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Abstract 

Background  Epigenomic profiling assays such as ChIP-seq have been widely used to map the genome-wide enrich-
ment profiles of chromatin-associated proteins and posttranslational histone modifications. Sequencing depth is a 
key parameter in experimental design and quality control. However, due to variable sequencing depth requirements 
across experimental conditions, it can be challenging to determine optimal sequencing depth, particularly for pro-
jects involving multiple targets or cell types.

Results  We developed the peaksat R package to provide target read depth estimates for epigenomic experiments 
based on the analysis of peak saturation curves. We applied peaksat to establish the distinctive read depth require-
ments for ChIP-seq studies of histone modifications in different cell lines. Using peaksat, we were able to estimate the 
target read depth required per library to obtain high-quality peak calls for downstream analysis. In addition, peaksat 
was applied to other sequence-enrichment methods including CUT&RUN and ATAC-seq.

Conclusion  peaksat addresses a need for researchers to make informed decisions about whether their sequencing 
data has been generated to an adequate depth and subsequently sufficient meaningful peaks, and failing that, how 
many more reads would be required per library. peaksat is applicable to other sequence-based methods that include 
calling peaks in their analysis.
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Introduction
Recent advances in epigenetic profiling technologies 
have revolutionized our understanding of the regulatory 
architecture of the genome. Global enrichment profil-
ing techniques such as chromatin immunoprecipitation 
combined with high-throughput sequencing (ChIP-seq) 

and its derivates are widely used techniques for map-
ping the genome-wide binding sites of chromatin-associ-
ated proteins, including transcription factors (TFs), and 
histone posttranslational modifications (PTMs) [1–3]. 
Together with other comprehensive functional data such 
as transcriptomic (RNA-seq), chromatin accessibility 
(ATAC-seq) and higher-order chromatin interaction data 
(i.e. Hi-C or ChIA-PET), provide the information neces-
sary for constructing cell type-specific reference epig-
enomes, and provide valuable information that supports 
emerging analyses of genome structure and function (refs 
reviewed in [4–8]).

A critical quality control consideration, both in the 
design and data quality assessment for ChIP-seq experi-
ments, is to understand the sequencing depth required 
to obtain a high-quality dataset. Adequate sequencing 
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depth depends on the target factors, size of the genome, 
as well as the number and size of the binding sites of 
the protein [9]. Useful guidelines have been provided by 
the modENCODE and ENCODE consortia about the 
required read depth to obtain adequate high-quality data 
for downstream analysis [10–12]. Despite the recom-
mendations, sequencing libraries can be of low-quality 
due to technical problems, displaying weak or no enrich-
ment compared to input or negative control. In that case, 
increased sequencing will not add to the quality of the 
dataset and it will be necessary to repeat the experiment. 
Therefore, the development of effective, easy-to-use tools 
for informing decisions on whether further sequencing 
with increased read depth would improve data quality 
would be broadly beneficial to the field.

Here, we introduce peaksat, a new tool developed to 
evaluate read requirements and peak saturation in ChIP-
seq experiments. peaksat can be applied more generally 
for estimating target read depths for other sequence-
enrichment studies, including CUT&RUN and ATAC-
seq. peaksat is an open-source R package with minimal 
dependencies. Here, the usability of peaksat is demon-
strated with a case study that investigates the distinctive 
read depth requirements for ChIP-seq analysis of two 
closely related histone H4 acetylation PTMs across dif-
ferent human breast cancer cell lines.

Materials & methods
Cell culture & ChIP‑seq
Cell lines were cultured as described previously in [13]. 
The human breast cancer cell line MCF10A [14] was pur-
chased from the ATCC, and the cell lines MCF10AT1 
[15], MCF10CA1a [16] and MCF10DCIS [17] are a gift 
from Jeff Nickerson’s lab. ChIP-seq assays for histone 
H4 H4K5ac and H4K8ac were performed as described 
by O’Green et al. [18]. Biological replicates for ChIP-seq 
experiments were generated for each cell line from dif-
ferent culture passages. Input libraries were used as the 
ChIP controls. Each library was sequenced across two 
separate lanes of 75 bp single end Illumina sequencing. 
Since histone H4 acetylation modifications are not well 
characterized in these cell lines, we performed the ini-
tial sequencing with an arbitrary depth of 10-15 M reads. 
We then further sequenced these samples with re-pooled 
libraries to reach the read depth estimated by peak-
sat required to reach peak saturation. Raw reads were 
aligned to the human genome (hg38) using STAR aligner 
(version 2.7.7a) using the parameter --alignIntronMax 
1 to disable spliced alignments [19]. Data quality was 
assessed using the seqsetvis [20] and ssvQC R package 
(version 1.0.6) [21] using 1000 peaks randomly selected 
from the merger of all peak calls per histone modification 

in terms of replicate overlap and FRIP (fraction of reads 
in peaks, [10]).

Peak saturation pipeline and quality control analysis
We developed the peaksat R package to estimate target 
read depth required for epigenomic profiles generated 
by ChIP-seq and other sequence-based enrichment 
assays. The required input files are bam files generated 
by any aligner used to analyze ChIP-seq data. If the 
number of total expected peaks is not known, i.e., for 
an uncharacterized factor, then the creation of a meta-
pool that includes all libraries available for this factor 
is recommended. The purpose of the meta-pool is to 
include enough reads in a single sample so that satura-
tion will be reached with at least the meta-pool, if that 
is possible with the data provided. The peaksat pipeline 
is capable of organizing data by ChIP-seq target factor 
and then creating pooled bam files for any biological 
replicates. Once the aligned bam files have been assem-
bled, then the primary processing step of peaksat can 
be applied to unpooled replicates, pooled replicates, 
and meta-pools.

Then peaksat (version 1.0.0; R version 4.1.2; Biocon-
ductor release version 3.14) is used to coordinate down 
sampling (samtools view -s, version 1.3.1) and subse-
quent peak calling. Narrow peaks were called against 
input using MACS2 callpeak (version 2.1.1.20160309) 
[19], with the default q-value threshold of 0.01 by 
MACS2. We used FE (fold-enrichment) cutoff of 1 in 
the initial sequencing to estimate the additional read 
depth required, and then we used FE cutoff of 5 in the 
combined sequencing to explore the peak saturation 
profile. The main analytical steps of the peaksat work-
flow are summarized in Fig. 1.

For each ChIP-seq pooled or unpooled library, peak-
sat performs iterative down sampling of reads and 
subsequent peak calling to establish a curve of peak 
number vs read count (Fig. 1B). If the sequencing depth 
has reached a saturation point, the plateau shown in 
Fig. 1B, it is no longer cost-effective to sequence deeper 
in order to gain more meaningful peaks. If this curve 
represents a meta-pool, we can use the number of 
peaks at saturation as a target number of peaks when 
evaluating the un-characterized histone modification 
target.

Between an initial lag phase and saturation, observed 
peak saturation curves normally show a linear relation-
ship between peak count and read depth (Fig.  1B&C). 
Therefore, in this part, peaksat fits a linear regression 
model and extrapolates to the target number of peaks 
(either derived from the meta-pool or manually speci-
fied) to estimate the number of new reads required for 
the specific target to reach saturation (Fig.  1C). The 
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libraries composing the meta-pool are expected to sat-
urate at the same number of target peaks (saturation 
point of meta-pool), but some libraries exhibit a shal-
lower slope and therefore require deeper sequencing to 
reach the same point. The read count where the extrap-
olated trends intersect with the target number of satu-
rated peaks is the target read count to reach saturation.

Software implementation
peaksat is an R package (https://​www.r-​proje​ct.​org/) for 
the evaluation of ChIP-seq and other sequence-enrich-
ment assays (see code availability section for full details). 
The package provides functions to support two primary 
tasks: 1) iteratively subsampling aligned bam files and 
calling MACS2 callpeak, and 2) analyzing and visualizing 
the resulting peak count according to the down- sam-
pled read depth. Task #1 is highly computationally inten-
sive and so peaksat leverages the distributed computing 
capabilities provided by either the SGE or SLURM job 
schedulers. If those are unavailable, peaksat will utilize 
the parallel R package to speed up processing locally. 
Processing outputs are organized into a directory struc-
ture; previously completed sub-tasks will not be rerun by 
default so partial processing runs can be readily resumed. 
Task #2 provides regression functions to predict peak 

saturation points as more reads are added and various 
visualizations to aid in analysis.

CUT&RUN & ATAC‑seq data
CUT&RUN data were downloaded for GSE172130 [21]. 
Reads were aligned to the mm10 reference genome using 
bowtie2 (version 2.2.9) following the CUT&RUNTools 
processing pipeline [22]. Peaks were called using MACS2 
as part of peaksat using pooled IgG samples as input and 
with --format BAMPE [19].

ATAC-seq data were downloaded for GSE161501 [23]. 
Reads were aligned to the hg38 reference genome using 
bowtie2 (version 2.2.9) as part of pipeline for ATAC-seq 
analysis [24, 25]. Otherwise, processing steps was the 
same as described for ChIP-seq with the exception that 
no input sample was used for calling peaks.

Results and discussion
peaksat pipeline facilitated profiling of histone H4 
acetylation patterns in a breast cancer progression cell 
model
We applied peaksat to study the histone H4 Lys5 and Lys8 
acetylation (H4K5ac and H4K8ac) ChIP-seq patterns in 
the MCF10A human breast cancer progression model 
consisting of four distinct cell lines: the normal-like 

Fig. 1  peaksat package to evaluate read depth in ChIP-seq experiments. A The peaksat workflow is shown here. ChIP-seq projects are organized by 
the factor (i.e., target TF or histone mark), and then all available data for a factor are combined into a meta-pool for a specific target. B The typical 
relationship of number of called peaks vs sequencing depth. C The red and blue lines indicate saturation curves for the different libraries composing 
the meta-pool. Solid lines represent observed peak count vs read count data while the dotted lines are extrapolations of those trends

https://www.r-project.org/
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epithelial MCF10A cells [14], premalignant MCF10AT1 
cells [15] that express constitutively activated HRAS [15], 
and the subsequent xenograft derivatives, MCF10DCIS 
(ductal carcinoma in  situ) cells [17] and MCF10CA1a 
metastatic cells [16]. We generated replicate ChIP-seq 
datasets for H4K5ac and H4K8ac in each cell lines con-
ducted a pilot round sequencing at a relatively shallow 
sequencing depth and obtained an average of 11 million 
reads with no more than 5 k peaks per individual dataset 
(Fig. S1A&B, Fig. S2A&B). The FRIP (Fraction of Reads 
in Peak) values indicated these libraries have low back-
ground signal (Fig. S1C and S2C), and replicate analysis 
showed overall concordance for replicates for each target 
in different cells (Fig. S1D-E and S2D-E). Initial quality 
control analysis showed this was insufficient depth for a 
robust peak call but indicated that the ChIP-seq librar-
ies had been successful for both marks (Supplemental 
figs. S1 and S2). In addition, we found each H4Kac mark 
shared highly similar patterns of peak enrichment across 
different cell lines, despite low frequency of peak overlaps 
between biological replicates (S1D-G and S2D-G).

To determine how much more sequencing was required 
to have enough read depth to support a rigorous analysis, 
we combined all replicates per histone modification into 
meta-pools aiming to approximate the saturated peak 
count for each target. The results estimated 51.5 million 
reads for H4K5ac and 49.7 million reads for H4K8ac were 
sufficient to reach saturation, hitting maximum peak 
counts of 28,400 and 29,200, respectively (Fig. 2A). These 
maximum number of peaks for each meta-pool are rep-
resentative of the peak saturation point beyond which 
additional sequencing is not necessary. Consistent with 
the previous observations for other targets, we found the 
majority of each peak saturation curve appeared to be 
linear where increases in peak count were directly pro-
portional to increases in read count. Additionally, we 
investigated the suitability of a linear regression model to 
describe the linear portion of the peak saturation curve. 
The resulting linear models fit the saturation profiles 
with an adjusted R2 value around 90% (Table S1). In con-
trast to the meta-pools, none of the individual libraries 
appeared to approach peak saturation, with peak counts 
ranging from 420 to 13,690 (Fig. 2B&C).

Fig. 2  Peaksat package estimates sequence depth required to reach saturation for ChIP-seq. A Meta-pool saturation curves that show the number 
of peaks (thousands, k) versus the number of reads (millions, M) for the meta-pool of H4K5ac and H4K8ac ChIP-seq libraries. B Target depth 
estimation procedure. Blue and red lines indicate data from constituent replicates to the meta-pool. Solid-dark lines are observed data from the 
initial low-depth sequencing run. Dotted lines are linearly extrapolated from the initial sequencing and were used to predict the number of reads 
required to reach saturation. Solid-light lines are observed data from combined initial and follow-up sequencing runs. C Tables used to calculate the 
number of additional reads required to reach saturation (Needed) based on the number of reads initially sequenced (Initial) and the estimated total 
target reads to reach peak saturation (Target). All values are in millions of reads
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To determine how many additional reads were needed 
to reach peak saturation, we used the corresponding 
meta-pool saturation peak count and extrapolated a lin-
ear regression to obtain a read depth estimate per library 
(Fig.  2B&C). Based on these estimates, we performed a 
second round of sequencing aimed at obtaining enough 
read depth for each sample. As expected, the combined 
datasets exhibited marked improvement in the number 
of total peaks and an increased concordance of peaks 
between replicates and across cell lines (Fig. S3 and 
Fig. S4). Interestingly, the peak saturation profiles were 
inconsistent across cell lines for a single mark, and this 
variability was more pronounced in the H4K5ac peak 
enrichment profiles (Fig. 2B). The MCF10A H4K5ac rep-
licates demonstrated sufficient read depth and reached 
peak saturation earlier than that estimate of the meta-
pool, however, they did not show high enrichment 
compared to the meta-pool peak enrichment profile. In 
contrast, the MCF10AT1 and MCF10CA1a replicates for 
H4K5ac were expected to reach saturation around the 
meta-pool peak saturation point, but neither replicate 
was saturated, suggesting a need for additional sequenc-
ing to improve the dataset and increase the number of 
meaningful peaks. The MCF10DCIS cell line also showed 
a sharp increase in H4K5ac peak number with additional 
read depth. For H4K8ac, the saturation curves showed 
similar cell line specific patterns as that of H4K5ac. The 
discrepancy in read requirements for the same targets 
across different cell lines suggest that peak saturation and 

read requirements could be due to underlying heteroge-
neity across these cell lines.

Additional factors influencing peak saturation
We used peaksat to investigate the influence of fold-
enrichment and input control read depth on peak satura-
tion. Increasing the minimum fold-enrichment values for 
peak analysis (see methods) showed an expected decrease 
in the saturation peak number (Fig.  3A). Notably, when 
the minimum FE threshold is set at a value greater than 
5, the peak enrichment never reaches saturation. MACS2 
calls peaks against input utilizing dynamic Poisson dis-
tribution to effectively capture the local enriched peaks 
against those in input [19]. This peak calling algorithm 
and the read depth of input control in ChIP-Seq (as sug-
gested by ENCODE) are both important factors involved 
in peak saturation [10, 19]. Through comparison of the 
peak saturation patterns under different down-sampling 
of input reads, we investigated whether increasing the 
number of control input reads enable saturation. For 
both targets, H4K5ac and H4K8ac, peak numbers satu-
rate at 50–60 million input reads (Fig.  3B). Given suf-
ficient input reads, the incremental target read depth 
drives peak enrichment to saturate and before plateauing 
(Fig.  3C). Taken together, both fold-enrichment thresh-
old and sufficient read depth of input controls will help in 
estimating saturated read depth for targets and achieving 
high quality data for downstream analysis.

Fig. 3  The impacts of fold-enrichment threshold and input depth on peak saturation. A Number of peaks versus the number of reads across 
different fold-enrichment thresholds (mapped to shades of red). Data shown are from the pooled replicates with combined sequencing rounds. B 
Heatmap of the number of peaks called for combinations of input and ChIP read depths. Numbers along with the color scale indicate thousands of 
peaks. C Number of peaks versus input read depth curves for all cell lines. All sequencing depths have been limited to 50 M reads for this analysis
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H4K5ac and H4K8ac share similar binding profiles
Overall, H4K5ac and H4K8ac showed similar enrich-
ment profiles across the breast cancer progression 
cell lines (Fig.  4A&B). To compare binding patterns 
for these targets, we performed pairwise differential 
enrichment analysis of each mark across cell lines and 
identified significantly differentially enriched peaks that 
could be grouped into two clusters based on enrich-
ment signal. Cluster 1 were H4K5ac and H4K8ac peaks 
more enriched in MCF10A cells, whereas Cluster 2 
were peaks more enriched in the tumorigenic derivative 
cell lines (MCF10A-T1, −DCIS and -CA1a) compared 
to MCF10A. For example, the enrichment of H4K5ac 
and H4K8ac near the SYBU transcription start site 
(TSS) show a similar pattern of enrichment profiles that 
are stronger in normal MCF10A cell than the tumori-
genic derivative cell lines (Fig. 4C). Conversely, H4K5ac 
and H4K8ac was more strongly enriched near the 
HRAS TSS in tumorigenic cells MCF10AT1, MCF10D-
CIS, MCF10CA1a compared to MCF10A cells. These 
results indicate overall similarity between H4K5ac and 
H4K8ac profiles that may change with increased pro-
liferative capacity of the cells. Thus, peaksat provided 
an appropriate sequencing depth estimate required to 

identify differential histone H4 acetylation modifica-
tions across different cell lines.

Peaksat pipeline is generally applicable for peak 
enrichment analysis with other assays
We further applied peaksat to evaluate the peak satura-
tion curves of ChIP-seq data for transcription factors 
(TFs), as well as CUT&RUN and ATAC-seq datasets in 
order to evaluate its general applicability. We evaluated 
previously published ChIP-seq data sets that compared 
CTCF profiles in the MCF10A progression model [13]. 
These results show the read depth required to reach 
peak saturation for individual replicates across 3 differ-
ent cell lines (Fig. S5A). We also evaluated peaksat for 
quality control of different cell preparation methods for 
CUT&RUN analysis of H3K4me3 and Ikaros, a zinc fin-
ger transcription factor [11]. Regardless of sample prepa-
ration (frozen or fresh), the PTM H3K4me3 required 
only 10 M reads to reach saturation, and a linear regres-
sion relationship exists between read depth and peak 
count before saturation (Fig. S5B). In contrast, the Ikaros 
TF saturation profiles were variable across the different 
preparations. ATAC-seq peaks were evaluated from dif-
ferent datasets generated from different leukemia sub-
types [16] showing that 100 M reads fit well with linear 

Fig. 4  Similar binding profiles between H4K5ac and H4K8ac. A Differential binding peaks across cell lines for H4K5ac and H4K8ac are combined 
together and grouped into 2 clusters to show the altered binding profiles and peak enrichment during progression cell models. The y-axis shows 
the different peaks and x-axis show the sites around the peak summit. RPM, reads per million, is scaled to indicate the enrichment signal. B Overall 
enrichment profiles of differential binding sites centered at peak summit for both targets across different cell lines. The clusters are the same as that 
in Fig. 4A. C Examples of genes nearest to the peaks in cluster 1 and cluster 2. Green peaks refer to H4K5ac binding sites, and orange peaks refer to 
H4K8ac binding sites. The arrows indicate the transcription direction (strand) for each example gene
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model based (Fig. S5C). These results together suggest 
that the peaksat linear regression model is useful to esti-
mate the saturation and target read depth estimates for 
other sequence- and peak-based assays.

Peaksat performance
peaksat is reasonably fast, particularly for datasets with 
a few samples or shallow sequencing depth. peaksat has 
primarily been tested using SGE (Sun Grid Engine) for 
job scheduling. It also has support for SLURM and even 
bash processing if neither job scheduler is available. Typi-
cal runs for peaksat are approximately 1 hour.

Discussion
Read depth has a major impact on the downstream anal-
ysis on high-throughput sequencing enrichment assays 
such as ChIP-seq [11]. In practice, it is important to be 
able to predict the number of sequencing reads required 
to saturate the detection of peaks. However, no R pack-
ages currently exist that flexibly evaluates peak satura-
tion and read depth. We therefore developed peaksat 
to provide a reliable estimate of sequencing depth as an 
important quality control measure and tool for ChIP-
seq pipelines. By combining all data into a meta-pool 
and sampling stepwise fractions of the reads, peaksat 
determines peak saturation and compares these predic-
tions with the set of total peaks identified from the com-
plete data. In practical terms, a lack of saturation point is 
important for the study design and suggests that it would 
be difficult to define an appropriate sequencing depth 
and that other criteria must be specified.

We applied peaksat to a ChIP-seq case study and 
investigated the impact of sequencing depth in multi-
ple H4K5ac and H4K8ac ChIP-seq experiments using 
MCF10A progression model consisting of four different 
cell lines. For each mark, all reads were combined from 
both replicates to form a meta-pool of all reads to reach 
saturation. We then compared datasets for individual his-
tone marks with their read-subsampled datasets. Impor-
tantly, our results showed that the relationship between 
saturated peaks and the number of sequenced reads 
may be extrapolated to estimate the sequencing depth 
requirement for ChIP-seq experiments. Notably, this 
analysis revealed that H4K5ac and H4K8ac modifications 
have different read depth requirements across differ-
ent cell lines. As illustrated in Fig. 2B, the linear models 
for both histone PTMs in MCF10DCIS seem never to 
saturate, approaching 60 k peaks, a preposterous number 
considering the expected number of peaks based on the 
meta-pool saturation peak count. While these additional 
peaks could reflect genuine sites of H4K5/K8 acetylation, 
it is possible that these peaks instead reflect histone H4 
acetylation PTMs present only in a small fraction of cells 

or sites which undergo particularly transient and labile 
acetylation states. Consequently, determining whether 
these peaks should be removed due to the uncertain bio-
logical meaning, and whether they will affect peak satura-
tion profile presented a challenge. This is consistent with 
previous studies have demonstrated that high quality 
ChIP-Seq data never saturates without a fold-enrichment 
cutoff [19]. Overall, peaksat enabled us to reach target 
read depth estimates in order to perform downstream 
differential enrichment analysis. This revealed an overall 
similar binding profiles between H4K5ac and H4K8ac 
marks, but also showed distinct patterns between normal 
and tumorigenic breast cell lines.

The primary utility of peaksat is to provide an impor-
tant starting point for ChIP-seq studies to deter-
mine if the sequence data generated is sufficient to 
perform downstream analysis. Indeed, as sequencing 
depth increases, the number of false positive peaks may 
increase and it is important to use guidelines provided by 
ENCODE to evaluate false peaks in ChIP-seq data. Thus, 
a particularly important downstream analysis is identify-
ing a set high-confident peak sets from replicates.

Conclusions
The peaksat R package is useful in conducting and evalu-
ating ChIP-seq projects. We expect it to easily integrate 
into existing pipelines as it leverages well established and 
commonly used bioinformatics utilities: MACS2, sam-
tools, and R. peaksat is a useful tool to apply into ChIP-
seq, CUT&RUN, ATAC-seq, and other high-throughput 
sequencing assays to facilitate high-quality data and a 
deeper biological understanding.
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