Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198
https://doi.org/10.1186/s12864-020-6611-3

BMC Genomics

RESEARCH Open Access

Comparing copy-number profiles under
multi-copy amplifications and deletions

Garance Cordonnier! and Manuel Lafond?”

Check for
updates

From 17th RECOMB Satellite Conference on Comparative Genomics
Montpellier, France. 1-4 October 2019

Abstract

Background: During cancer progression, malignant cells accumulate somatic mutations that can lead to genetic
aberrations. In particular, evolutionary events akin to segmental duplications or deletions can alter the copy-number
profile (CNP) of a set of genes in a genome. Our aim is to compute the evolutionary distance between two cells for
which only CNPs are known. This asks for the minimum number of segmental amplifications and deletions to turn one
CNP into another. This was recently formalized into a model where each event is assumed to alter a copy-number by
1 or —1, even though these events can affect large portions of a chromosome.

Results: We propose a general cost framework where an event can modify the copy-number of a gene by larger
amounts. We show that any cost scheme that allows segmental deletions of arbitrary length makes computing the
distance strongly NP-hard. We then devise a factor 2 approximation algorithm for the problem when copy-numbers
are non-zero and provide an implementation called cnp2cnp. We evaluate our approach experimentally by
reconstructing simulated cancer phylogenies from the pairwise distances inferred by cnp2cnp and compare it against
two other alternatives, namely the MEDICC distance and the Euclidean distance.

Conclusions: The experimental results show that our distance yields more accurate phylogenies on average than
these alternatives if the given CNPs are error-free, but that the MEDICC distance is slightly more robust against error in
the data. In all cases, our experiments show that either our approach or the MEDICC approach should preferred over

the Euclidean distance.

Keywords: Copy-number evolution, Algorithms, Cancer phylogenies, NP-hardness

Background

Cancer is widely recognized as an evolutionary pro-
cess during which cells within a population accumulate
aberrant somatic mutations and replicate indefinitely [1].
These cells are divided in subpopulations, called clones,
that share common mutation traits and form tumors. A
natural problem that arises is to reconstruct the evolu-
tion of a set of clones within a tumor. This question has

*Correspondence: manuel.lafond@USherbrooke.ca

’Department of Computer Science, Université de Sherbrooke, Sherbrooke,
Canada

Full list of author information is available at the end of the article

K BMC

recently led to the development of several phylogenetic
algorithms tailored for cancer evolution. Most of them use
either information of single nucleotide variants obtained
from bulk [2-5] or single-cell [6—8] sequencing data, or
copy-number alterations [9-13] (usually in the context of
single-cell data). We refer the reader to [14] for a survey of
these methods.

In this work, we are interested in the problem of infer-
ring the minimum number of copy-number alteration
events that explain how a cell evolved into another. In
tumors, several events can make the copy-number of a
gene different from the normal diploid two-copy state,

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-6611-3&domain=pdf
mailto: manuel.lafond@USherbrooke.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198

thereby creating copy-number aberrations. As an exam-
ple, the breakage—fusion—bridge (BFB) phenomenon [15]
occurs when a region including a telomere breaks off a
chromosome. During replication, two sister chromatids
have unterminated ends and they fuse, leading to what
is essentially a chromosome portion concatenated with
a reversed copy of itself (see [15, 16] for a more thor-
ough explanation). Afterwards, the centromeres of the
fused chromatids get pulled in opposite directions, lead-
ing to another breakage. This BFB cycle repeats until
the chromatids receive a telomere (usually after translo-
cation). Each BFB event potentially doubles the copy-
number of a gene, and since these events are known to
occur in cycles, a gene copy-number may become sig-
nificantly higher than normal (i.e. more than double)
in a short evolutionary time span. Other examples of
events include focal deletions [17, 18] or missegregation of
chromosomes [19].

Desper et al. [20] were among the first to consider
copy-number aberrations for phylogenetic reconstruc-
tions, using comparative genomic hybridization (CGH)
data to reconstruct a mutation hierarchy. In [21], Liu et
al. propose a distance-based approach based on CGH
data to infer multi-cancer phylogenies. Single-cell phy-
logenetics then gained widespread attention in an influ-
ential paper of Navin et al. [9]. The authors applied
single-nucleus sequencing on a breast cancer tumor,
obtained the copy-number profile (CNP) of several cells,
each represented as a vector of integers, and used
the Euclidean distance to compare two CNPs. Later,
Schwarz et al. [22] pointed out that a single event can
amplify or delete large portions of a chromosome, thereby
altering the copy-number of several genes and making
the Euclidean distance overestimate the true number
of events.

The authors proposed the following methodology to
compare two CNPs. First, assuming diploid genomes, the
copy-number for the two alleles of each gene (which
can differ) is inferred from sequencing data. The corre-
spondence between the copy-numbers and the alleles is
unknown, so a phasing step must be applied. This consists
of assigning each copy-number to one of the two alleles
(this is done under a minimum-evolution principle, see
[22] for details). After this step, each chromosome can be
represented as a pair of CNPs, and chromosomes from
two cells can be compared by computing the distances
between the corresponding alleles. The distance proposed
is the minimum number of segmental amplification and
deletion events required to transform a given CNP into
another.

In this work, we focus on the latter step. We assume
that the CNP inference and the phasing steps have been
performed, and must find a most parsimonious sequence
of events explaining two given CNPs. This is analogous

Page 2 of 12

to classical rearrangements problems [23], but the main
novelty (and difficulty) of CNP comparison is that only
copy-numbers are known, not the ordering of genes.
In [22], Schwarz et al. introduced the MEDICC model,
which approximates segmental events on a chromosome
by events that alter a subinterval of a CNP by +1 or -1.
Figure 1 shows an example turning a CNP u into another v
(under our model where any amount of change is allowed).
The problem of computing the minimum number of
subinterval alterations to transform one CNP into another
was solved in exponential-time in [22] by modeling CNP
events with a finite-state transducer. Zeira et al. [24] gave
a linear time algorithm, using a clever trick for comput-
ing each row of a quadratic-size dynamic programming
table in constant time (similar to the techniques used
in [25]). In [11], the large phylogeny problem under this
model is shown NP-hard, though solvable with an ILP.
They also present the copy-number triplet problem, which
when given two CNPs u# and v asks for a CNP whose sum
of distances to # and v is minimized. The problem can
be solved in pseudo-polynomial time O(#>N”), where 7 is
the CNP size and N the maximum copy number. Other
distances and phylogenetic approaches are discussed
in [10-13, 26, 27]

Our results. The above CNP comparison frameworks
limit events to alter copy-numbers by 1 or —1. As we
exemplified with BFB, several copies of a gene can be
affected by a single event. Moreover, the MEDICC soft-
ware has a copy-number limit of 4, making it inappropri-
ate for genes attaining copy-numbers in the tens, twenties
or even more, as has been reported for e.g. the MYC
or EGFR genes [28-30]. In this work, we address these
limitations by generalizing the Copy-Number Transfor-
mation problem defined in [22, 24]. We define a distance
dr(u,v) between two CNPs u# and v which assigns a
weight of f(c,§) to an event that alters a copy-number of
¢ by an amount of §. We show that computing dr(u, v)
becomes strongly NP-hard whenever we allow deletions
of any amount at unit cost. In the context of our prob-
lem, “strongly” means that our hardness holds even if N,
the maximum value in # and v, is polynomial in #, the
number of elements in our CNPs. This is especially rele-
vant, given that the MEDICC model was initially solved in
time O(nN) and that the copy-number triplet problem can
be solved in time O(#*N”). Our result implies that such
pseudo-polynomial time algorithm are impossible in our
case unless P = NP. We then show that if any amount of
change is permitted across an interval at unit cost, then a
simple linear-time factor 2 approximation algorithm can
be devised. We validate our approach by reconstructing
simulated phylogenies using neighbor-joining (NJ), and
compare them with the MEDICC distance and Euclidean
distance. We perform our experiments on error-free
data and noisy data (where the true copy-numbers

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198

Page 3 0of 12

u= (3,5,3,1,4,2)
e1 = (2,5,-1) N

w = (3,4,2,0,3,2)
e2=(1,2,-2) -2

u, = (1,2,2,0,3,2)
e3 = (3,6,2) ¢ +2

v=(1,2,4,0,5,4)

Fig. 1 Left: two CNPs u and v, represented as integer vectors. The CNP & can be turned into v with three events: two deletions and one
amplification. Right: a visual representation of the difference vectors obtained at each step. Note that a 0 remains a 0 even after amplification

EpEE

Ug —V:

are altered by a random amount). Using a variety of sim-
ulation papameters, we show that both our distance and
the MEDICC distance achieve significantly better accuracy
than the Euclidean distance. Our distance is slightly more
accurate on error-free data, and the MEDICC distance is
slightly more tolerant to error.

Results

We first provide the required preliminary notions
required to state our theoretical results. We then show
that computing our copy-number distance is strongly NP-
hard, and present our approximation algorithm. Finally,
we present our experimental results on reconstructing
simulated phylogenies.

Preliminary notions

Throughout the paper, we use the interval notations [n] =
{1,2,...,n} and [s,£]= {s,s + 1,...,t}. Given a vector
u = (u1,...,uy) of nintegers and i €[n], we will always
write u; for the value at the i-th position of u. If 4; = 0,
then i is called a null position. We will assume that every
vector u of dimension # has special values uy = u,11 = 0.
We denote by #~{# the vector obtained by removing posi-
tion i €[n], ie. ™ = (uy, ..., i1, tiv1,. . un). v
is a vector of the same dimension, then u — v = (11 —
Visewor Uy — Vy).

We assume that a reference chromosome is partitioned
into contiguous subsequences, called positions, each num-
bered from 1 to n. A copy-number profile (CNP) is a vector
u = (uy,...,u,) of non-negative integers representing
the copy-number of each position in a clone. We con-
sider amplification and deletion events, which respectively
have the effect of increasing and decreasing the number
of copies in a chromosome. As in [22, 24], we assume that
events affect a set of positions that are contiguous in the
reference chromosome.

An event is a triple e = (s,£,8) where 1 < s <
t < mnand § € Z \ {0}. Here the [s,¢] interval depicts
the set of affected positions, and § is the amount of

change. The event e is an amplification when § > 0
and a deletion when § < 0. A copy-number can-
not drop below 0 and cannot increase from a 0 to
another value (e.g. new genes cannot be created once
completely lost). Applying event e = (s,£,8) on a
CNP u yields another CNP u' = (u},...,u;,) with,
fori e[n],

, max(u; + 6,0)

14

ifi €[s,t]andu; > 0

U; otherwise

We denote by u#(e) the CNP obtained by applying event
e on a CNP u. More generally, if E = (e1,...,ek)
is an ordered sequence of events, we write u(E) =
uler){ez) ... (ex) to denote the CNP obtained by applying
each event of E in order. We may also write u{e; .. .ex)
instead of u{(ey,...,er)). Given two CNPs u# and v of
dimension #, we say that E transforms u into v if u(E) = v.

We will often use the difference vector of u and v, and
usually denote w := u — v. The representation of w as
in Fig. 1 on the right provides the following intuition: if
u(E) = v, then the events of E need to “squish” the values
of w to 0 to make u equal to v (ensuring that no value u; of
u drops to 0 in the process unless v; = 0).

Minimum cost transformations

Given two CNPs # and v, our goal is to find a minimum-
cost sequence E that transforms u into v. In [22, 24], the
cost of an event (s, £, 8) is |8|. Here, we propose a general-
ization by defining a cost function f : N x Z — N> that
assigns a positive cost to altering a copy-number ¢ by an
amount of §. That is, if we apply (s, ¢,) on u, each posi-
tion i €[s, £] has its own corresponding cost f (1;, §), which
could be interpreted as the plausibility of going from copy-
number u; to max(u; + 8,0). We then define the cost
costy(u, e) with respect to f of applying e = (s,£,8) on u as
the maximum cost within [s, £], i.e.

costy(u, e) = max f(u;, §)
ic[s,t]

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198

The events proposed in the MEDICC algorithm of
Schwarz et al. can be decomposed into § events of unit
cost. This can be modeled under our framework with a
function mdc defined as mdc(u;, §) = 1if § € {—1,1} and
mdc(u;, §) = oo otherwise. Alternatively, one could state
that a position with copy-number #; can hardly more than
double in a single event (assuming that amplifications are
duplications), but that deletions can suppress any number
of copies. We call this the doubling function dbl, defined
as dbl(u;,8) = 1if u; + 68 < 2u; and dbl(u;,8) = oo
otherwise.

Finally, the most permissive cost function any allows any
movement without constraint: simply define cost(u;, §) =
1 for any § € Z. This can, for instance, be used to model
succession of events that can potentially amplify copy-
numbers above their double in a short time span — an
example of this being BFB cycles.

In this paper, we mostly analyze the any function for its
simplicity, but will sometimes use the dbl function for its
relevance. Given two CNPs u and v and a cost function f,
the cost of a sequence of events E = (ey,...,ex) satisfy-
ing u(E) = v is equal to the sum of the cost of applying
successive events of E on u, i.e.

costs(u, E) = costy(u, e1) + costy(uler), e2) + . ..

+ costr(uler, . .., ex—1), ex)

If costy(u,E) < costr(u,E') for any other sequence E’
satisfying u(E’) = v, then E is called optimal. The f-
distance between u# and v, denoted df(u, v), is the cost
of an optimal sequence of events transforming # into
v. Observe that this “distance” is not symmetric (hence
the use of double-quotes). For instance, if # = (1,1)
and v = (0,0), then d,;, . (u,v) 1 but d,q.(v,u) is
undefined since v cannot be transformed into u. We will
therefore usually assume that # does not have any null
position. We note here that the median distance, defined
as minyey (dr(w,u) + dg(w,v)) (where V ranges over
7"), is symmetric for all the functions mentioned above.
However, no efficient algorithm is known for any median
distance. Our problem is the following.

The CNP-transformation problem:

Given: a source CNP u, a target CNP v, a cost function

Page 4 of 12

Question: is dr(u,v) < k?

We say that f is a umnit-cost function if f(c,8) €
{1,000} for any ¢ and § (e.g. the functions mdc, dbl and
any). A cost function f is called deletion-permissive if
costy(u;,) = 1 for any u; and any § < 0, i.e. there is no
particular constraint on deletions. We will mainly focus
deletion-permissive functions, the rationale being that
unlike duplications, deletions could suppress an arbitrary
number of copies.

General properties

Before proceeding with our results on computing f-
distances, we present some results of general interest that
will be useful later on.

Proposition 1 For any two CNPs u and v of the same
dimension, any position i €[n] and any cost function f,
dy(u,v) > dy(u™ 0, vl

We omit the proof details. The idea is that given a
sequence of events E transforming # into v, we can apply
E on u~'¥ by ignoring position i when it is affected. A
sequence of events E is called amp-first if all amplifica-
tions appear before all deletions. An amp-first reordering
of a sequence E is an amp-first sequence E’ that contains
the same events as E. Notice that if E has a amplifications
and d deletions, then there are a! d! amp-first reorderings
of E.

Proposition 2 Let u and v be two CNPs with no null
positions. If a sequence E satisfies u(E) = v, then any amp-
first reordering E' of E satisfies u(E') = v.

Proof Denote E = ((s1,%1,81),- .., (Sk, tk, 8x)). For any
position i, the sum lele 8r does not change even if we
reorder the events in E, so u; should still become v; after
reordering the event and applying them on u. The only
danger is that a position drops to 0 since v has no null
position, but this cannot happen if all amplifications are
moved in front of E. O

Given a CNP w of length #, an interval [a, b] is a stair-
case of wif 0 < w,; < w41 < ... < wp. The length of
the staircase [a, b] is b — a + 1. Figure 2 depicts a staircase
of length 4. The next lemma can be useful to obtain quick

f and an integer k;
+o{l—‘_ﬂj

+s —
+of +8{

3 8 14 22 13 5

deletion omitted)

Fig. 2 A visual representation of the difference vector w = u — v leading to a staircase of length 4 in interval [1,4]. For instance, setting
v=(1,1,1,1,1) and u = (4,8,15,23, 14) would lead to the situation shown above. A smooth deletion sequence turning z into v is shown (last

00 08 8

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198

lower bounds on a particular instance, and plays an impor-
tant role in our hardness result (proof in Supplementary
material).

Lemma 1 Let u, v be two CNPs with no null positions. If
u —v contains a staircase [a, b] of length k, then dr(u,v) >
k for any unit-cost function f.

Strong NP-hardness

We show that the CNP-transformation problem is strongly
NP-hard. This result holds for any deletion-permissive
unit-cost function f, and even if # and v contain no null
position (we note that in [24], null positions make the
problem more complex, but not here). In particular, the
hardness also holds if only deletions are allowed. We
assume that we are given two CNPs # and v and we put
wi=u-—v.

Suppose that w contains a staircase in interval [1, k] for
some k, and that dy(u, v) = k. A sequence E = (ey, . . ., &)
such that u(E) = v is called smooth if, for every i €[k],
ei = (,bj,wi1 — w;) for some b; > k. Intuitively, E
removes the first step, then the second, and so on, see
Fig. 2. Observe that in a smooth deletion sequence, the
positions to the right of k may or may not be affected by
deletions.

Lemma 2 Let u and v be two CNPs with no null posi-
tions and let f be any unit-cost function. If u — v contains
a staircase in interval [1,k] and dy(u,v) = k, then there
exists a smooth sequence transforming u into v.

Lemma 2 requires the most technical proof of the paper
(by far), and we defer it to the Supplementary material.
The reduction becomes relatively simple when given this
lemma. Our reduction is from the 3-partition problem. In
this problem, we are given a multi-set S = {s1,...,5,}
of n = 3m positive integers. Defining ¢t := % > i) Siv
we are asked whether S can be partitioned into m sub-
sets S1,...,Sm, each of size 3, such that > ¢ s = ¢ for
all i €[m]. This problem is known to be strongly NP-hard
[31] (i.e. it is hard even if the values of S are O(s¥) for some
constant k). The proof can be found in the Supplementary
material.

Theorem 1 The CNP-transformation problem is strongly
NP-hard for any deletion-permissive unit-cost function,
even if the CNPs have no null positions.

Approximation algorithm

In this section, we show that if v does not contain any
null position, then dg,y(u, v) can be approximated within
a factor of 2 in linear time. We discuss practical ways of
handling null positions at the end of the section. We now
assume that f = any and will write d(u,v) instead of
d(my (u,v).

Page 5 of 12

As usual, # and v are the source and target CNPs,
respectively, and w := u — v. The idea of the approx-
imation is that if two consecutive positions i and i + 1
have the same difference between u and v, ie. w; =
wiy1, then their value needs to change by the same
amount. It might then be a good idea to treat these
positions as one and always affect both with the same
events. In fact, a whole interval of equal w values
can be treated as a single position. We show that the
number of distinct equal intervals gives a good bound
ond(u,v).

Approximation by flat intervals

Recall that if w is a vector of n integers, it has implicit
values wg = wy41 = 0. We say that [a,b], with 0 <
a < b < n+1,is aflat interval if w; = w; for every
a < i,j < b.If no interval properly containing [a, b] is
flat, then [a, b] is a maximal flat interval. In fact, in the
remainder, we will omit the term “maximal” and always
assume that discussed flat intervals are maximal. We write
F,, for the set of flat intervals of w. Note that this set is
well-defined and that it partitions [0, n + 1], by the max-
imality property. The intervals that contain 0 and n + 1
in F,, are called extreme flat intervals, and always have a
value of 0 (also, these intervals are possibly [0, 0] and/or
[n+1, n+1], but not necessarily). The key lemma says that
dy(u,v) is at least about half the number of flat intervals
(see Supplementary material).

Lemma 3 Let u,v be two distinct CNPs with no null
positions, and let w .= u — v. Then for any unit-cost
Sunction f, dr(u,v) > [(|Fy| —1)/2].

Lemma 3 vyields a very simple factor 2 approximation
algorithm: compute F,,, and return |F,,| — 2. This corre-
sponds to a solution in which we treat each flat interval
separately (ignoring the two extremities) and is guaran-
teed to be at most twice the optimal number of events.
Computing Fy, can be done in a single pass through w by
increasing a counter whenever we encounter a position i
with w; # w;_1.

Theorem 2 The CNP-transformation problem can be
approximated within factor 2 in linear time for cost func-
tion [= any when the CNPs contain no null position.

It is open whether this could be adapted to other func-
tions, e.g. the dbl function.

Improvements to the approximation algorithm

We first observe that the bound in Lemma 3 is essen-
tially tight. This can be seen with any #, v such that u —
v = (1,2,3,...,k — 1,k,k — 1,...,3,2,1) for some k.
Indeed, one can decrease |Fy,| by two at each round. On
the other hand, our naive 2-approximation is twice as bad

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198

as optimal. We show how to improve this in a heuristic
fashion by devising an algorithm that can only perform
better than the naive one. We leave it as an open prob-
lem to determine the approximation guarantees of this
algorithm.

Our goal is to apply events that reduce |F,| by two as
many times as possible. In a greedy fashion, we apply the
following strategy for our improved 2-approximation: as
long as u # v, find an event e that reduces |Fy,| by 2, if one
exists, and apply it to u. If no such event exists, take the
leftmost non-extreme flat interval [a, b] of w and apply
the event (a, b, —w,). Repeat until # = v.

An event (i, , 8) reduces |F,| by 2 precisely when w;_; —
w; = wji1 — wj = 8 (i = jis possible). This way we can
merge the two flat intervals at the ends of [, /]. One can
find a good interval by checking all the O(n?) subintervals
[Z,/] and then, for each of them, checking whether w;_; —
w; = wjy1 — wj. Moreover, we must check whether apply-
ing the event (i, , §) would make a value of # go below 0.
Verifying every possible event can be done in time O(13)
and as there are O(n) flat intervals, the algorithm takes
time O(xn%).

This can be improved to O(n?logn) by finding good
events in time O(n log n). Due to space constraints, we rel-
egate the detailed analysis of the improved heuristic to the
Supplementary material. The idea is to scan w from left to
right and store in a treap data structure (see [32]) the set
of flat intervals encountered so far, which allows to detect
quickly whether the current flat interval could be matched
with another one.

Handling null positions

Our approximation ratio is not guaranteed to hold when
there are many null positions. However, we show that
in many practical cases, we can simply ignore null posi-
tions and remove them. In particular, we may assume that
v has no two consecutive null positions (Lemma 4) and
that for any null position i in v, we have w;_; < w; and
wit1 < w; (Lemma 5). Thus instances with null posi-
tions can be reduced to ones where the only null positions
remaining are “sandwiched” between non-null positions
with a smaller value in w.

Note that our approximation can still perform badly
with these two conditions. For instance, suppose that
u = (15,2,15,2,...,15,2) and v = (14,0, 14,0,. .., 14,0).
We would solve this in about #/2 events. How-
ever, the two events (1,#n,—2),(1,n,1) turn u into v.
Designing a better approximation for these cases is an
open problem.

Lemma 4 Suppose that v; = vi11 = 0 for some position
i. Then removing position i or i + 1, whichever is smaller
in u, from u and v preserves the distance between u and
v. Formally, for any unit-cost function f, if u; > u;t1, then

Page 6 of 12

dr(u,v) = df(u_{H‘l}, Y Similarly ifuiy1 > u;, then
dr(u,v) = df(u_m, y=ii,

Lemma 5 Suppose vi = 0 for some position i and that
Wi_1 = W;or Wip1 = W;. Then df(u, V) = df(u’{’},v’{‘})
for any unit-cost function f.

Experiments

We tested our flattening approximation algorithm and its
improved version on simulated chromosomes that evolve
along a tree through segmental tandem duplications
and losses. Chromosomes were represented as strings
of genes. Note that we did not simulate CNP evolution
under the assumptions of our model. We evolved actual
sequences as opposed to integer vectors, and the initial
ordering of genes could be broken after several events.
Our goal was to reconstruct phylogenies from the dis-
tances between the CNPs of the chromosomes at the
leaves of the tree. We used the NJ implementation in
Phylip [33, 34] and compared four distances: (1) our
improved approximation; (2) our flat interval count; (3)
the mdc cost, as in the MEDICC model; and (4) the
Euclidean distance. To compute d,,;,, we implemented
the dynamic programming algorithm of Zeira, Zehavi and
Shamir [24], hereafter called the ZZS algorithm (we could
not use the MEDICC software as it only handles copy-
numbers up to 4). The Euclidean distance is defined as
Vot (ui —vi)?, as used in [9]. For the first three dis-
tances, we took the minimum of d(u, v) or d(v, u) to get
a symmetric distance, removing null positions of # and
filtering null positions of v as in Lemmas 4 and 5.

Simulated tree generation

We now describe how the trees were generated. First, we
select a rooted binary tree T on [/ leaves labeled {1, ..., [}
uniformly at random. This is achieved by using the recur-
sive splitting process described by Aldous in [35], which
starts with a completely unresolved tree, splits the root in
two subtrees chosen uniformly at random, and repeats on
these subtrees. We then assign to the root r of T an exem-
plar chromosome, i.e. any string in which each gene occurs
exactly once (note that the initial ordering of genes does
not matter for our purposes).

Then for each branch uv of T from top to bottom, we
select a random number of events k chosen uniformly
at random in the interval [euin, €maxl, Where euin, max
are simulation parameters. To introduce some rate het-
erogeneity among branches, we then multiplied k& by a
random number chosen from a uniform distribution with
mean and standard deviation 1. The chromosome string
at node v is obtained by applying k random events on
the chromosome string associated with its parent u. Each
event is either a tandem duplication with probability A or
a deletion with probability 1 — A. The starting position

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198

of each event is chosen uniformly at random on the chro-
mosome string and, to find the length ¢ of the substring
affected, we apply the following process. Start with ¢ = 1,
then apply the following: as long as a random number
between 0 and 1 is above a given parameter r, increment
¢t by 1 and repeat. We stop at the first random number
below r. We chose to consider only values » < 0.1 since
higher values resulted in copy-numbers in the hundreds,
sometimes even in the thousands, a road which we did
not deem necessary to explore. Setting r between 0.01 and
0.1 generally resulted in copy-numbers inside [0, 50]. We
also note that we also experimented on a model where
the event length was chosen as a random fraction of
the chromosome length — this led to exponential copy-
number growth and we did not investigate this model
further.

We observed that this process had a tendency to pro-
duce leaf chromosomes with CNPs having between 50—
60% null positions under most parameter combinations.
This might be deemed unrealistic, and furthermore, our
results show that no method is able to predict accurate
trees under these conditions. To avoid this, we added a
condition in the loop determining the length ¢ of an event:
if incrementing ¢ implies deleting the last occurrence of
a gene, we continue the procedure with probability g and
stop with probability 1 — g (where g is another simulation
parameter). This can be seen as modeling the idea that
there may be resistance when attempting to remove every
copy of a gene required for survival. Using g parameter
values 0.25,0.5 and 0.75, the proportion of null posi-
tions stayed in the intervals 2-5%, 6-10% and 15-25%,
respectively.

Note that since each possible tree on / leaves is equally
likely to be chosen, the root-to-leaf distances in a tree
can be significantly different, and hence the trees are not
expected to be ultrametric (for instance, a caterpillar can
be selected as well as a perfectly binary tree).

Since it is difficult to determine the most realistic sim-
ulation conditions, we tested several combinations of
parameters for the generation of phylogenies. The sum-
mary of the simulation parameters, along with their pos-
sible and default values, are summarized here:

e [e {10,50,100} is the number of leaves in the tree.
The default is / = 100;

e n € {10,100,250} is the number of genes (i.e. distinct
characters) in the root chromosome (n is also the
number of positions in our vectors). The default is
n = 100;

® (emin €max) € {(2,4), (5,10), (20,40)} is the range of
the possible number of events on each branch. The
default is (ein, €max) = (5,10);

e A €{0.25,0.5,0.75} is the probability that an event is
a duplication (and 1 — A the probability that an event
is a loss). The default is A = 0.5;

Page 7 of 12

e 1 € {0.01,0.05,0.1} controls the length of each event:
r is the probability that we stop extending the event
length. The default is r = 0.05;

e g€ {0.25,0.5,0.75, 1} is the probability that a
deletion suppresses the last copy of a gene during the
length extension procedure (i.e. 1 — g is the
probability that the extension stops if it would make a
copy-number 0). The default is g = 0.25.

Tree reconstruction and performance measure

We generated 50 trees for each parameter combination of
interest. For each tree, we took the chromosome strings
at the leaves, obtained their CNPs and provided them as
input to each of the four evaluated methods. We used
the normalized Robinson-Foulds (RF) distance as a mea-
sure of the performance of each algorithm [36]. That is,
for each inferred tree, we compare it with the “true” tree
by counting the number of clades that are present in one
tree but not the other, divided by 2(/ — 3) (the maximum
number of clades that can possibly differ, recalling that /
is the number of leaves). This yields a number between 0
and 1: the lower the number, the better we consider the
reconstruction.

Error tolerance

It should be noted that the above methodology ignores
several sources of errors. Inferring exact copy-numbers
from single-cell sequencing data is a non-trivial task and is
still considered an open problem. The inferred CNPs are
therefore expected to be noisy, especially with genes hav-
ing a high copy-number. Moreover, as discussed in [22],
assigning copy-numbers to their corresponding allele is
also a difficult problem. Here, by only considering single-
allele chromosomes, we are supposing that the afore-
mentioned phasing step has been performed correctly,
whereas copy-number assignments cannot be assumed to
be error-free.

Both of the above problems have the effect of introduc-
ing incorrect copy-numbers into the CNPs. To account
for this, we gave randomly altered CNPs as input to each
method. More specifically, given an error-rate parameter
a, for each CNP # and each position i we changed u;
to a value chosen at random from a normal distribution
with mean u; and standard deviation « - %; (non-integer
values were rounded). We tested parameter values o €
{0,0.1,0.25,0.5, 1}.

Experimental results

We first ran experiments using the default values for all
parameters except one in order to isolate the impact of
each parameter. On error-free data, the most interesting
results were obtained when varying / and n, see Fig. 3. In
most situations, our CNP model slightly improves upon
the MEDICC model, both of which are significantly better

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198 Page 8 of 12

1.0 1.0 1.0

0.8 T 0.8 0.8

0.6 1 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

0.0 — : " - 0.0 — i . - 0.0 — : . o
heuristic flat ZZS Euclidean heuristic flat ZZS Euclidean heuristic flat ZZS Euclidean

I =10 I =50 I =100

1.0 EE EE f 1.0 1.0

0.8 0.8 0.8

0.6 0.6 0.6 f

0.4 0.4 0.4

0.2 0.2 0.2

0.0 — - 0.0 — - 0.0 — -
heuristic flat ZZS Euclidean heuristic flat ZZS Euclidean heuristic flat ZZS Euclidean

n=10 n =100 n =250

1.0 1.0 1.0

0.8 0.8 0.8

0.6 0.6 0.6

0.4 E 0.4 0.4 {

0.2 0.2 0.2

0.0 — - 0.0 — - 0.0 — -
heuristic flat ZZS Euclidean heuristic flat ZZS Euclidean heuristic flat ZZS Euclidean

duprate 0.25 duprate 0.5 duprate 0.75

1.0 1.0 1.0

0.8 0.8 0.8

0.6 0.6 0.6

0.4 % 0.4 { 0.4

0.2 0.2 0.2

0.0 — T - - 0.0 — ; . - 0.0 — : . o
heuristic flat ZZS Euclidean heuristic flat ZZS Euclidean heuristic flat ZZS Euclidean

events 2 4 events 5 10 events 20 40

Fig. 3 Violin plots of the normalized RF distances for our improved approximation (heuristic), the algorithm that counts flat intervals (flat), the ZZS
algorithm for the MEDICC model (ZZS), and the Euclidean distance on error-free data. Each plot summarizes 50 reconstructed trees with, from left to
right: (top row) / = 10,50 and 100 leaves; (second row) n = 10, 100 and 250 genes per chromosome; (third row) duplication rate A = 0.25,0.5 and
0.75; (fourth row) possible number of events per branch (emin, emax) = (2,4), (5, 10) and (20,40). On each row, the other parameters were set to
their default as discussed in the text

than the Euclidean distance. The number #n of genes is
quite important: all the results are poor when each CNP
has only n = 10 positions, but when n = 250, the trees
more accurate. This might be because when » = 10,
there is not enough opportunity for positions acquire a

distinct signature during the evolutionary process, mak-
ing all distances very similar. This suggests that many
genes or segments should be considered when analyz-
ing copy-number variants in tumor clones. The dupli-
cation rate does not seem to affect the accuracy of the

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198

methods, whereas accuracy tends to decrease as the num-
ber of events per branch increases. We do note that
when the number of events per branch is within [5, 10],
our model performs better, but when it is high, i.e. in
[20,40], the MEDICC model performs better. This ten-
dency is confirmed under other parameterizations (see
the Supplementary Material). Figure 4 show the normal-
ized RF distances when varying parameters g and r. As
mentioned before, as g gets closer to 1, the proportion
of null positions is around 50-60%, making accurate dis-
tance computation difficult for all methods. As for the r
parameter, the accuracy of our approach is better when
r = 0.01 but worse when » = 0.1. This tendency can
be observed under all parameter combinations (see the
Supplementary Material). One should note that accuracy
is generally better if the lengths of events are smaller. The
four approaches on error-free data exhibit similar behav-
ior on other parameter combinations — additional plots
can be found in the Supplementary Materials.

The results on CNPs containing errors are summarized
in Fig. 5. We observe that the ZZS algorithm achieves
slightly more accurate trees whenever the error rate is
above zero. One possible explanation is that a single error
in a CNP can split a flat interval into three. This can sig-
nificantly alter the flat interval counts, whereas the ZZS
distance is less dependant on flat intervals. The accuracy
of the Euclidean distance appears to be the least affected
by error rates and even performs better when o > 0.5.
Observe however that accuracy decays rapidly with error
rates: when @ > 0.25, all approaches have an average

Page 9 of 12

normalized distance above 0.7, casting some doubt on
their practical usability in this setting. This suggests that
it might be beneficial to apply a CNP error-correction
procedure before comparing them (see the “Discussion”
section). More results on noisy data can be accessed in the
Supplementary Material.

To summarize, the heuristic and flat count algorithm
always yield a lower average RF distance than the ZZS
algorithm on error-free data, except when n = 10 (where
the average is always above 0.9 anyways), and every
method always outperforms the Euclidean distance. On
the other hand, the ZZS approach is slightly more robust
to error in the CNP counts. However, the accuracy of
the heuristic, the flat count and ZZS drops quickly as
error rates increase. Even though the Euclidean distance
yields better trees at high error rates, their accuracy is still
too poor to be able to draw meaningful conclusions from
them. Whether the MEDICC model is better than ours or
not, we believe that either should be preferred over the
Euclidean distance when reconstructing phylogenies from
distance matrices as in [9].

Discussion

The results from the “Experiments” section show that our
CNP distance performs reasonably well on simulated data.
The incorporation of segmental events into the model
does not appear to provide a significant advantage over
the unitary events of the ZZS model. However, the sim-
ulations suggest that both approaches yield better results
than the traditional Euclidean distance. This demonstrates

0.8 0.8

PR

1.0 1.0 1.0
0.8 E 0.8 % 0.8 T T f
0.6 0.6 0.6

0.4 % £ 0.4 0.4

0.2 0.2 0.2

0.0 heuristic flat ZZS Euclidean 0.0 heuristic flat ZZS Euclidean 0.0 heuristic flat ZZS Euclidean

q=05 q=0.75 q=1
1.0 1.0 1.0

| i

0.41 0.4 % 0.4
0.2 0.2 0.2
0.0 — " — - — -
heuristic flat zZS Euclidean heuristic flat z7ZS Euclidean heuristic flat zZS Euclidean
r=0.01 r=0.05 r=0.1

Fig. 4 Violin plots of the normalized RF distances for the four same approaches with varying parameters g and r (on error-free data). Other
parameters were set to their default values as described in the text. The plot for g = 0.25 is not shown: it is identical to the n = 100 plot from Figure 3

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198

Page 10 of 12

1.0

P -
T "

0.2

o]

ff}%

1.0 1.0
0.8 E 0.8
0.6 0.6
0.4 E E 0.4
0.2 0.2
0.0 heuristic flat ZZS Euclidean 0.0 heuristic flat

error rate 0

1.0

0.8

0.6

0.4

0.2

0.0

heuristic flat ZZS Euclidean

error rate 0.5

error rate 0.1

0.0

ZZS Euclidean heuristic flat z7Zs

error rate 0.25

Euclidean

0= f

0.8
0.6
0.4

0.2

0.0

heuristic flat z7Zs
error rate 1

Euclidean

Fig. 5 Violin plots of the average normalized RF distances for the four same approaches with varying error rates & € {0,0.1,0.25,0.5, 1}. Other

parameters were set to their default values as described in the text

that either our method or the ZZS algorithm should be
preferred as the CNP comparison component in a single-
cell phylogenetic reconstruction pipeline.

It should be noted that our algorithms only approxi-
mate the true CNP distance whereas the ZZS algorithm
provides an exact solution. In order to evaluate the true
performance of our segmental model, exact approaches
should be developed in the future, perhaps using tech-
niques from the field of parameterized complexity. More-
over, our approaches are very sensitive to errors, even
more so than ZZS/MEDICC. One possible explanation for
this is that both of our algorithms derive their distance
from the number of flat intervals. A single error in a copy-
number can turn one flat interval into three, and thus
even moderate levels of noise can lead to highly incor-
rect predictions. We believe that the ZZS algorithm is less
sensitive to such errors because that, if copy-number dif-
ferences are large enough, a small error only increases the
distance by 1, which is small in comparison to all the unit
events required to handle the high difference. Therefore,
even if the true event distance is overestimated, in a com-
parative setting the relative distances might be closer to
the truth. It will be interesting to consider CNP error cor-
rection procedures based on flat intervals. For instance,
when performing analysis of multiple cells, one could
detect a potentially incorrect copy-number of a given
segment by checking whether, after altering a predicted
copy number by a small amount, several flat intervals get
“fixed” when comparing the cell with others.

Another point of interest is that current approaches,
including ours and ZZS/MEDICC, ignore rearrangements
that change the ordering of segments. Our models assume
that the set of contiguous segments remains the same in
all cells during evolution. However, when duplications and
deletions occur, the relative ordering of genes changes and
the set of contiguous genes affected by the events will dif-
fer from that in the reference. Inversions, translocations
or even chromothripsis also have the same effect. This
is a difficult problem to handle if only CNPs are known,
since integer vectors do not contain enough information
to determine which genes are contiguous or not. One pos-
sibility is to ask the following: given two CNPs Cj and C,
to compare, choose a genome G; whose CNP is C; and a
genome Gy whose CNP is C; such that the rearrangement
distance between G; and G, is minimized.

Our work also leaves several questions open. From a
theoretical perspective, it remains to achieve a constant
factor approximation when null positions are present in
the input. Moreover, it is unknown whether the db/ func-
tion admits good approximation algorithms and, more
generally, whether there are other biologically plausi-
ble functions that should be studied. On another note,
it might be interesting to investigate the copy-number
triplet problem (see the introduction) under our model, as
it allows to define a symmetric distance between CNPs.

On a practical level, phylogenetic approaches that are
not distance-based should be investigated. For instance,
we could consider maximum parsimony as in [11], where

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198

the objective is to minimize the number of events across
branches of a tree. The recent distance-based approach of
Xia et al. [12], which is based on the MEDICC model but
with an extra error correction step, should also be eval-
uated in our setting. On another note, it remains to test
our approach on real data. We have ignored the problem
of calling copy-numbers and the aforementioned prob-
lem of phasing. These can introduce noise in the data
and, as shown in our experiments, all the evaluated meth-
ods are sensitive to errors. This motivates the need for
new methods to assign copy-numbers to alleles under our
model. Also, our CNP comparison framework assumes a
single-cell setting, where the CNP of each individual cell
is known. Since bulk sequencing is still commonplace, it
will be useful to develop methods that are able to compare
genomes extracted from samples that contains multiple
types of cells.

Conclusion

In this work, we provided a general framework for the
comparison of CNPs depicting genomes that evolve by
segmental amplifications and deletions. We have shown
that if there is no bound on the number of copies
that a deletion can affect, then computing the minimum
number of events transforming one CNP into another
is strongly NP-hard. One important implication of this
result is that unless P = NP, one cannot use the fact
that copy-numbers are not too large (e.g. under 100) to
devise a practical pseudo-polynomial time algorithm, and
other solutions must be explored. On the other hand,
we proposed two simple and fast approximation algo-
rithms that were shown to perform reasonably well on
simulated datasets.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512864-020-6611-3.

Additional file 1: Supplementary file $33-S1.pdf contains all the missing
proofs.

Additional file 2: Supplementary file $33-S2.pdf contains all the
additional experimental results.

Abbreviations

BFB: Breakage-fusion-bridge; CGH: Comparative genomic hybridization; CNP:
Copy-number profile; NJ: Neighbor-joining; RF: Robinson-Foulds; ZZS: Zeira,
Zehavi, Shamir

Figure listing

Figure 1:an example of a CNP-to-CNP transformation.

Figure 2: a visual representation of a staircase and a smooth deletion sequence.
Figure 3: average normalized RF distances of the four methods evaluated
when varying /,n, A and (emin, €max)-

Figure 4: average normalized RF distances of the four methods evaluated
when varying gand r.

Figure 5: average normalized RF distances of the four methods evaluated with
varying error rates.

Page 11 of 12

About this supplement

This article has been published as part of BMC Genomics Volume 21 Supplement
2, 2020: Proceedings of the 17th Annual Research in Computational Molecular
Biology (RECOMB) Comparative Genomics Satellite Workshop: genomics. The full
contents of the supplement are available online at https://bmcgenomics.
biomedcentral.com/articles/supplements/volume-21-supplement-2.

Authors’ contributions

GC and ML both participated in writing the manuscript, establishing the
theoretical results, performing the experiments and implementing the
algorithms. All authors have read and approved the manuscript.

Funding
Publication was funded by the Natural Sciences and Engineering Research
Council (NSERC).

Availability of data and materials
The source code and data are available at: https://github.com/AEVO-lab/
cnp2cnp.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

! Department of Computer Science, Ecole polytechnique, Paris, France.
2Depar‘[mem of Computer Science, Université de Sherbrooke, Sherbrooke,
Canada.

Published: 16 April 2020

References

1. Nowell PC. The clonal evolution of tumor cell populations. Science.
1976;194(4260):23-8.

2. JiaoW, Vembu S, Deshwar AG, Stein L, Morris Q. Inferring clonal
evolution of tumors from single nucleotide somatic mutations. BMC
Bioinformatics. 2014;15(1):35.

3. El-Kebir M, Oesper L, Acheson-Field H, Raphael BJ. Reconstruction of
clonal trees and tumor composition from multi-sample sequencing data.
Bioinformatics. 2015;31(12):62-70.

4. Malikic S, McPherson AW, Donmez N, Sahinalp CS. Clonality inference in
multiple tumor samples using phylogeny. Bioinformatics. 2015;31(9):
1349-56.

5. YuanK, Sakoparnig T, Markowetz F, Beerenwinkel N. Bitphylogeny: a
probabilistic framework for reconstructing intra-tumor phylogenies.
Genome Biol. 2015;16(1):36.

6. Jahn K, Kuipers J, Beerenwinkel N. Tree inference for single-cell data.
Genome Biol. 2016;17(1):86.

7. Ross EM, Markowetz F. Onconem: inferring tumor evolution from
single-cell sequencing data. Genome Biol. 2016;17(1):69.

8. El-Kebir M. Sphyr: tumor phylogeny estimation from single-cell
sequencing data under loss and error. Bioinformatics. 2018;34(17):671-9.

9. NavinN, KendallJ, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K,
Stepansky A, Levy D, Esposito D, et al. Tumour evolution inferred by
single-cell sequencing. Nature. 2011;472(7341):90.

10. Abo RP, Ducar M, Garcia EP, Thorner AR, Rojas-RudillaV, Lin L, Sholl LM,

Hahn WC, Meyerson M, Lindeman NI, et al. Breakmer: detection of

structural variation in targeted massively parallel sequencing data using

kmers. Nucleic Acids Res. 2014:43(3):19.

El-Kebir M, Raphael BJ, Shamir R, Sharan R, Zaccaria S, Zehavi M, Zeira

R. Copy-number evolution problems: complexity and algorithms. In:

International Workshop on Algorithms in Bioinformatics. Springer; 2016.

p.137-49.

12. Xia R, et al. Phylogenetic Reconstruction for Copy-Number Evolution
Problems. IEEE/ACM transactions on computational biology and
bioinformatics. 2018;16(2):694-699.

1.

https://doi.org/10.1186/s12864-020-6611-3
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-2
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-2
https://github.com/AEVO-lab/cnp2cnp
https://github.com/AEVO-lab/cnp2cnp

Cordonnier and Lafond BMC Genomics 2020, 21(Suppl 2):198

20.

AR

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34

35.

36.

Zhou J, et al. Maximum parsimony analysis of gene copy number
changes. In: International Workshop on Algorithms in Bioinformatics.
Berlin: Springer; 2015. p. 108-20.

Schwartz R, Schéffer AA. The evolution of tumour phylogenetics:
principles and practice. Nat Rev Genet. 2017;18(4):213.

Lo AW, Sabatier L, Fouladi B, Pottier G, Ricoul M, Mumane JP. Dna
amplification by breakage/fusion/bridge cycles initiated by spontaneous
telomere loss in a human cancer cell line. Neoplasia. 2002;4(6):531-8.
Marotta M, Chen X, Inoshita A, Stephens R, Budd GT, Crowe JP, Lyons J,
Kondratova A, Tubbs R, Tanaka H. A common copy-number breakpoint
of erbb2 amplification in breast cancer colocalizes with a complex block
of segmental duplications. Breast Cancer Res. 2012;14(6):150.

Rajaram M, Zhang J, Wang T, LiJ, Kuscu C, QiH, Kato M, GruborV,
Weil RJ, Helland A, et al. Two distinct categories of focal deletions in
cancer genomes. PLoS ONE. 2013;8(6):66264.

LiuY, Chen C, XuZ, Scuoppo C, Rillahan CD, Gao J, Spitzer B, Bosbach B,
Kastenhuber ER, Baslan T, et al. Deletions linked to tp53 loss drive cancer
through p53-independent mechanisms. Nature. 2016;531(7595):471.
Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability,
aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol. 2009;10(7):478.
Desper R, Jiang F, Kallioniemi O-P, Moch H, Papadimitriou CH, Schéffer
AA. Inferring tree models for oncogenesis from comparative genome
hybridization data. J Comput Biol. 1999;6(1):37-51.

Liu J, Bandyopadhyay N, Ranka S, Baudis M, KahveciT. Inferring
progression models for cgh data. Bioinformatics. 2009,25(17):2208-15.
Schwarz RF, Trinh A, Sipos B, Brenton JD, Goldman N, Markowetz F.
Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput
Biol. 2014;10(4):1003535.

Fertin G, et al. Combinatorics of genome rearrangements. Cambridge:
MIT press; 2009.

Zeira R, Zehavi M, Shamir R. A linear-time algorithm for the copy number
transformation problem. J Comput Biol. 2017;24(12):1179-94.

Lafond M, Swenson KM, El-Mabrouk N. An optimal reconciliation
algorithm for gene trees with polytomies. In: International Workshop on
Algorithms in Bioinformatics. Berlin: Springer; 2012. p. 106-22.

Letouzé E, Allory Y, Bollet MA, RadvanyiF, Guyon F. Analysis of the copy
number profiles of several tumor samples from the same patient reveals
the successive steps in tumorigenesis. Genome Biol. 2010;11(7):76.

Paul S, SuC, Pang J, Mizera A. A Decomposition-Based Approach
towards the Control of Boolean Networks. In: Proceedings of the 2018
ACM International Conference on Bioinformatics, Computational Biology,
and Health Informatics. New York: Association for Computing Machinery;
2018. p. 11-20. https://doi.org/10.1145/3233547.3233550,.

Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS. A census of
amplified and overexpressed human cancer genes. Nat Rev Cancer.
2010;10(1):59.

Park HS, Jang MH, Kim EJ, Kim HJ, Lee HJ, Kim YJ, Kim JH, Kang E, Kim
S-W, Kim IA, et al. High egfr gene copy number predicts poor outcome in
triple-negative breast cancer. Mod Pathol. 2014;27(9):1212.

Campbell K, Gastier-Foster JM, Mann M, Naranjo AH, Van Ryn C,
Bagatell R, Matthay KK, London WB, Irwin MS, Shimada H, et al.
Association of mycn copy number with clinical features, tumor biology,
and outcomes in neuroblastoma: A report from the children’s oncology
group. Cancer. 2017;123(21):4224-35.

Garey MR, Johnson DS. Computers and Intractability, vol 29. New York:
W.H. Freeman; 2002.

Seidel R, Aragon CR. Randomized search trees. Algorithmica.
1996;16(4-5):464-97.

Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biol Evol. 1987;4(4):406-25.
Felsenstein J. PHYLIP (phylogeny Inference Package), Version 3.5 C:
Joseph Felsenstein.; 1993.

Aldous D. Probability distributions on cladograms. In: Random Discrete
Structures. New York: Springer; 1996. p. 1-18.

Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci.
1981;53(1-2):131-47.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 12 of 12

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

® rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

https://doi.org/10.1145/3233547.3233550

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	Preliminary notions
	Minimum cost transformations
	General properties

	Strong NP-hardness
	Approximation algorithm
	Approximation by flat intervals
	Improvements to the approximation algorithm
	Handling null positions

	Experiments
	Simulated tree generation
	Tree reconstruction and performance measure
	Error tolerance
	Experimental results

	Discussion
	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12864-020-6611-3.
	Additional file 1
	Additional file 2

	Abbreviations
	Figure listing
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

