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Abstract

Background: Biology has entered the era of big data with the advent of high-throughput omics technologies.
Biological databases provide public access to petabytes of data and information facilitating knowledge discovery.
Over the years, sequence data of pathogens has seen a large increase in the number of records, given the relatively
small genome size and their important role as infectious and symbiotic agents. Humans are host to numerous
pathogenic diseases, such as that by viruses, many of which are responsible for high mortality and morbidity. The
interaction between pathogens and humans over the evolutionary history has resulted in sharing of sequences,
with important biological and evolutionary implications.

Results: This study describes a large-scale, systematic bioinformatics approach for identification and characterization
of shared sequences between the host and pathogen. An application of the approach is demonstrated through
identification and characterization of the Flaviviridae-human share-ome. A total of 2430 nonamers represented the
Flaviviridae-human share-ome with 100% identity. Although the share-ome represented a small fraction of the
repertoire of Flaviviridae (~ 0.12%) and human (~ 0.013%) non-redundant nonamers, the 2430 shared nonamers
mapped to 16,946 Flaviviridae and 7506 human non-redundant protein sequences. The shared nonamer sequences
mapped to 125 species of Flaviviridae, including several with unclassified genus. The majority (~ 68%) of the shared
sequences mapped to Hepacivirus C species; West Nile, dengue and Zika viruses of the Flavivirus genus accounted
for ~ 11%, ~ 7%, and ~ 3%, respectively, of the Flaviviridae protein sequences (16,946) mapped by the share-ome.
Further characterization of the share-ome provided important structural-functional insights to Flaviviridae-human
interactions.
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Conclusion: Mapping of the host-pathogen share-ome has important implications for the design of vaccines and
drugs, diagnostics, disease surveillance and the discovery of unknown, potential host-pathogen interactions. The
generic workflow presented herein is potentially applicable to a variety of pathogens, such as of viral, bacterial or
parasitic origin.
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Crossreactome, Peptide sharing, Peptide overlap, and Molecular mimicry.

Background
There has been an exponential growth of pathogen se-
quence data, given their relatively small genome size and
important role as infectious and symbiotic agents [1–5].
This has largely been driven by high-throughput omics
technologies, resulting in petabytes of data proliferating
publicly available databases, providing access for know-
ledge discovery and study of the complex molecular de-
scriptors of host-pathogen interactions [6, 7]. This
enables detection of patterns for disease tracking and
surveillance, control of pathogens, and clinical prognosis
of infectious diseases, which are useful in monitoring
and forecasting emerging pathogens [8, 9].
Pathogens, such as viruses, bacteria and parasites in-

fect a wide range of hosts, such as human, farm/domes-
tic animals and plants, and are responsible for high
mortality, morbidity and/or damage [10, 11]. Pathogen
sequences integrated into the host genome is not un-
common [12–15] and evolutionary sharing of sequence
with the host has also been reported [16, 17]. A shared
sequence is one where part or full-length of a pathogen
protein is shared with one or more protein sequences
of the host [18]. A pathogen sequence integrated into
the host genome is herein considered as part of the host
proteome, if expressed. Thus, shared sequences can be a
result of pathogen integration into the host or otherwise.
For example, the footprint of viruses in the evolution of
the mammalian genome is thought to go back to at least
tens of millions of years, in contrast to the earlier esti-
mate of a few thousand. Taylor et al. (2010) confirmed
that several groups of mammals, including marsupials
that never colonized Africa, have had an association with
filoviruses. This discovery of shared sequences between
host-pathogen has important implications for the design
of vaccines and drugs, diagnostics, disease surveillance
and the study of emerging diseases, including unknown,
potential host-pathogen interactions [19].
Shared sequences have been implicated in various cel-

lular processes, which includes signalling, transduction,
and protein stability [20–22]. These processes have been
described to play a key role in pathogenicity of the host.
Earlier studies of shared sequences or molecular mim-
icry have been based on similarity search for sequences

of k-mer lengths of mostly penta-, hexa-, hepta-, or octa-
peptide (5-, 6-, 7- or 8-mer), and generally applied on a
limited number of sequences of the pathogen of choice,
such as Human gammaherpesvirus 4 (Epstein-Barr virus)
[23], Human cytomegalovirus (HCMV) [24], Human im-
munodeficiency virus 1 (HIV-1) [18, 21], Poliovirus [25],
West Nile virus (WNV) [22], Measles virus [26], Influ-
enza A virus [16], Streptococcus species [27], Mycobac-
terium tuberculosis, Salmonella typhimurium, Klebsiella
pneumonia, and Proteus mirabilis [28], among others.
The availability of large data in the public repositories
means much remains to be elucidated on shared se-
quences, which can further broaden our understanding
of host-pathogen interactions [29, 30].
Existing alignment-based computational tools can

be utilised for similarity search between host and
pathogen sequences, such as BLAST [31], FASTA
[32], and SSEARCH, among others. Limitations of
these tools include i) the non-exhaustive nature of
the search given the heuristic approach, which means
not all k-mers may be compared to each other ex-
haustively, ii) gaps introduced in the alignment may
break the collinearity of k-mers, iii) restriction on the
number of hits returned (such as 20,000 for BLAST),
iv) restriction on the number of queries per batch
submission, and iv) time delay due to the iterations
required to deal with the issues of (iii) and (iv)
through a “break and conquer” approach, to deal with
the large number of host and pathogen sequences
available.
Herein, we describe a systematic bioinformatics ap-

proach for identification and characterization of shared
sequences from big data. The approach is generic, and
thus is potentially applicable to any pathogen and host
combinations. A large number of protein sequences are
available for pathogens and hosts in public repositories.
The complete set of the identified shared sequences for
a given host-pathogen will be termed as the share-ome.
The identification, characterization and comparative
analysis of multiple host-pathogen share-omes has im-
portant implications in the understanding of the evolu-
tion, structure and function of shared sequences.
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Materials and methods
The relevant bioinformatics tools, web servers, and tuto-
rials described herein are collectively listed in Table 1
with the corresponding URLs.
A systematic bioinformatics approach is required to

handle big data and mine for biological patterns and in-
sights. The approach defined herein for the identification
of the share-ome is a workflow that can be divided into
four parts (Fig. 1): i) data collection, ii) data processing,
iii) identification of the share-ome, and iv) share-ome
analyses.

Data collection
Both nucleotide and protein sequences, available in
abundance in public repositories (Table 2), are essential
for the study of structure, function and evolution of
shared sequences. Thus, a collection of all reported pri-
mary sequences is necessary for a comprehensive survey
of the distribution and composition of shared sequences.
The National Centre for Biotechnology Information
(NCBI) (Table 1) Entrez Nucleotide (nt) and Protein (nr)
databases provide a comprehensive collection of primary
sequences [33]. When taxonomy is a selection criterion
(such as all viruses), the NCBI Taxonomy database
(Table 1) [33] is ideal for filtering of sequences at vari-
ous ranks of taxonomy lineage. The number of se-
quences can grow exponentially when navigating from

species to higher ranks of taxonomy in the database,
such as from species, genus, family, superfamily, order,
class, phylum, to superkingdom. As such, download via
a Hypertext Transfer Protocol (HTTP) option will not
be appropriate and maybe terminated due to time-
out issues, while a File Transfer Protocol (FTP) browsing
offers limited functionality to restrict the data to an
Entrez query term. Thus, the NCBI application
programme interface (API), Entrez E-utilities is ideal for
retrieval of large datasets. Although nucleotide se-
quences are important for the study of shared sequences,
the focus herein is on protein sequences, which can be
compared with the cognate nucleotide sequences subse-
quently for underlying synonymous substitutions. None-
theless, the approach for analysis of nucleotide
sequences would be similar to that of proteins.

Data cleaning and processing
Removal of redundant and irrelevant sequences (includ-
ing unknown, ambiguous, or outliers) is necessary to re-
move confounders in the identification of shared
sequences. Public repositories often contain discrepan-
cies and duplicate data entries [34–36]. Often, these are
detected during the analysis step, such as when analysing
the output of a multiple sequence alignment. A later de-
tection of such sequences may necessitate a repeat of
earlier data cleaning and pre-processing steps; thus, it is

Table 1 Tools, databases and tutorials relevant for the identification and characterization of the host-pathogen share-ome. All URLs
were accessible as of January 2021

Database, Tool, and Tutorial URL

NCBI Entrez Databases http://www.ncbi.nlm.nih.gov

NCBI Entrez Protein Database http://www.ncbi.nlm.nih.gov/protein

NCBI Entrez Taxonomy Database http://www.ncbi.nlm.nih.gov/taxonomy

STRING Viruses database http://viruses.string-db.org/; version 11.0

CD-HIT http://weizhongli-lab.org/cd-hit/

E-Utilities esearch-efetch https://www.ncbi.nlm.nih.gov/books/NBK25500/
#chapter1.Demonstration_Programs

entrezEsearch https://github.com/gwatiyapJ/SiMiLyG

kmerslicer https://github.com/gwatiyapJ/SiMiLyG

Unipro UGENE tools http://ugene.net/

UniProt Retrieving and ID Mapping tool https://www.uniprot.org/uploadlists/

CateGorizer https://www.animalgenome.org/tools/catego/

Unix utilities https://unix.stackexchange.com/

Tutorial 1: Notes on how to use R for doing statistical analysis and graphics https://cran.r-project.org/manuals.html

Tutorial 2: Unipro UGENE Manual Version 37, 2020. Consists of user guide to bioinformatics
tools for alignments, genome sequencing, data analysis, and amino acids sequence
visualization, among others.

http://ugene.net/downloads/UniproUGENE_
UserManual.pdf

Tutorial 3: User’s guides on implementation for removing duplicates sequences and
generating representative sequences

http://www.bioinformatics.org/cd-hit/cd-hit-user-
guide.pdf

Tutorial 4: Webinar: Introduction to NCBI’s E-utilities API https://www.youtube.com/watch?v=iCFVVexp30o&t=
2561s
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best to detect and filter these at the earliest. Examples of
irrelevant sequences detected from supposedly a data of all
viruses (Taxonomy Database ID: 10239) are shown in
Table 3. The irrelevant hits may, for example, consist of se-
quences with no complete lineage information (i.e. no
assigned viral species rank in the metadata, such as, only
family rank), of unknown sample organism, that are syn-
thetic construct or chimeric fusion protein, and/or of bac-
terial origin, mis-classified as viral or human data. One way
of detecting these outliers at the data processing stage
would be to extract the lineage field information in the
metadata of each record and analyse for anomalies. Dupli-
cate full-length or partial sequences can be filtered with the
aid of the clustering tool, CD-HIT, which is capable of
handling large datasets [37, 38].
Large-scale proteomics analyses usually present sample

bias due to inadvertent collection of duplicate (full-length or
partial identical match) or highly similar sequences, isolated
from various geographical areas of limited catchment [39].
Removal of duplicate or similar sequences help, but may not
be ideal to mitigate the bias. The redundancy may be a re-
flection of pathogen incidence in the ecosystem. Thus, it
may be desired to analyse both the redundant and non-
redundant datasets in most cases. However, for share-ome
mapping and analysis, non-redundant dataset is preferred,
with meta-data annotations from the redundant dataset
retained. The annotations are retained because it is possible
that, although the sequences are duplicates, the descriptions
of the proteins are different. This maybe a result of user-

Fig. 1 A schematic workflow for large-scale identification and
characterization of host-pathogen shared sequences

Table 2 Human pathogens/parasites and big data. The
available number of nucleotide and protein sequence records at
NCBI Entrez Databases (as of January 2021) are indicated for
select groups of pathogens/parasites. It should be noted that
not all the species that are part of the taxonomic groups listed
here maybe pathogens/parasites of human

Pathogen/Parasite Sequence Data (# Records)

Nucleotides Proteins

Viruses 3,554,899 7,360,073

Bacteria 68,010,589 773,862,087

Archaea 914,730 6,836,105

Fungi 13,642,359 25,043,777

Plasmodium 567,181 662,147

Amoebozoa 802,451 317,693

Trichomonas 245,291 121,145

Trypanosoma 425,666 408,483

Platyhelminthes (Flatworm) 3,326,558 787,530

Nematodes 4,321,847 1,776,489

Acanthocephalans 8863 2669

Hirudinea (Leeches) 255,634 52,331
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dependent annotation (such as one description more detailed
than the other) or are simply different protein names with
the same sequence (related viral species sub-groups sharing
the same sequence).

Identification of a share-ome
Construction of a k-mer dictionary
K-mers are sequences of length k that can comprise of
either nucleotides or amino acids. Detection of shared
sequences, as matched pairs between host and pathogen,
involves exhaustive k-mer matching at a certain identity
or similarity threshold. A sliding window approach to
generate a k-mers dictionary (i.e. total repertoire of dis-
tinct k-mers for each of the pathogen and host datasets)
can reveal the complexity of sequences [40], provide a
varied classifier for the sequence by capturing several
neighbouring residues [41], and describe short structural
elements and functional group positions [42]. Although
the size of the k-mer is user specified, there are, how-
ever, certain recommendations for the search of shared
sequences. The BLAST algorithm uses short “words” to
nucleate regions of similarity and the default size for a

protein sequence is three amino acid residues, while size
of 11 bases is the default for nucleotide sequences [43].
The k-mer size of one or two residues is inapplicable as
they would result in random matches. The significance
of the pair match would increase as k-mer size increases.
The human immune system recognises peptides of
length of 8–12 residues for binding to human leukocyte
antigen (HLA) class I molecules [44, 45] and 13–25 resi-
dues for class II, with nine being the typical length for
class I and the binding core of class II peptides [45, 46].
As such, it could be argued that the immune system is
able to effectively discriminate between “self” and “non-
self” at this length (9-mer). Although viruses represent
“non-self”, the shared sequences are a representation of
“self” within “non-self”, with consequences that typically
benefit the virus (e.g. as amino acid repeats or decoys)
and/or harm the host (e.g. through autoimmune reac-
tion). The immune system may not be well adept in dis-
criminating the so-called “self” within the “non-self”
from “itself”. Nonetheless, 9-mers appear to be the
length of choice for antigen recognition over the evolu-
tionary history of the adaptive (cellular) immune system

Table 3 A sample of irrelevant hits identified through the data cleaning process. The irrelevant hits from a viral lineage search
included those of missing/incomplete lineage information (unknown, unclassified or no species information) or of unrelated lineage
(bacterial species) origin

Protein ID “Organism” field value Remark

CAA41747.1 Retroviridae Species information not available

CAA41748.1 Retroviridae “

AAB29320.1 Tobamovirus “

AAB22506.1 Orthohantavirus “

CAM83964.1 unclassified Parechovirus “

5AUM_D Potyviridae “

2MLG_A Fuselloviridae “

1BDE_A Unknown “

1Q3Z_A Unknown “

3F2E_A Rudivirus “

ANM47321.1 Streptococcus suis Bacterial origin

ANM47427.1 Streptococcus suis “

AAT65035.1 Mycoplasma fermentans “

AAT65057.1 Mycoplasma fermentans “

BAA94190.1 Escherichia coli O157:H7 “

CAC83125.1 Escherichia coli “

CAH23236.1 Escherichia coli “

CAH23267.1 Escherichia coli “

CAH23268.1 Escherichia coli “

4PJZ_A Actinoplanes teichomyceticus “

4PK0_A Actinoplanes teichomyceticus “

James et al. BMC Genomics Page 5 of 192022, 22(Supp 3):700



in its defence against myriad of pathogens; indicating
the need for a delicate balance between sensitivity and
specificity.
The maximum k-mer size, if desired, can be the length

of a given pathogen protein sequence of interest. It is
noted that the longest consecutive, overlapping, identical
k-mer match between viruses and human protein se-
quences can be in the range of hundredth amino acids,
and this may expand to a longer length (possibly up to
the protein size), particularly if one considers sequence
similarity (using appropriate substitution matrix) rather
than identity as the cut-off threshold for the match. Not-
ably, the cytomegalovirus (CMV) virus codes for a pro-
tein that mimics the HLA molecule as a decoy [24].
A possible caveat of using longer k-mers is the likeli-

hood of missing out shorter shared sequences. For ex-
ample, a k-mer of nine (nonamer) would miss-out the
detection of a shorter shared sequence, such as of six
amino acids (6-mer), if the search criteria is a 100%
match for the entire length of the 9-mer, and if the
amino acids before or after the 6-mer (within the 9-
mer region) are dissimilar. This can be circumvented by
using a similarity search approach instead. Thus, in gen-
eral, shorter k-mers of reasonable lengths provide for a
higher sensitivity coverage of shared sequences, while
the overlaps between them would encompass the longer
higher specificity k-mers.
One can generate k-mers for a given input FASTA file

using our in-house tool “kmerslicer” (Table 1). The tool
can accommodate any defined k-mer window size and
annotates each k-mer with meta-data, such as the acces-
sion number(s) of the origin sequence(s) from which the
k-mer was generated, and the beginning position of the
k-mer in the sequence. A k-mer dictionary is generated
for each of the host and the pathogen datasets, and du-
plicate k-mers are removed (however, meta-data annota-
tions are retained) to reveal the distinct k-mers for each.
The two k-mer dictionaries can be collectively referred
to as a host-pathogen library, which can be mined for
shared sequences; a library may comprise of multiple
dictionaries of different k-mer lengths for the respective
host and pathogen.

Mapping of shared sequences
Matching k-mers between the corresponding k-mer dic-
tionaries of a given host-pathogen library is key to iden-
tifying shared sequences. This matching has to be done
at a certain sequence identity or similarity threshold.
The most stringent threshold would be 100% identity,
where identical k-mers between the dictionaries are
matched. The longer the k-mer length, the lesser the
number of expected match hits. The more stringent the
threshold, the more significant will be the shared

sequences, in particular for longer k-mers. Thresholds of
identity lower than 100% allow for inclusion of nucleo-
tide or amino acid variations (outcome of mutation or
recombination, for example) within the k-mer. Setting
thresholds by use of identity are more stringent than
similarity. Nonetheless, similarity thresholds are ideal to
identify shared sequences that may no longer be identi-
cal, but conserved physico-chemically. This would help
capture shared sequences that may have evolved since
the point of integration, such as HIV-1 motifs [12], or
are analogs of similar structure, such as a CMV pro-
tein (UL18), analogous to HLA [24].

Share-ome analyses
Determining the protein source of the shared sequences
Tracing the protein source of the shared sequences en-
ables structure-function analysis of the share-ome. A
given shared sequence can originate from multiple dif-
ferent protein sequences. The protein accession number
is readily provided by the kmerslicer tool as the metadata
information is stored alongside the k-mer sequence in
the k-mer dictionary. The shared sequences and the cor-
responding protein accession data can be stratified to
glean for information such as i) most abundant shared
sequence (present in the most number of different pro-
teins); ii) the least abundant shared sequence; it is pos-
sible that for specific host-pathogen relationships, the
least abundant shared sequence could be in more than
one protein; iii) pathogen species origin of the pro-
teins containing the shared sequences (single or multi-
species).

Clustering of shared sequences and detection of amino acid
repeats
Proteins of host and pathogen can be highly represented
and packed with shared sequences. Shared sequence rep-
resentation (SSR) for a given protein is the fraction of
the proteome-wide identified shared sequences that are
present in the protein; i.e. the number of shared se-
quences present in a protein divided by the total number
of shared sequences identified for the proteome, con-
verted as a percentage:

SSRðpÞ ¼ nðpÞ
nðSÞ

� �
� 100

where n is the number of shared sequences present in
a protein of interest, p, or the proteome, S.
Shared sequence packing (SSP) for a given protein is

the length of the protein spanned by the identified
shared sequences over the total length of the protein; i.e.
the total contiguous length of the shared sequences
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present in a protein divided by the total length of the
protein, converted as a percentage:

SSP pð Þ ¼

Xn pð Þ

i¼1

li;p

Lp

0
BBBB@

1
CCCCA� 100

where i is a given shared sequence, with n as the number
of shared sequences present in a protein of interest, p,
and l is the contiguous length of the shared sequences,
while L is the length of the protein, p. For example, a
given viral protein, p of length 100 amino acids and con-
taining three nonamer shared sequences (spanning a
contiguous length of 11 amino acids), originating from a
viral proteome, S comprising of 2537 nonamer shared
sequences (share-ome), would have an SSR of ~ 0.12%
and an SSP of ~ 11%. It should be noted that when the
shared sequences map to multiple contiguous regions in
a protein, the sum of the lengths of these regions should
be used for the SSP calculation. An SSP of 100% for a
protein would indicate that the full-length of the protein
is shared, while an SSR of 100% for a protein would indi-
cate that all the shared sequences of the proteome origi-
nated from the given single protein.
Shared sequences can also harbour amino acid repeats

(AARs). These repeats can be either covering a subset or
the full-length of the shared sequence. In terms of com-
plexity, the repeats can be either simple (low-complex-
ity) or complex; and in terms of distance, they can be
tandem or non-tandem repeats. Identification of AARs
can be carried out by use of the Dotplot plugin in the
Unipro UGENE toolkit [47], which can handle big data.
The Dotplot plugin provides a means for self- or non-
self-comparison between two sequences, allowing identi-
fication and visualization, at gross level, of structural fea-
tures of alignments, such as direct and inverted repeats
(including palindromes), besides mutations, inversions,
insertions, and deletions. A help webpage on how to use
the Dotplot plugin is provided (URL in Table 1). AARs
may represent important functional or structural motifs
or domains, that can provide insight or footprint from
molecular sequence on evolutionary mechanisms of
host-pathogen interactions [48].
Proteins can also be littered with clusters of shared se-

quences (hotspots), which can be defined as regions in
the protein that contain multiple (at least three or more)
shared sequences, overlapping by at least one amino
acid. The clusters can be of a minimum length of 11
amino acids to a significantly large size, such as >100aa.
Such hotspots possibly represent regions of high host-
pathogen interaction activity and may be of important
structural or functional implications. Presence of AARs

within these hotspots can strengthen this assertion fur-
ther [48].
AARs and hotspots are expected to exist in share-ome

containing protein sequences, and AARs have been re-
ported to play a key role in protein structure and func-
tion [49], such as molecular recognition and molecular
assembly [48]. Additionally, abundance of repeats may
be an indication of selective pressure exerted on the gen-
ome, signifying a conserved region among orthologous
proteins, as observed in lysine, glutamic acid, proline,
serine and alanine rich repeat proteins [50].

Lineages and gene ontologies of shared sequences
Determining the organismal lineage origin of the patho-
gen proteins that contain the shared sequences can re-
veal the identity of the pathogen species contributing to
the share-ome; this information may help better under-
stand the significance of the shared sequence and may
provide relevant insights and/or implications of the
pathogen to the host, in particular if no prior or limited
interactions have been reported. The lineage information
can be used to further characterize the pathogen shared
sequences in terms of structural/functional comparisons,
such as providing insights on homology and virulence
factors, which can aid in understanding of pathogen
mechanism of action [51], and/or reveal evolutionary
trajectories of the pathogen variants and their replication
mechanisms [52, 53]. Separately, analysis of gene ontol-
ogies of shared sequences is important to understand
how and where the effect of the shared sequences maybe
exerted. The gene ontologies can be studied for the host
proteome (and for specific groups of pathogens, if gene
ontology terms are well-established) through an enrich-
ment analysis for cellular component by use of the Gene
Ontology (GO) sever [54]. Additional characterization
maybe performed on the identified shared sequences to
better understand their function and structure, in par-
ticular host-defence implications.

Functional-structural characterizations
Numerous tools are available to develop bioinformatics
approaches for detailed characterization of a mapped
share-ome, in terms of structure and function. Ap-
proaches for functional characterization of pathogen and
human molecular sequences have been described [55],
facilitated by various tools that allow search for known
functions reported in biological databases; and/or pre-
diction of putative functions, modelled using various
methods. Such prediction resources include protein fam-
ily database (Pfam) [56], InterPro [57], conserved do-
main database (CDD) [58], and GO terms for
enrichment analysis [59], among others. A specific as-
pect of function is the assessment of immunological
relevance, given the autoimmune implications of the
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shared sequences. Both cellular and humoral immune
responses are applicable to pathogen sequences.
Humoral, B-cell epitopes can be predicted by use of
tools [60, 61], such as BcePred, BEST, Pep-3D-Search,
PepSurf, CED and PEPITO/BEPro, among others. Simi-
larly, T-cell epitopes can be predicted by use of tools,
such as CTLPred and NetCTLpan [60], among others.
Structural characterization may involve determining

the 3D localisation of the shared sequence in the cog-
nate protein [62] by use of a structure visualisation tool
(such as VMD [63]), and assessing its surface accessibil-
ity and secondary structure by use of NetSurfP [64] or
PDBePISA [65] and DSSP [66], respectively. Homology
models may be built when a 3D structure is not avail-
able, either manually using Modeller or in an
automated-fashion using Swiss-Model. Docking and 3D
simulation maybe carried out to determine the binding
efficacy of ligands using a number of tools available,
such as AutoDock [67] and Gromacs [68].

Results
Application: identification and characterization of
Flaviviridae-human share-ome
Flaviviridae is a family of small enveloped, positive-
stranded RNA viruses of 9000–13,000 bases [69]. Most
are pathogenic to humans, other mammals and birds,
and are chiefly spread by arthropod vectors (mainly ticks
and mosquitoes). The family comprises of over 130 spe-
cies grouped into four genera (Flavivirus, Hepacivirus,
Pegivirus, and Pestivirus), with several unclassified spe-
cies. The diseases associated with the family can range
from asymptomatic to symptomatic, including hepatitis
(hepaciviruses), haemorrhagic syndromes, fatal mucosal
disease (pestiviruses), haemorrhagic fever, encephalitis,
and the birth defect microcephaly (Zika virus). The Fla-
vivirus genus is the largest with more than 70 viral spe-
cies, and notably dengue virus alone poses risk to more
than 3 billion people [70]. In this study, we applied the
approach described herein to define and characterize the
Flaviviridae-human share-ome. Flaviviridae sequences
of dengue and West Nile viruses have been previously
reported to be shared with other organisms [39, 71],
such as mosquito (Aedes albopictus), rice (Oryza sativa
(japonica cultivar-group)) and bacteria (Chromohalobac-
ter salexigen, Acidiphilium cryptum JF-5, Actinomyces
odontolyticus, Burkholderia ambifaria MC40-6, Burkhol-
deria cepacia AMMD, and Methylobacterium extorquens
PA1). The results herein provide insights that will help
better understand the structure, function and evolution
of Flaviviridae.
A total of 263,129 Flaviviridae and 1,245,872 human

protein sequences were retrieved from the NCBI Entrez
Protein (nr) database (as of June 2019 and May 2018, re-
spectively) through the NCBI Taxonomy browser (ID:

“11050” for Flaviviridae) and E-Utilities esearch-efetch
(ID: “9606” for human). Removing duplicate sequences
by use of the CD-HIT tool [38] filtered out ~ 49% and ~
76% of the intially retrieved sequences of Flaviviridae
and human, respectively. The use of the tool kmerslicer
generated a 9-mer (nonamer) dictionary each from the
Flaviviridae (134,904) and human (304,430) non-
redundant sequences, respectively, resulting in 71,428,
325 and 110,721,413 nonamers (redundant dataset). The
choice of nonamer (9-mer) size was to balance between
random and significant hits.
Removal of duplicate nonamers from each dictionary

and cross-matching the remaining nonamers between
the dictionaries resulted in a Flaviviridae-human share-
ome of 2537 nonamers (file size of ~ 1.8 MB) at a
threshold of 100% identity. Close inspection of the
share-ome revealed that 110 nonamers matched to 79
unique protein records in the human dataset that ap-
peared to be of non-human origin (with the “Organism”
field value as “unknown”, “unidentified” or name of
a bacterial species). Further inspection revealed that two
of the 79 were human sequences, six were chimeric fu-
sion proteins (human and bacteria), and the remaining
71 were of bacterial origin (all were from Mesorhizobium
delmotii). Such misclassification of protein records was
not observed for the Flaviviridae dataset. Three of the
110 share-ome nonamers also matched to other human
protein sequences, and thus, were retained, while the
remaining 107 nonamers, as well as the matched 77 pro-
tein records were removed. This resulted in an eventual
Flaviviridae-human share-ome of 2430 nonamers (file
size of ~ 1.8 MB) at a threshold of 100% identity (Sup-
plementary Table 1). Although the share-ome repre-
sented a small fraction of the repertoire of Flaviviridae
(~ 0.12%) and human (~ 0.013%) non-redundant nona-
mers (2,107,979 and 18,892,169, respectively), the 2430
shared nonamers mapped to 16,946 Flaviviridae and
7506 human non-redundant protein sequences. The
most abundant shared sequence “PVPPPRKKR” was
present in 4268 viral and 13 human protein sequences;
while “HHHHHHSSG” was present in 973 human and 10
viral protein sequences. As many as 181 shared se-
quences were least abundant, each present in only one
protein of the virus and the host; this included “AAAAAA
GLR” from Hepacivirus C “polyprotein” (specifically,
from viral RNA dependent RNA polymerase region),
shared with the human “EGF-containing fibulin-like
extracellular matrix protein 1 isoform X1”, “GENLYF
QGM” shared between “Chain E, E Protein” of Zika
virus and human “Chain A, E3 ubiquitin-protein lig-
ase Mdm2”, and “LGTVAVALG” shared between “poly-
protein” of Theiler’s disease-associated virus and
human “spermatogenesis associated 3, isoform CRA_
a” protein, among others. The nonamer “AGCQRVGI
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S” was multi-species shared across Bovine viral diar-
rhea virus 1 (Pestivirus A), Bovine viral diarrhea virus
2 (Pestivirus B), and Bovine viral diarrhea virus 3
(Pestivirus H).
The “Second envelope protein (Fragment)” from

Hepacivirus C was most represented of shared sequences
in the Flaviviridae proteome, with an SSR of ~ 9.2% (224
shared sequences). Similarly, for the human proteome,
the sequence in the protein record “hCG2016179, iso-
form CRA_f” was the most represented, with an SSR of
~ 8.7% (212 shared sequences); BLAST search revealed
that this protein was a homolog to DnaJ protein. In con-
trast, the least represented proteins of the human and
the Flaviviridae proteomes totalled to 4448 and 8618,
respectively, with just a single shared sequence in each,
and thus a negligible SSR of ~ 0.04% for each protein.
These proteins included “prostaglandin-endoperoxide
synthase-1” and “papillary thyroid carcinoma-encoded
protein” for human, among others; while for the Flavi-
viridae, they included “non-structural 2A-(NS2A)-pro-
tein” of Dengue virus 1, “envelope (E) protein” of
Japanese encephalitis virus, and “non-structural 4B-
(NS4B)-protein” of GB virus, among others.
Assessment of SSPs revealed that the “LYST-interact-

ing protein LIP6” in human was possibly the most
packed of shared sequences, with an SSP value of ~
73.8%. The least packed human protein was the “cyto-
chrome P450c17, partial”, among many others, with an
SSP value of ~ 1.8%. Similarly, the “polyprotein, partial”
of Bovine viral diarrhea virus 1 was possibly the most
packed viral protein, with an SSP value of ~ 33.2% (calcu-
lated over the reported length of the partial polyprotein).
The “non-structural 2A-(NS2A)-protein” of Dengue virus
1, among many others, was the least packed, with an
SSP of ~ 0.3%. There were several other hits with an SSP
higher than those reported above, but were ignored from
SSR, SSP and hotspot evaluations because record meta-
data review revealed that they were chimeric, synthetic
construct, or modified protein (patent sequence). This
shows that it may be difficult to remove all irrelevant se-
quences early on at the “data cleaning and processing”
step (see Materials and Methods section). This is be-
cause it would require evaluating the meta-data of every
single sequence record, coupled with domain expertise

for correct interpretation, which can be a challenge for
big data. Nonetheless, further checks herein suggested
that the number of remaining irrelevant hits from hu-
man appeared limited. Moreover, the share-ome nona-
mers that these irrelevant proteins matched are also
anticipated to be matched by other relevant proteins.
Thus, the number of share-ome nonamers (2430) was
expected to remain the same or change minimally. Sep-
arately, it should be noted that the polyprotein matches
pose a question of whether to calculate the SSP over the
entire length of the polyprotein or to calculate for each
of the individual proteins matched within the polypro-
tein. Additionally, it should be considered that fusion
proteins can also be natural, such as those composed of
cellular and viral sequences, and thus, should not be
filtered.
Analyses for AARs of length three to five amino acids

at 100% identity among the 2430 nonamers of the share-
ome illustrated innumerable regions of repeats and
inverted repeats within and between them (Fig. 2;
Table 4; Supplementary Figure 1). Nearly 83% (2026) of
the shared sequences formed hotspots in viral proteins
(Supplementary Table 2 provides a list of top 200 hot-
spots), each a cluster of at least three overlapping shared
sequences covering a minimum length of 11 amino acids
to a large region covering 160 amino acids (aa) of “p125
protein, partial” from Bovine viral diarrhea virus 1, with
an SSP of ~ 15.2%. Similarly, for human, the longest hot-
spot covered a region of 95 amino acids, observed in the
human protein, “LYST-interacting protein LIP6” (SSP,
~ 73.8%).
The shared nonamer sequences mapped to 125 species

of Flaviviridae, including several with unclassified genus.
The majority (~ 68%) of the shared sequences mapped
to Hepacivirus C species (Fig. 3). The West Nile, dengue
and Zika viruses of the Flavivirus genus accounted for
~ 11%, ~ 7%, and ~ 3%, respectively, of the Flaviviri-
dae protein sequences (16,946) mapped by the share-
ome. Other notable species or groups of viruses only
accounted for less than 1% each, these included: Tick
borne encephalitis virus, Japanese encephalitis virus, Pes-
tiviruses, Pegivirus A, Kyasanur forest disease virus, and
Yellow fever virus, among others. The Hepacivirus C and
Dengue viruses also had their various genotype

Fig. 2 Dot matrix of Flaviviridae-human shared sequences at window length of three amino acid residues. Multiple direct repeat regions (cyan
areas) were identified in the dot plot. Well-defined regions of low-complexity are outlined in black, while well distinct inverted repeat regions are
outlined in dark-red with prominent black dots as the indirect repeats
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sequences well represented in the share-ome. Hepatitis
C virus genotype 1 accounted for ~ 33% of the ~ 68%
Hepacivirus C shared sequences in the share-ome, while
Dengue virus serotype 1 accounted for ~ 41% of the ~ 7%
of Dengue viruses.
Gene ontologies of the shared sequence were evalu-

ated from the 7506 human protein (IDs) identified for
the share-ome, which mapped to 2376 gene names in
UniProt. However, for enrichment analysis, only 1132
records for cellular compartment GO Terms were anno-
tated and retrieved for analysis. The 1132 GO terms
were reduced mapped to 127 “GO_slim” terms (Fig. 4)
by use of a GO Terms Classification Counter – Cate-
GOrizer [72]. Notably, the high frequency terms implied

localization of the proteins in the nucleus, plasma mem-
brane and cytoskeleton. Studies have shown that non-
structural protein 3 (NS3) and NS5 of flaviruses interact
with the cellular component cytoskeleton in human [73].
Biological process involvement of the 2376 human

genes was evaluated by use of GeneMANIA Cytoscape
plugin, which produced 2001 nodes and 215,897 edges
(setting “biological processes” for the Gene Ontology
term and “Homo sapiens” for source species) (Fig. 5).
The most enriched biological process terms in the net-
work were metabolism, cell communication and signal
transduction, among others (data not shown). Network
analyses of the nodes using the Network Analyzer of
Cytoscape predicted 1879 hub genes, with node degree

Table 4 Sample of amino acid repeats (AARs) within the Flaviviridae-human shared sequences

Direct Repeat Indirect Repeat Simple
Repeat

Non- Tandem
Repeat (NTR)

3-
mer

No. of
Matches

4-
mer

No. of
Matches

5-mer No. of
Matches

3-
mer

No. of
Matches

4-
mer

No. of
Matches

9-mer 9-mer

GLL 31 AAAG 14 GGGSG 28 AAA 96 ELKQ 6 GGGGGGGGG ENVKAKIQD

GVD 17 GGGG 47 GSGGG 27 APA 10 LIKV 3 HHHHHHHHH ESTLHLVLR

HHH 313 GIPP 13 HHHHH 222 DGK 7 GMQIFVKTL

LLL 293 GRAA 4 LLLLA 18 GLL 31 GRTLSDYNI

LLS 47 HHHH 222 LLLLL 80 LLA 48 HLVLRLRGG

LPP 23 LIGL 2 LLLSL 17 LLL 293 IQKESTLHL

LVL 40 LLGL 19 PNPPKT 4 PLS 16 KESTLHLVL

PPQ 16 LLLL 159 PPPPP 34 SAA 21 LHLVLRLRG

PPR 30 LLSL 26 SHHHH 25 SPR 12 NIQKESTLH

RRL 13 LPVL 10 SSGLV 5 VAA 17 STLHLVLRL

Fig. 3 Major Flaviviridae species that shared peptides of length nine (100% identical) with human proteins
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Fig. 4 Cellular localization of the human proteins that contained the Flaviviridae-human shared sequences

Fig. 5 Flaviviridae-human share-ome interaction network of 2001 nodes and 215,897 edges. The top 20 human, hub genes with node degree of
300 and above for the Flaviviridae-human share-ome interaction network are shown in Table 5
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Table 5 Top 20 human, hub genes with node degree of 300 and above for the Flaviviridae-human share-ome interaction network

Gene name Degree Betweenness Centrality Closeness Centrality Clustering Coefficient

UBC 1441 0.027056 0.781299 0.139379

APP 665 0.004432 0.59898 0.166061

FN1 645 0.003141 0.595586 0.184236

XPO1 610 0.002835 0.588738 0.220372

AUTS2 606 0.002965 0.588912 0.181431

SRPK1 605 0.00213 0.588218 0.218477

CAND1 601 0.0021 0.585802 0.204786

CELF2 593 0.002288 0.58649 0.204714

TRIM28 579 0.002369 0.583236 0.199306

RBFOX1 576 0.002589 0.583577 0.18808

DAPK1 566 0.002433 0.581538 0.187911

PIK3R1 553 0.002085 0.578505 0.198063

DLG2 552 0.002489 0.577836 0.186907

EGFR 551 0.002312 0.578673 0.186986

PRKG1 527 0.001923 0.575339 0.187856

SUMO1 526 0.001842 0.574676 0.221619

PPP2CA 525 0.001574 0.574676 0.225096

IQGAP2 519 0.001925 0.573851 0.183431

EPS15 519 0.001614 0.571551 0.206002

KDM1A 516 0.002118 0.571224 0.186227

Fig. 6 Hepatitis C virus (HCV) genotype 1a-human protein-protein interaction (PPI) network. The HCV proteins associated with major hub, human
proteins (TP53, PSMB7, and PSMB8, among others; Table 6). Orange nodes denote viral proteins with red edges linking to other nodes; blue
nodes denote human proteins with grey edges linking to various nodes; and the yellow node denotes the hub protein with the highest degree
of nodes. The TP53 is a hub connecting major nodes of the HCV genotype 1a-human PPI network
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Fig. 7 Dengue virus type (DV) 2 (strain Jamaica/1409/1983)-human protein-protein interaction (PPI) network. The DV proteins associated with
major hub, human proteins (PTBP1, ACTC1 and ACTA2, among others; Table 7). Cyan nodes denote viral proteins with red edges linking to other
nodes; blue nodes denote human proteins with grey edges linking to various nodes; and the yellow node denotes the hub protein with the
highest degree of nodes. The PTBP1 is a hub connecting major nodes, including NS2A-alpha, which connects other viral and human nodes to
PTBP1 and to other nodes of the DV-human PPI network

Table 6 Top 10 hub genes with node degree of 22 and above for the Hepatitis C virus (HCV) genotype 1a-human protein-protein
interaction network

Gene Name Degree Betweenness Centrality Closeness Centrality Number of Directed Edges

TP53 39 0.34606769 0.83928571 39

PSMB7 27 0.07554848 0.67142857 27

PSMB8 25 0.04383678 0.64383562 25

PSMC3 23 0.00613026 0.6025641 23

PSMA3 23 0.00613026 0.6025641 23

PSMB3 22 0 0.59493671 22

PSMB10 22 0 0.59493671 22

PSMA4 22 0 0.59493671 22

PSMD14 22 0 0.59493671 22

PSMB4 22 0 0.59493671 22
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of 50 and above. The gene Ubiquitin C (UBC) had the
highest node degree of 1441 (Table 5) and it is reported
to code for “polyubiquitin-C” protein [74].
Polyubiquitin-C is one of the sources of maintaining the
ubiquitin homeostasis state under normal physiological
conditions [75]. It also plays a key role in sustaining re-
sponses associated to UV irradiation, heat shock, oxida-
tive stress and translational impairment. In addition,
UBC being the gene with the highest node degree, where
it interacts with a large population of genes, suggesting
its importance as a possible share-ome mediator. The
Ubiquitin (Ub) protein can be conjugated to select pro-
teins to modulate their turnover and signalling. The pro-
tein Ub’s broad role in cellular processes, such as
protein trafficking, cell-cycle regulation, DNA repair,
apoptosis and signal transduction, among others [75],
have important clinical implications.
The Flaviviridae-human share-ome was functionally

analysed for viral-host protein-protein interactions (PPI).
The top 200 hotspot containing viral protein sequences
(Supplementary Table 2) were subjected to this inter-
action analysis. Only 24 of these viral proteins were
mapped to unique UniProt IDs, which were submitted
to STRING Viruses database (Table 1) [76] for PPI. This
returned a match to 10 viral organisms, two of which
were further studied (match to Hepatitis C virus (HCV)
genotype 1a (isolate H) and Dengue virus (DV) type 2
(strain Jamaica/1409/1983)) as representative results of
the analysis. Flaviviridae-human protein-protein inter-
action network for Hepatitis C virus genotype 1a (Fig. 6)
and Dengue virus type 2 (strain Jamaica/1409/1983)
(Fig. 7) revealed eight and four viral proteins, respect-
ively, involved in the interaction with human proteins.
In the case of HCV genotype 1a, the eight viral proteins
were “NS4A”, “RNA-directed RNA polymerase”, “Core
p19”, “Serine protease”, “NS5A”, “NS4B”, “Envelope
glycoprotein E2” and “Envelope glycoprotein E1”, which
were involved in the PPI with over 40 human proteins,

directly or indirectly. The human TP53, which contained
at least a shared sequence, was a hub protein with the
highest node degree (Table 6). TP53, a “Cellular tumor
antigen p53” protein, functions as a tumor suppressor in
various types of tumors; regulates growth or apoptosis
depending on the physiological conditions and cell type,
among others [77]. The HCV NS5A, a non-structural
protein occurs in two forms (p56 and p58), before being
activated and released as NS5A and then localizes in the
nuclear periplasmic membrane [78]. Notably, studies
have shown association between NS5A and TP53, where
the interaction appears to lead to transcriptional modu-
lation of the p21/waf1 gene and is suggested to be one
of the contributory factors towards HCV-mediated
pathogenesis. In the case of DV type 2 (strain Jamaica/
1409/1983)-human PPI network (Fig. 7), the four viral
proteins “Capsid C”, “NS2A-alpha”, “Envelope E”, and
“Serine protease NS3” were involved in the PPI with 43
human proteins. The human protein PTBP1, which con-
tained at least a shared sequence, was a hub protein with
the highest node degree (Table 7). PTBP1, a “Polypyri-
midine tract-binding protein 1”, functions as a regulating
protein involved in mRNA splicing, especially in muscle
cell differentiation. The polypyrimidine tract-binding
protein (PTB) interacts with the regulatory sequences of
positive-strand RNA viruses in the cytoplasm; PTB
is translocated from the nucleus to the cytoplasm during
DV infection [79]. Post infection, NS1 and NS3 of DV
and human PTB are observed to co-localize with the
endoplasmic reticulum marker calnexin. It has been
shown that when PTB is not expressed, DV translation
and replication are inhibited; PTB expression facilitates
viral propagation. This suggests PTB and DV protein
PPI in cytoplasmic environment plays a key role in den-
gue pathogenesis.
Additional literature mining for functional

characterization of Flaviviridae-human shared sequences
was carried out. Penta- and hexa-peptide (5- and 6-mer)

Table 7 Top 10 hub genes with node degree of 14 and above for Dengue virus type (DV) 2 (strain Jamaica/1409/1983)-human
protein-protein interaction network

Gene Name Degree Betweenness Centrality Closeness Centrality Number of Directed Edges

PTBP1 16 0.26321534 0.46491228 16

TPM2 16 0.10688075 0.39259259 16

TPM4 16 0.03998649 0.36805556 16

TPM1 16 0.10688075 0.39259259 16

HNRNPK 15 0.13451659 0.43089431 15

HNRNPA1 14 0.1326909 0.43089431 14

HNRNPA2B1 14 0.1326909 0.43089431 14

ACTC1 14 0.01092874 0.31176471 14

TPM3 14 0.00105224 0.31176471 14

NOP2 14 0.35703919 0.3557047 14
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sharing between Zika virus (ZIKV, a fetopathogen and
microcephaly-associated) polyprotein and human pro-
teins linked/related to brain calcification, myelin, (de)-
myelination, and/or axonal neuropathies have been
reported, and a number of the peptides were experimen-
tally validated as immunopositive epitopes in human
[80]. The study suggested cross-reactivity mechanism as
a link between the infection and brain damage/neurode-
velopmental disturbances observed in infants, as well as
individuals with Guillain-Barré-like syndromes. Given
that the search for longer shared sequences may miss
shorter ones, a few of the peptides identified by [80]
remained shared at nonamer level as part of the Flavivir-
idae-human share-ome identified herein. For example,
the pentapeptide LGLTA in VAALGLTAV was shared be-
tween polyprotein of Zika virus and human “MOCO sul-
phurase C-terminal domain containing 1 (also known
Mitochondrial amidoxime-reducing component 1)”,
“mitochondrial amidoxime-reducing component 1 pre-
cursor” and “mitochondrial amidoxime-reducing compo-
nent 1 isoform X1” proteins (MOSC1). This MOSC1 is
similar to human “Sulfite oxidase, mitochondrial”, one of
the microcephaly-related human proteins [81]. Another,
pentapeptide LLGLL was observed in validated epitopes
by [82], such as in RLLLLGLLLL and FLLGLLFFV,
among others, which originated from viral proteins asso-
ciated with autoimmune reactions, of the following feto-
pathogens: ZIKV, Human cytomegalovirus (HCMV), and
Toxoplasma gondi [82]. Several additional nonapeptides
(9-mers) containing the LLGLL motif were identified, all
of which were observed in Hepacivirus C (hepatitis C
virus; HCV) “NS5” RNA-dependent RNA polymerase
and shared with 20 human proteins, which included
“chordin protein” and “desmoglein 3 (pemphigus vul-
garis antigen), isoform CRA_a”, among others. The earl-
ier study [82] did not identify any shared penta- or hexa-
peptide from Hepacivirus C, perhaps because they only
studied 11 proteins of this virus (HCV) and restricted
the search to human microcephaly-related proteins only,
whereas herein all reported Flaviviridae and human pro-
tein sequences were compared. A literature search for
“Hepacivirus C and fetopathogenesis” was to no avail,
and thus, this shared sequence match suggested a differ-
ent role of the nonapeptide compared to the shorter
penta- and hexapeptides that matched to human
microcephaly-related proteins.

Discussion
Shared sequences represent a multi-faceted key to un-
derstanding the host-pathogen interactome, from func-
tional, structural, evolutionary, and immunological
perspectives [21, 83, 84]. Pathogens can interfere with
the normal biological processes of their host, specifically
by targeting the cell component, metabolism and/or

metabolite [85], among others, facilitated by shared se-
quences. The bioinformatics approach presented herein
provides a workflow and considerations to identify and
characterize the host-pathogen share-ome, taking advan-
tage of the big data in public repositories. Earlier studies
were limited to identifying shared sequences for specific
pathogen species of interest. While the workflow herein
is essentially similar to the various works by others [16,
17, 21, 23, 25], the generic methodology is described sys-
tematically, including details and various considerations,
while providing additional new dimensions to certain as-
pects of the workflow. The current workflow was de-
signed around the research goal of mapping and
characterizing the share-ome. Comparison was done
with the existing approaches, such as Peptide Match [86,
87], and where applicable, a similar strategy was applied,
and new ones developed where lacking. This was par-
ticularly so in the area of structural-functional character-
izations. As for mapping, the difference with earlier
workflow was largely in the size of the k-mer utilised
and also the scale of the sequences analysed. Taken to-
gether, this resulted in a new workflow, which enables a
comprehensive and exhaustive mapping of shared se-
quences at big data scale between all reported pathogen
sequences, at any given rank of taxonomy lineage, and
all reported host sequences, at a chosen taxonomic rank.
It is hoped that the work herein would facilitate other
share-ome studies to be carried out rapidly, enabling
comparative share-ome analyses.
Mapping of the share-ome has important implications

towards the design of vaccines and drugs, and develop-
ment of surveillance and diagnostic strategies against
pathogens. Shared sequences predicted and/or validated
to be immune relevant (e.g. as B/T-cell epitopes) may
need to be filtered from inclusion as vaccine targets
since they are shared with the host proteome [88]. Such
sequences may escape immune recognition as a self-
antigen or elicit an autoimmune response within the
host through molecular mimicry [89–91]. A catalogue of
the shared sequences can act as a reference for re-
searchers involved in vaccine design. As for drug design,
shared sequences are likely to be functionally and struc-
turally important [92] and thus, expected to be evolu-
tionarily conserved; therefore, inhibitory ligands may be
designed against them to block pathogen activity. How-
ever, potential for side effect exists, given that they are
also present in the host proteome. Thus, in general,
shared sequences may be avoided from use as targets for
inhibitory drug design. Nonetheless, careful evaluation
of the pathogen and host proteins containing the shared
sequence may offer insights on structural differences be-
tween them, which may abrogate the inhibitory ligand
binding with the host protein, while being effective
against the pathogen. Additionally, even if ligand binding
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ability is congruent with proteins of both pathogen and
the host, there may be differences in the bioavailability
of the host protein [93], and thus, reducing the possibil-
ity of side effects. Shared sequences may not meet the
basic definition of a candidate diagnostic target, which
are preferred to be conserved and specific to the organ-
ism of interest. Shared sequences may be conserved, but
may not be specific; also, the level of conservation may
not be at the desired threshold. Even if they meet the de-
sired criteria for use as a diagnostic target, care must be
taken to discriminate a false positive match with the host
sequences, originating from remnant host cells in the
sample. A catalogue of species relevant to a host-
pathogen share-ome of interest, such as a list of all Fla-
viviridae species that share sequences with human, may
reveal those that are not yet recognised as a threat to the
host. Such species could be further evaluated for inclu-
sion as candidates for surveillance under the list of
emerging or priority pathogens. Additionally, ascertain-
ing those that are known and medically important from
the share-ome species catalogue may provide additional
dimension to re-evaluate an existing priority pathogen
list (PPL) [94, 95].
Herein, we described a systematic bioinformatics ap-

proach for identification and characterization of shared
sequences from big data. Some of the big data challenges
that may be encountered in executing the workflow in-
clude data download time (even with NCBI Entrez E-
utilities API), deduplication of the data by use of CD-
HIT, dissection of the sequences into k-mers to generate
the dictionaries, identification of AARs by use of
UGENE, and mapping of the hotspots, among others.
Resolution of these challenges include a combination of
approaches, such as download of data when the band-
width may be lesser occupied, such as over weekends, or
getting access to a dedicated bandwidth, such as by use
of a national Research Education Network (REN); a
“break-and-conquer” approach by splitting the FASTA
sequence file to various sizes to handle “out of memory”
issues or by allocating a larger memory resource, or a
combination of both. A cloud platform may be desired
when access to an in-house high-performance comput-
ing is limited or is unavailable, provided a budget is at
disposal to pay for the run-time; though the cost may be
reasonable as it can be usage dependent. A workflow
that is well-defined helps plan for these challenges ac-
cordingly and identify appropriate solutions, enabling a
focus on the myriad of research questions possible from
the data.

Conclusion
The workflow herein is generic and applicable to a broad
variety of pathogens, such as viruses, bacteria, parasites,
among others. The methodology significantly expands

the breadth and depth of existing approaches. It enables
the systematic screening and characterization of patho-
gen and host data which would otherwise be impossible
to carry out experimentally, due to too many pathogen
sequences (high pathogen diversity) and the large reper-
toire of the host proteome. It therefore significantly re-
duces the efforts and cost of experimentation, while
providing for systematic screening. The Flaviviridae-hu-
man share-ome provided important structural and func-
tional insights that help better understand the host-
pathogen interaction of this important family of viruses,
which poses an expanding threat to public health.
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Human share-ome nonapeptide sequences.

Additional file 3: Supplementary Table 2. Major clusters (hotspots) of
Flaviviridae-Human shared sequences in proteins of Flaviviridae family
viruses. This list includes Protein ID that may be chimeric, synthetic
construct, or modified protein (patent sequence).
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