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Abstract

Background: Pseudouridine modification is most commonly found among various kinds of RNA modification
occurred in both prokaryotes and eukaryotes. This biochemical event has been proved to occur in multiple types of
RNAs, including rRNA, mRNA, tRNA, and nuclear/nucleolar RNA. Hence, gaining a holistic understanding of
pseudouridine modification can contribute to the development of drug discovery and gene therapies. Although
some laboratory techniques have come up with moderately good outcomes in pseudouridine identification, they are
costly and required skilled work experience. We propose iPseU-NCP – an efficient computational framework to predict
pseudouridine sites using the Random Forest (RF) algorithm combined with nucleotide chemical properties (NCP)
generated from RNA sequences. The benchmark dataset collected from Chen et al. (2016) was used to develop
iPseU-NCP and fairly compare its performances with other methods.
Results: Under the same experimental settings, comparing with three state-of-the-art methods including iPseU-CNN,
PseUI, and iRNA-PseU, the Matthew’s correlation coefficient (MCC) of our model increased by about 20.0%, 55.0%, and
109.0% when tested on the H. sapiens (H_200) dataset and by about 6.5%, 35.0%, and 150.0% when tested on the S.
cerevisiae (S_200) dataset, respectively. This significant growth in MCC is very important since it ensures the stability
and performance of our model. With those two independent test datasets, our model also presented higher accuracy
with a success rate boosted by 7.0%, 13.0%, and 20.0% and 2.0%, 9.5%, and 25.0% when compared to iPseU-CNN,
PseUI, and iRNA-PseU, respectively. For majority of other evaluation metrics, iPseU-NCP demonstrated superior
performance as well.

Conclusions: iPseU-NCP combining the RF and NPC-encoded features showed better performances than other
existing state-of-the-art methods in the identification of pseudouridine sites. This also shows an optimistic view in
addressing biological issues related to human diseases.
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Background
Two decades have seen a significant growth in ‘omics’ sci-
ence - a multidisciplinary scientific field combining base
knowledge of molecular genetics, advanced experimen-
tal techniques, and availability of powerful computing
sources as well as novel computational frameworks to
solve many different biological issues. In recent years, the
explosion of ‘omics’ data has further provided scientists
valuable sources to explore molecular behaviors of vari-
ous biochemical pathways with hopes in seeking better
solutions to human illnesses. ‘Omics’ science covers four
main subfields, including genomics, transcriptomics, pro-
teomics, and metabolomics, which are corresponding to
four expression levels. In this study, we focus on iden-
tifying RNA Pseudouridine sites (RPS) which is one the
hot topic in transcriptomics. Pseudouridine (�) has been
known as one of the most essential RNA modifications
found in both prokaryotes and eukaryotes [1], and this
biochemical event randomly and unexpectedly occurs in
any types of RNA [2]. During the reaction, � synthase
enzyme cleaves a uridine residue from its original nucleo-
side to add a � residue, an isomer of uridine, by rotating
a bonding angle along the N3–C6 axis at 180◦ and finally
form a new bond between the base’s 5-carbon and the 0-
carbon of the nucleoside. Recent studies have claimed the
vital role of this biochemical event in transcriptional activ-
ities due to its contribution in maintaining the functional
structure of tRNA [3, 4] and gene regulation machine
(e.g., spliceosome). Besides, � modification can acceler-
ate RNA-RNA/RNA-protein interaction and spliceosome
assembling [5]. Furthermore, �-incorporated mRNAs can
restrict the RNA-recalled innate immune response and
intensify the activity of mRNAs during the translation [6].
Despite being under investigations for more than half of
the century, neither biological functions nor enzymatic
mechanisms of Pseudouridine have been fully explored.
Hence, looking for new methods to identify RPS may
come up with answers for many undisclosed biological
mysteries.

For years, scientists have introduced different labo-
ratory techniques to identify RPS but they are costly
and required skilled work experience [7–9]. Therefore,
developing advanced and low-cost methods that can
simplify original work is necessary. Recently, the explo-
sion of ‘omics’ data provides huge valuable sources for
knowledge discovery targeting various biological issues
via faster, more powerful, and more affordable strate-
gies taking advantages of computational advances. Sev-
eral in silico studies have been conducted to identify
RPS using machine learning algorithms [10–12]. In 2015,
Li et al. introduced PPUS [13] – a prediction frame-
work combining the Support Vector Machines (SVM)
and features extracted from surrounding nucleotides to
detect � synthase (PUS)-specific � sites (of S. cerevisiae

and H. sapiens). In 2016, iRNA-PseU, another SVM
framework using the modified platform of pseudo-k-
tuple nucleotide composition (PseKNC), was proposed
by Chen et al. [14]. The development of iRNA-PseU
used a benchmark dataset of M. musculus, S. cere-
visiae, and H. sapiens. Two years later, He et al. devel-
oped a different SVM model called PseUI [15] adopting
selected features from five encoding schemes includ-
ing position-specific dinucleotide propensity (PSDP),
position-specific nucleotide propensity (PSNP), pseudo
dinucleotide composition (PseDNC), nucleotide compo-
sition (NC), and dinucleotide composition (DC). Most
recently, Tahir et al. introduced iPseU-CNN and demon-
strated that using deep neural networks can improve
performances in identifying RPS [16]. Although these
models have provided good performance, the hunt for
models of better performance and adequate complexity
in biomedical field is an ongoing research that is always
imperative.

In this study, we introduce iPseu-NCP, a simpler but bet-
ter computational framework, for identifying RPS. iPseu-
NCP is developed using the Random Forest (RF) and
nucleotide chemical properties (NCP) feature. The com-
bination between a powerful tree-based ensemble learn-
ing algorithm and a simple but effective encoding scheme
massively accelerates computing speed as well as reduces
model complexity. To fairly assess the model performance
between iPseu-NCP and other methods, the benchmark
dataset introduced in Chen et al.’s study [14] was used for
model development and evaluation.

Results and Discussions
Sequence Analysis
To compare the biological patterns among the three devel-
opment sets (H. sapiens, S. cerevisiae, and M. musculus),
sequence logo visualization using Two Sample Logo with
independent t-test (p < 0.05) [17] was used. A first idea of
displaying consensus sequences started from Schneider et
al. [18] when they wanted to visualize common biologcal
patterns in a set of aligned sequences. Each sequence-
logo plot carries information about (a) the most frequent
nucleotides counting from the top of each particular posi-
tion, (b) the occurrence frequency of each nucleotide
indicated by the proportional height of the letter, and (c)
the significance of each particular position adjusted by
height of the whole stack of letters.

For each development set in this study, a significance
testing for the difference between positive sequences (or
�-site holders) and the negative sequences (or non-�-
site holders) was performed. The plot gives information
about two groups of nucleotides found in the positive set
with the negative set is used as a base for comparison.
A nucleotide which is frequently found in a particular
position of many positive samples is termed as ‘enriched
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nucleotide’. A nucleotide which is rarely found in a par-
ticular position of many positive samples is termed as
‘depleted nucleotide’. Based on the occurrence frequencies
a nucleotide at a particular position, t-test was performed
to find whether the certain occurrence of a nucleotide
is random or directional assuming that four types of
nucleotide randomly appear and their distributions in
the positive set and negative set are identical. It can be
observed that guanine (G) in H. sapiens and S. cerevisiae
are significantly enriched at multiple positions with 17.6%
and 22.9%, respectively. For H. sapiens, uracil (U) and ade-
nine (A) are two major depleted nucleotides while for
S. cerevisiae, these occurrence frequencies seem to be
equally shared by uracil (U), adenine (A), and cytosine (C).
In terms of M. musculus, adenine (A) is the first enriched
nucleotide at the position right next to the � site (position
numbered 12), followed by cytosine (C) at the position
numbered 13, and uracil (U) at the position numbered
9, 12, and 13. On the other hand, regarding this species,
adenine (A) is the main significantly depleted nucleotide
at multiple positions. At the position numbered 13 of
sequences in H. sapiens and M. musculus, a same biolog-
ical pattern can be observed and this fact somehow may
indicate close evolutionary distance between H. sapiens
and M. musculus compared to H. sapiens - S. cerevisiae
pair as well as M. musculus - S. cerevisiae pair (Fig. 1).

Comparative screening on Encoding Schemes
Although NCP is a relatively simple encoding scheme, its
uniqueness comes from the specific chemical nature of
each type of ribonucleic acid. Based on three chemical
properties, there is no ribonucleic acid sharing more than
one property with others. Therefore, NCP-encoded fea-
tures extracted from an RNA sequence contain sufficient
structural information for a binary classification problem.
For a comparison, two other encoding schemes includ-
ing the pseudo-k-tuple nucleotide composition (PseKNC)
[19] and the composition of k-spaced nucleic acid pairs
(CKSNAP) [20] were also tested with our RF models in
such the same way as NCP (Fig. 2). These two encoding
schemes have been used in a number of research works,
especially, PseKNC was the encoding scheme in both
iRNA-PseU and PseUI. The 5-fold cross-validation results
in Table 1 show that NCP outperformed the other two
encoding schemes in all the three development datasets
and in almost all the evaluation metrics, especially accu-
racy and MCC. This confirms the effectiveness of NCP
when using with the RF classifier in identifying RPS.

Feature Importances
Figure 3 presents the feature importance ranking for the
RF models. Since each sequence in H, M, and S develop-
ment set has exactly 21, 21, and 31 nucleotides, respec-
tively. The number of generated NCP features are 3 × n

= 63, 63, and 93, respectively, where n is the sample
length. The three central features of each sample (fea-
tures numbered 30, 31, and 32 for H and M set, and
features numbered 45, 46, and 47 for S set) are zero-
important because the corresponding nucleotide is always
‘U’ leading to a non-specificity in distinguishing these
samples from each other. For H set, feature numbered 35
belonging to the corresponding nucleotide numbered 17
is ranked dominantly higher than other features. Some
features such as 2, 28, 41, 53, and 57 are also slightly
higher than the rest of the features but not significant as
well as disorderedly distributed. With regard of S set, fea-
tures numbered from 36 to 44 and from 48 to 52 which
are corresponding to nucleotides numbered 13, 14, 15,
17, and 18 are ranked as important features compared to
the others. The importance of these other features leaps
down to the two ends of the sequence. For M set, there
is a completely reverse trend compared to the other sets
with most of the features (higher than 95%) being consid-
ered as distinguishingly non-essential. Features numbered
35 and 36 of the corresponding nucleotides numbered 17
and 18 are ordered as far more important than the others.
From the data distribution of the generated features, the
importance of near nucleotides surrounding the central
‘U’ is confirmed with clear evidence and the importance
of nucleotides decreases when their distances from the
central ‘U’ increase.

Cross-Validation and Model Evaluation
Figure 4 describes the process of finding optimal
values for two hyper-parameters max_depth and
max_features. For dataset H, max_depth of 6 and
max_features of 0.70 came up with better accuracy
compared to the others, while for datasets S and M, the
hyper-parameter pair (max_depth, max_features)
are (6, 0.75) and (5, 0.40), respectively. In comparison
between our method and the state-of-the-art methods
using 5-fold cross-validation, significant improvement in
model performance was noticed besides some limita-
tions that need to be addressed. For dataset H, iPseU-
CNN of Tahir et al. remains higher than our meth-
ods as well as the other previous ones. For dataset S,
except specificity, our method has come up with remark-
able results compared to the others while for dataset
M, our method and iPseU-CNN share equal values of
accuracy and MCC besides the considerable increase in
specificity (Table 2).

Comparative Analysis on Independent Datasets
To fairly assess the model performance, we compare
our method with existing state-of-the-art methods. Since
the independent datasets (H_200 and S_200) have only
sequence data from H. sapiens and S. cerevisiae, com-
parison among these methods was not taken account
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Fig. 1 Sequence characteristics of ψ sites across the three species, including (a) H. sapiens, b S. cerevisiae, and c M. musculus. Sequence analysis using
logo representations were created by Two Sample Logo with t-test (p < 0.05)

of M. musculus. For H_200, our iPseU-NCP model pro-
duced a significant improvement in accuracy, speci-
ficity, and MCC by about 7.0%, 30.0%, and 20.0% com-
pared to those of iPseU-CNN - the current best method
developed by Tahir et al. while the sensitivity of our
model is only about 10.0% lower than that of iPseU-
CNN. For S_200, our results indicate a considerable
performance growth in accuracy, sensitivity, and MCC
by about 2.0%, 6.0%, and 6.5% compared to those of
iPseU-CNN. In fact, although the specificity of iPseU-
NCP is numerically lower than iPseU-CNN, this differ-
ence is absolutely ignorable because it is not statistically
different.

According to the experimental results, significant
growths in MCC for the two independent test sets
show that iPseU-NCP remarkably improved the model
stability and performance compared to other previ-
ous methods. For H_200, in comparison with iPseU-
CNN, PseUI, and iRNA-PseU, the MCC of iPseU-
NCP considerably increased by about 20.0%, 55.0%, and
109.0%, respectively. For S_200, the MCC of iPseU-
NCP intensively increased by about 6.5%, 35.0%, and
150.0% when compared to iPseU-CNN, PseUI, and
iRNA-PseU, respectively. This improvement is highly
meaningful in model construction to ensure the reli-
ability in binary classification problems [21]. Besides,

MCC is supposed to be more informative than accu-
racy because it considers the proportion of all the four
components (TF, TN, FP, and FN) of the confusion
matrix [21].

On the other hand, in terms of the accuracy when tested
on the two independent test sets (H_200 and S_200),
iPseU-NCP also archived better performance with a suc-
cess rate boosted by 7.0%, 13.0%, and 20.0% and 2.0%,
9.5%, and 25.0% compared to iPseU-CNN, PseUI, and
iRNA-PseU, respectively. Testing on H_200 also resulted
in the improved specificity of iPseu-NCP by about 28.0%,
15.0%, and 20.0% compared to iPseU-CNN, PseUI, and
iRNA-PseU, respectively while testing on S_200, the sen-
sitivity of iPseu-NCP raised by about 7.0%, 12.0%, and
16.0% compared to iPseU-CNN, PseUI, and iRNA-PseU,
respectively (Table 3). Briefly, the essential growth in both
accuracy and MCC for dataset H indicates better model
fitness to address the molecular genetics issues related to
human beings.

Software Availability
To support experimental scientists to identify RPS, we
developed an online publicly web server for iPseU-NCP
at https://github.com/ngphubinh/iPseU-NCP with a user-
friendly interface (Fig. 5). Users can use iPseU-NCP to
identify RPS in an RNA sequence without consideration

https://github.com/ngphubinh/iPseU-NCP
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Fig. 2 The processing steps in the proposed framework

in dealing with mathematical details. At first, users fill the
query box with an RNA sequence in the FASTA format
along with one of three options corresponding to three
species H. sapiens, S. cerevisiae, and M. musculus. Sec-
ondly, for each ‘U’ in the RNA sequence, a sliding window
is placed given that ‘U’ is located in the central position
of the window. The length of the window is 21, 31, and
21 for the three species: H, M, and S, respectively. This
step generates several U-central fragments which are then
converted into NPC-encoded features. Then the feature

set of each U-central fragment is submitted to our iPseU-
NCP model for identifying RPS. After the server finishes
processing, the input RNA sequence is showed with all
possible RPS which are displayed in red color.

Conclusion
In this study, we proposed iPseU-NCP – an efficient
computational framework combining the RF and NPC-
encoded features to identify RPS. iPseU-NCP has sig-
nificantly better performance than other state-of-the-art
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Table 1 Comparative analysis on our RF model using different
encoding schemes under 5-fold cross-validation on different
development datasets

Dataset Encoding Scheme ACC (%) SN (%) SP(%) MCC

H_990

PseKNC 59.39 69.49 49.29 0.19

CKSNAP 60.00 83.84 36.16 0.23

NCP 62.92 58.79 65.05 0.24

S_628

PseKNC 58.76 51.91 65.61 0.18

CKSNAP 60.03 56.37 63.69 0.20

NCP 69.59 77.07 62.10 0.40

M_944

PseKNC 56.57 44.49 68.64 0.14

CKSNAP 57.52 52.54 62.50 0.15

NCP 71.82 67.37 76.27 0.44

Values which are significantly higher than the others are in bold

methods. In particular, iPseu-NPC can robustly and effec-
tively address biological classification problems as evi-
denced by significant increases in most of the evaluation
metrics, especially for accuracy and MCC. Our proposed
method also shows a better-fitted application to address
molecular genetics issues related to human beings as
shown in the experimental results for all the development
datasets and the independent test datasets.

Methods
Benchmark Dataset
The benchmark dataset comprises of three different
development (or model training) sets and two differ-
ent independent test sets corresponding to three species
including S. cerevisiae (denoted as S), M. musculus
(denoted as M), and H. sapiens (denoted as H). This
dataset was collected from Chen et al.’s study [14]. S_628,
M_944, and H_990 are the three development sets with
628, 944, and 990 samples, respecitvely. S_200 and H_200

Fig. 3 Feature importances of the three predictive models for (a) H. sapiens, b S. cerevisiae, and c M. musculus
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Fig. 4 Heatmap indicating the 5-fold cross-validation accuracy with different combinations of max_depth and max_features across the three
development datasets, including a H_990, b S_628, and c M_944
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Table 2 Comparative analysis between results of the proposed
method and other studies using 5-fold cross-validation

Dataset Model ACC (%) SN (%) SP (%) MCC Method

H_990

iRNA-PseU 60.40 61.01 59.80 0.21 Chen et al., 2016

PseUI 64.24 64.85 63.64 0.28 He et al., 2018

iPseU-CNN 66.68 65.00 68.78 0.34 Tahir et al., 2019

iPseU-NCP 62.92 58.79 65.05 0.24 Ours

S_628

iRNA-PseU 64.49 64.65 64.33 0.29 Chen et al., 2016

PseUI 65.13 62.74 67.52 0.30 He et al., 2018

iPseU-CNN 68.15 66.36 70.45 0.37 Tahir et al., 2019

iPseU-NCP 69.59 77.07 62.10 0.40 Ours

M_944

iRNA-PseU 69.07 73.31 64.83 0.38 Chen et al., 2016

PseUI 70.44 79.87 70.34 0.41 He et al., 2018

iPseU-CNN 71.81 74.79 69.11 0.44 Tahir et al., 2019

iPseU-NCP 71.82 67.37 76.27 0.44 Ours

Values which are significantly higher than the others are in bold. Data excerpted
from [16]

are the two independent test sets with 200 samples for
each set. In H_990 and M_944, each RNA sample has
21 nucleotides while in S_628, each RNA sample has
31 nucleotides. Positive and negative samples are both
specified with a uridine located at the central position
of the sequence. However, the central uridines of the
positive samples are confirmed with feasibility of being
pseudouridylated while those of the negative samples are
confirmed with infeasibility of being pseudouridylated
(Table 4).

Overview of the Method
Figure 1 summarizes the steps involved in our study.
For each of the three development sets (H_990, S_628,
and M_944), we built a RF model using the NCP fea-
tures extracted from RNA sequences stored in FASTA
files. The optimal hyper-parameters of each model were

Table 3 Comparative analysis between results of the proposed
method and other studies on the independent test sets

Dataset Model ACC (%) SN (%) SP (%) MCC Method

H_200

iRNA-PseU 61.50 58.00 65.00 0.23 Chen et al., 2016

PseUI 65.50 63.00 68.00 0.31 He et al., 2018

iPseU-CNN 69.00 77.72 60.81 0.40 Tahir et al., 2019

iPseU-NCP 74.00 70.00 78.00 0.48 Ours

S_200

iRNA-PseU 60.00 63.00 57.00 0.20 Chen et al., 2016

PseUI 68.50 65.00 72.00 0.37 He et al., 2018

iPseU-CNN 73.50 68.76 77.82 0.47 Tahir et al., 2019

iPseU-NCP 75.00 73.00 77.00 0.50 Ours

Values which are significantly higher than the others are in bold. Data excerpted
from [16]

determined through an exhaustive search over a spec-
ified grid of parameter values for the RF classifier
using 5-fold cross-validation. The model performance
corresponding to the optimal hyper-parameters was
recorded as the 5-fold cross-validation performance on
the development set. The model was retrained using
the best hyper-parameters and then was tested with
an independent test set if possible (H_200 or S_200)
to for comparison with other existing state-of-the-art
methods.

NCP-encoding Scheme
The nucleotide chemical property (NCP) was used as the
encoding scheme to convert each sequence sample into a
3 × n-dimensional vector where n is the sequence length.
An RNA sequence is formed of four different types of
nucleotides, including adenine (A), guanine (G), cytosine
(C), and uracil (U), which have distinct chemical struc-
tures and bonding. Guanine and adenine belong to the
purine group with double fused aromatic rings while cyto-
sine and uracil belong to the pyrimidine group with a
single aromatic ring only. Both groups have their aro-
matic cyclic structures connecting to a sugar molecule.
Besides, adenine and cytosine share the amino group as
opposed to guanine and uracil with the keto group. On
the other hand, the number of hydrogen bonds formed
between adenine and uracil is smaller than that between
guanine and cytosine. Therefore, the classification stan-
dard for these four kinds of nucleotides with three dif-
ferent groups of chemical properties has been set in a
binary manner. A, C, G, and U are expressed by the com-
bined coordinates as [1, 1, 1], [0, 1, 0], [1, 0, 0], and
[0, 0, 1], respectively, based on the chemical properties
(Table 5).

Random Forest Classifier
The Random Forest (RF) algorithm [22] is an ensemble
learning method that combines the “bagging" idea [23]
and random selection of features [24] to construct mul-
tiple decision trees at training time, where the trees are
slightly different from each other, and use the mode of
the classes or the mean prediction of the individual trees
as the output of a classification or a regression prob-
lem, respectively. Random forests address the drawback
of decision trees: they tend to overfit the training data.
We used the RF algorithm to train our predictive models
using the NCP features extracted from RNA sequences in
the development sets and then tested the models on the
independent test sets. The number of trees in each for-
est was fixed at 200, and there were two hyper-parameters
which were determined from an exhaustive search over
a specified grid of parameter values using 5-fold cross-
validation on each development set. They were the maxi-
mum depth of the tree (max_depth) and the number of
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Fig. 5 A snapshot of the iPseU-NCP web-server

features (max_features) to consider when looking for
the best split at each node of the tree. For each dataset,
we searched for the best max_depth from the range 2
to 6, and the best max_features were determined from
20% to 80%, with step size of 5%, of the total number of
features, i.e., the length of each NCP vector.

Table 4 Data distribution of the training sets and the
independent test sets

Dataset Number of samples Species Group

Possitive Negative Total

S_628 314 314 628 S. cerevisiae

Training (Development)M_944 472 472 944 M. musculus

H_990 495 495 990 H. sapiens

S_200 100 100 200 S. cerevisiae
Independent Test

H_200 100 100 200 H. sapiens

Model Evaluation
To assess the model performance, several standard met-
rics comprising of Matthews’s correlation coefficient
(MCC), Accuracy (ACC), Specificity (SP), and Sensitivity
(SN) were adopted. TP, FP, TN, and FN stand for True
Positive, False Positive, True Negative, and False Negative
values, respectively. The mathematical formulas of these

Table 5 NCP-encoding scheme

Chemical property Class Binary Class Nucleotides

Cyclic Structure
Purine 1 A, G

Pyrimidine 0 C, U

Functional Group
Amino 1 A, C

Keto 0 G, U

Hydrogen Bond
Weak 1 A, U

Strong 0 C, G
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evaluation metrics are expressed below.

Sensitivity (SN) = TP
TP + FN

(1)

Specificity (SP) = TN
TN + FP

(2)

Accuracy (ACC) = TP + TN
TP + TN + FP + FN

(3)

MCC = TP × TN − FP × FN√
(TP+FP)(TP + FN)(TN + FP)(TN + FN)

(4)
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