influence

it from the expression level. Let A is the gene expression
data defined in Eq. (1), the i-th gene is the target gene,
and we define other candidate regulators with expression
values in M experimental conditions as:

x−i =[ x1, . . . , xi−1, xi+1, . . . , xN ] (2)

and the feature selection problem can be defined as:

xi = F(x−i) + ε, ∀i ∈ {1, 2, . . . , N} (3)

where F is any smooth, typically nonlinear function of the
expression in x−i of genes that are directly connected to
gene i, and ε is the noise term [32, 34]. By aggregating the
N individual gene rankings, we can obtain a global ranking
of all regulatory links in a GRN.

GRN inference with D3GRN
The pseudo code of D3GRN Algorithm 1 is given below.
Aj refers to the jth column of the matrix A, and AI is
the submatrix that contains only the columns in the index
set I of A. Suppose that the input gene expression data
matrix A ∈ R

M×N and the indices of the transcription
factors I ⊂ {1, . . . , N}, as well as the bootstrapping num-
bers and ARNI steps L are given. Then for each target
gene j, and bootstrapping run i, by resampling the expres-
sion matrix A with replacement, the respective values of
the target gene j denoted as y, and the expression val-
ues of the remaining transcription factors X are obtained,
respectively. The ARNI algorithm is invoked to return an
ordered list of selected transcription factors denoted by
SMj. Finally, after all the b bootstrapping runs end, the
matrix SM is passed to the area based scoring method
that assigns a score between 0 and 1 to an edge between
a transcription factor and a target gene. Bootstrapping

Algorithm 1 D3GRN Pseudo Code
Require: A ∈ R

M×N , I ⊂ {1, . . . , N}, |I| = n � M
samples, N genes, I index set of n regulators

Ensure: b, L � Number of bootstrapping runs and ARNI
steps

1: Initialize S ∈ R
N×n � Initialize adjacency matrix of

the GRN
2: Initialize SM ∈ R

n×b � Initialize the selection matrix
3: for i = 1 → b do � For each bootstrapping run
4: A∗ = resample(A) � Resampling with replacement
5: for j = 1 → n do � For each target gene
6: y = A∗

j , X = A∗
I\j

7: SMji = ARNI(y, X, L) � Returns selected
tx-factors with the ARNI algorithm

8: end for
9: end for

10: S = area-score(SM, L, b) � Get the weight score
matrix with the area-score metric

11: Output: S � Output the score matrix
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and area-score techniques will be described later in this
section.

Feature selection with ARNI
For a given unit i and its corresponding differential
equation, ARNI turns to obtain which units j of the net-
work provides direct physical interactions and appears on
the right-hand side of the equation, rather than asking for
details of the interaction functions among those units in
the equation.

In detail, for a dynamic system with N units, ARNI first
decomposes unit i’s dynamic into interaction terms with
other units in the network as [39]:
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where ẋi :=[ ẋi,1, ẋi,2, . . . , ẋi,M] ∈ R
M, f : R

N → R is a
smooth function, the diagonal matrices �i ∈ {0, 1}N×N

and �i
j = 1 if unit j directly acts on unit i, otherwise �i
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j1j2...jK : RK → R represents the (unknown) K-th order
interactions between units jk for all k ∈ {1, 2, . . . , K} and
unit i, the last term εi represents external noise acting on i.

The functions gi
j1j2...jK are not accessible, they can be

decomposed into basis functions h, and we can rewrite
Eq. (4) as [39]:
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where Pk indicates the number of basis functions
employed in the expansion [45], ci

j,p, ci
js,p, ci

jsw,p are the
unknown coefficients. Appropriate basis functions h are
favored to form a relevant function space. For instance,
the class of pairwise basis functions gi

ij(xi, xj) can be in the
form of hi

ij,p(xi, xj) = (xj−xi)p or hi
ij,p(xi, xj) = xp1

i xp2
j , etc..

Note that the framework is intended to reveal units
direct interactions in dynamic systems with time series
data especially. For GRN inference problem especially
from non-time series data, a minor modification can be
applied to Eq. (5). More specially, after replacing the left

hand side time varying term ẋi of the Eq. (5) with a
non-time varying term xi, which is still a vector, and not
accounting for self interaction meanwhile, we can have a
modified equation defined as:
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The transformation from Eq. (5) to Eq. (6) is reasonable,
and in this manner Eq. (6) is then the detail implementa-
tion of Eq. (3). The reconstruction problem then becomes
identifying the non-zero interaction terms in Eq. (6). The
vector of coefficients ci

j,p, ci
js,p, ci

jsw,p are unknown, hinder-
ing the retrieval of �i. It is sufficient to impose a structure
of blocks of zero and non-zero coefficients in Eq. (6), rep-
resenting absent and existing interactions, respectively.
These structured solutions are composed by blocks ci

s of
non-zero entries (representing the non-zero interactions
acting on unit i) distributed along ci. The Algorithm for
Revealing Network Interactions (ARNI) is proposed to
solve this mathematical regression problem with grouped
variables, which is a greedy approach based on the Block
Orthogonal Least Squares (BOLS) algorithm [46]. ARNI
can be viewed as a proper feature selection method in
essence, the same as the well-known sparse group lasso
[47]. Details of the algorithm are explained in the supple-
mentary note of [39].

Bootstrapping
The D3GRN algorithm uses bootstrapping towards to
obtain a more reliable selection of the regulators of a
target gene. Bootstrapping [48] generates multiple sets
of samples from the observed samples by resampling,
and then computes the parameter of interest for each
resampled set. Finally, an estimate of the parameter
in question is obtained by averaging over all of the
resampled sets. In resampling, samples are randomly
selected (uniformly at random, with replacement) from
the observed samples. The bootstrapping technique is
frequently applied to get stable results in the case of
underdetermined problems [49]. In the current D3GRN
implementation, the bootstrapping runs b = 200 times.
In each bootstrapping runs, y and X are chosen uni-
formly at random from resampling with replacement
from the given gene expression data. Subsequently, the
ARNI algorithm is utilized to select the regulators for
each of these bootstrapping runs. Finally, the results
of all bootstrapping runs are aggregated using an area-
based scoring [34] technique. Note that the D3GRN
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algorithm applies bootstrapping only to obtain the high-
confidence regulators for each target gene, and it does
not aggregate over many bootstrapping networks such as
that in [34].

Area-Based scoring
The area-based scoring method [37] is to assign a score
to each candidate regulator with the frequency of its
selection over specified bootstrapping runs. In each boot-
strapping run, the ordered list of the regulators of a target
gene provided by the ARNI is mathematically indepen-
dent. This scoring method aims to exploit the overall
ordering information about the selection of the regula-
tors. This is achieved via the area based scoring method as
follows.

Let φijl be cumulative selection frequency of j-th regu-
lator in the l-th ARNI step, l = {1, . . . , L} and apparently
φijl ∈[ 0, 1]. The average is taken over all bootstrapping
runs, and the score Sij for regulator i of gene i in total L
steps is defined as:

Sij = 1
L

L∑

l=1
φijl (7)

For example, given the values φij1 = 0.3, φij2 = 0.5, and
L = 5, the j-th regulator was selected 30 percent of the
time in the first ARNI step and 20 percent of the time in
the second ARNI step in the 5 steps. Then the cumula-
tive selection frequency φij2 is 50 percent. The score Sij
has a natural interpretation of an area under the cumu-
lative selection frequency curve normalized by the total
area L. Clearly, this score not only takes into account the
overall selection frequency of a transcription factor but
also rewards the selection in the earlier ARNI steps. This
method is less sensitive to the number of ARNI steps than
simple ranking based on overall selection frequency φij.

Results
Input data
GRNs inference has been quite an active area of research
during the past decade. Consequently, a community based
consortium called “Dialogue for Reverse Engineering
Assessments and Methods” (DREAM) [43] is founded.
The DREAM consortium holds international reverse
engineering challenges, providing standardized common
input datasets and performance evaluation metrics to
compare different approaches. The DREAM datasets have
become a standard benchmark in the GRN inference
community and are frequently used to evaluate the per-
formance of new algorithms.

In our experiments, we use six in-silico datasets in total
from both DREAM4 and DREAM5 challenges [50]. The
details of the datasets are summarized in Table 2, in

Table 2 Detail of the datasets

Network #Genes #Regulators #Samples #Verified
interactions

DREAM4 Network 1 100 100 100 176

DREAM4 Network 2 100 100 100 249

DREAM4 Network 3 100 100 100 195

DREAM4 Network 4 100 100 100 211

DREAM4 Network 5 100 100 100 193

DREAM5 Network 1 1643 195 805 4012

which columns stand for the number of genes, the num-
ber of regulators (regulatory genes), the number of sam-
ples (experiments) and the number of verified interactions
respectively. If a dataset is arranged with a matrix, samples
mean rows and genes mean columns. We employ five mul-
tifactorial datasets from DREAM4 challenge, with each
containing 100 genes and 100 samples. The samples in
these five datasets are generated from the original data by
slightly perturbing all gene expression values at the same
time, with the aid of the open-source GeneNetWeaver
software [51]. Hence, each sample in the five datasets
stands for a multifactorial perturbation experiment. Reg-
ulators can be viewed as themselves as lack of regula-
tors provided in these small networks. We also employ
one DREAM5 dataset Network 1, which is also a simu-
lated network generated by GeneNetWeaver. The topol-
ogy of the in-silico network is based on known GRNs
of model organisms. Differently from that in DREAM4,
The transcription factors (TFs) in DREAM5 datasets
are provided as regulators which is a subset among all
the genes.

Performance evaluation metrics
To evaluate the performance of the GRN inference algo-
rithms, we use the area under the Precision-Recall curve
(AUPR) as an evaluation metric. Together with AUPR, the
area under the Receiver Operating Characteristic curve
(AUROC) is also widely adopted for performance evalua-
tion. In general, higher AUROC and AUPR value indicate
more accurate GRN predictions. It should be noticed that,
in sparse biological networks, the number of non-existing
edges (negatives) outweighs the number of existing edges
(positives) significantly, AUPR is more informative than
AUROC [52].

We first compute the numbers of true positive (TP),
true negative (TN), false positive (FP) and false nega-
tive (FN) edges by comparing the regulatory edges in the
gold standard network with the top q edges from the
ranked list output of D3GRN. The Precision-Recall curve
is constructed by plotting the precision TP

TP + FP versus the
recall TP

TP + FN for increasing q, q = 1, 2, . . . , N × (N − 1),
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where N is the number of genes. AUPR is then obtained
by calculating the area under the curve.

Performance of D3GRN
The type of basis function, order K and the number of
basis functions Pk in Eq. (5) play a critical role in the model
decomposition in ARNI. For a large class of dynamic sys-
tems, the polynomial nonlinearities are sufficient [53].
As a reference, for gene regulatory network reconstruc-
tion in our study, the polynomial basis functions are also
employed in the form of hj,p(xj) = xp

j , and the number of
basis functions is denoted as:

Pk =
{

5, k = 1
0, k > 1 (8)

which means implicitly that we do not consider 2-th and
above order interactions for a target gene. In fact, bLARS
[37] only considers one order interaction. We also follow
this way of simplification in this study. In other words,
gene regulation of other genes to a target gene is a mixture
of basis polynomial nonlinearities functions.

There are two parameters in D3GRN, including the
number of bootstrapping runs b and the number of ARNI
steps L. Figure 1 shows the effect of these two parame-
ters by varying the number of ARNI steps and the number
of bootstrapping runs from the DREAM5 Network 1.
Generally, a larger number of bootstrapping runs b can
improve the score with a sacrifice of running time. How-
ever, the performance of D3GRN is quite robust to the
number of bootstrapping runs provided it is larger than
a certain threshold, typically 200 runs. For the ARNI
steps L, one’s intuition indicates that the performance

Fig. 1 AUPR by varying ARNI steps L and the bootstrapping number b
in DREAM5 Network 1

would be optimal if L is close to the true average num-
ber of regulators in the network, which can be obtained
with 2×#Verified interactions

#Genes .
We have conducted two comparison experiments on

DREAM4 and DREAM5 networks, to evaluate our pro-
posed method D3GRN. NIMEFI was implemented with
R, while GENIE3, TIGRESS, and PLSNET were imple-
mented in Matlab. The codes are downloaded from the
URLs provided in the corresponding papers, and we use
the default values of the parameters in each method for
performance comparison. Our proposed method D3GRN
is also implemented in Matlab, which is available at
https://github.com/chenxofhit/D3GRN.

Table 3 lists the results of D3GRN compared with other
GRN inference methods on the five DREAM4 networks.
In the table, the performance of D3GRN is determined
with the bootstrapping number b = 200, the number of
ARNI steps L = 2. D3GRN achieves the best AUPR value
except on DREAM4 Network 2.

Table 4 summarizes the results of D3GRN compared
with other GRN inference methods on the DREAM5
dataset. The result of D3GRN is obtained with parameters
setting as the bootstrapping number b = 200, the number
of ARNI steps L = 5 for Network 1. D3GRN achieves the
highest AUPR value on Network 1.

Discussion and conclusion
It is reasonable to assume that interaction structure is
sparse in GRN inference. Specially, under the case of
“small n large p”, i.e. the small number of available samples
and the large number of genes, sparsity constraints are
widely considered in machine learning. In GRN, the spar-
sity assumption means that every gene has only a small
number of regulators, which seems quite reasonable. The
proposed D3GRN method also follows the same assump-
tion. We evaluate our method on the DREAM4 and
DREAM5 datasets. We hold the view that gene regulation
of other genes to a target gene is a mixture of basis poly-
nomial nonlinearities functions, which is also confirmed
by the performance of our method in some extent. Theo-
retical or experimental analysis of this adoption is left for
future work.

Table 3 Performance comparisons of different GRN inference
methods on the DREAM4 networks in terms of AUPR

Method Network 1 Network 2 Network 3 Network 4 Network 5

GENIE3 0.161 0.154 0.234 0.211 0.200

TIGRESS 0.158 0.161 0.233 0.225 0.233

NIMEFI 0.157 0.157 0.248 0.225 0.241

PLSNET 0.118 0.290 0.202 0.228 0.206

D3GRN 0.175 0.136 0.253 0.255 0.247

https://github.com/chenxofhit/D3GRN


Chen et al. BMC Genomics 2019, 20(Suppl 13):929 Page 7 of 8

Table 4 Performance comparisons of different GRN inference
methods on the DREAM5 Network 1 in terms of AUPR

Network GENIE3 TIGRESS NIMEFI PLSNET D3GRN

Network 1 0.291 0.302 0.298 0.270 0.373

Another important issue is about the computational
complexity of D3GRN. Speaking objectively, ARNI is suit-
able for small physical dynamic network recovery from
the unit level. The Moore-Penrose pseudo-inverse oper-
ation of the BOLS algorithm adopted by ARNI is time
consuming for large biological networks. The bootstrap-
ping strategy in D3GRN makes it worse when dealing with
large scale GRNs inference. Concerning the improvement
space of ARNI, “for” loops in the bootstrapping strategy in
D3GRN are completely parallelizable and can be carried
out simultaneously on multiple cores and even on dis-
tributed machines in a cluster. It also deserves a try with
other methods such as BOMP [46] to replace the BOLS
algorithm, which is also left for future work.

The variability of the performance of the current state-
of-the-art algorithms indicates that there is no algorithm
that performs equally well on all datasets. However, all
of these algorithms can be applied to provide inputs to
a meta-algorithm that takes advantage of “the wisdom
of crowds” to create a consensus and reliable commu-
nity network [54, 55]. Also, the decreasing performance of
all the algorithms from small networks to large networks
perhaps reflects the increasing complexity of the underly-
ing regulatory networks with varying scales. Our method
advances the current state of the art, but there is still a long
way to go before the issue could be treated as completely
solved.

Constructing GRNs from gene expression data is
an important task that can potentially contribute to
our understanding of the basic mechanism such as
diseases and cancers in system biology. Recent data
driven dynamic networks construction methods have
opened new possibilities for us to infer GRNs. In
this study, we propose a data driven dynamic net-
work construction method to infer gene regulatory net-
works, which transforms the regulatory relationship of
each target gene into a functional decomposition prob-
lem and solves it by using the Algorithm for Reveal-
ing Network Interactions (ARNI). However, traditional
data driven dynamic network recovery methods such
as SINDy and ARNI do not have the ability of con-
structing a network. To address this limitation, we
use bootstrapping and area based scoring strategy to
obtain a final GRN. On DREAM4 and DREAM5 bench-
mark datasets, D3GRN performs competitively in terms
of AUPR.
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