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Abstract 

Background  Thousands of years of natural and artificial selection since the domestication of the horse has shaped 
the distinctive genomes of Chinese Mongolian horse populations. Consequently, genomic signatures of selection can 
provide insights into the human-mediated selection history of specific traits and evolutionary adaptation to diverse 
environments. Here, we used genome-wide SNPs from five distinct Chinese Mongolian horse populations to identify 
genomic regions under selection for the population-specific traits, gait, black coat colour, and hoof quality. Other 
global breeds were used to identify regional-specific signatures of selection.

Results  We first identified the most significant selection peak for the Wushen horse in the region on ECA23 harbouring 
DMRT3, the major gene for gait. We detected selection signatures encompassing several genes in the Baicha Iron Hoof 
horse that represent good biological candidates for hoof health, including the CSPG4, PEAK1, EXPH5, WWP2 and HAS3 genes. 
In addition, an analysis of regional subgroups (Asian compared to European) identified a single locus on ECA3 containing 
the ZFPM1 gene that is a marker of selection for the major domestication event leading to the DOM2 horse clade.

Conclusions  Genomic variation at these loci in the Baicha Iron Hoof may be leveraged in other horse populations to 
identify animals with superior hoof health or those at risk of hoof-related pathologies. The overlap between the selec-
tion signature in Asian horses with the DOM2 selection peak raises questions about the nature of horse domestication 
events, which may have involved a prehistoric clade other than DOM2 that has not yet been identified.
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Introduction
For millennia horses have played a central role in the 
nomadic life of Mongolic ethnic groups. For Mongols, 
known as an ‘ethnic group on horseback’, the horse has 
had considerable cultural and economic significance with 
the horse relied on for transportation, use in warfare and 
as a source of food (meat and mare’s milk). Horse rac-
ing is recognised as one of the ‘three manly games’ and 
a wealth of cultural literary accounts in songs and poems 
relate to horses. Today, the Mongolian horse is recog-
nised as one of the oldest known horse breeds in the 
world [1]. Present-day Mongolian horses are mainly dis-
tributed in parts of northeast and north China (mainly 
Inner Mongolia), Mongolia and some areas of eastern 
Russian [2]. For the present study, we focused on the 
Mongolian horse and derived breeds from the Inner 
Mongolia Autonomous Region (IMAR), China, hereafter 
referred to as the Chinese Mongolian horse.

Chinese Mongolian horses are found in the IMAR, 
western parts of the provinces of Heilongjiang, Jilin and 
Liaoning and some parts of the Xinjiang Uygur Autono-
mous Region (XUAR) [1, 3]. The earliest written record 
of the Chinese Mongolian horse is found in the Book of 
Han which records that “as early as King Yao’s and Shun’s 
time (2,377 – 2,178 BC) this horse lived in the river basin 
depending on the natural pastures along with cattle and 
sheep” [4]. It has been noted that historical records may 
have existed before horses were ridden because it is con-
sidered likely that the Chinese Mongolian horse was 
domesticated ~ 4 kya in northern China near the pre-
sent-day Mongolian border [1]. At present, the Chinese 
Mongolian horse is generally classified as a breed in toto; 
however, as a result of long-term selection for adaptation 
to local environments by herdsmen, four phenotypically 
distinct sub-types have evolved: Wushen (desert type), 
Wuzhumuqin (steppe type), Baicha Iron Hoof (mountain 
type) and Baerhu (steppe type). Other breeds (e.g. Sanhe, 
Keerqin and Abaga Black) found in Inner Mongolia have 
been developed from local Mongolian stock following 
crossbreeding with imported horses from Europe and 
elsewhere.

Horses in Inner Mongolia have adapted to harsh envi-
ronments, grazing year-round without supplemental 
feeding even when the ground is covered with snow 
and experiencing temperatures below − 40 °C in severe 
winters. Generally, they display traits for adaptation to 
extreme cold and dry hot conditions. Several metabolic, 
morphological, and physiological adaptations have been 
proposed to have evolved in Chinese Mongolian popula-
tions in response to their environment. For instance, the 
horses exhibit morpho-anatomical adaptations to the 
cold winter, developing extremely hairy coats in the win-
ter that are shed by late spring before the hot summer. 

In addition, anecdotally it has been suggested that these 
horses exhibit reduced susceptibility to certain infec-
tious diseases [3]. Some Chinese Mongolian horse popu-
lations have been further shaped by local herdsmen for 
traits such as alternative gait (Wushen), black coat colour 
(Abaga Black) and strong hooves (Baicha Iron Hoof). 
We have recently described the fine-scale characteriza-
tion of the population genetic structure of five Chinese 
Mongolian horse populations using genome-wide single-
nucleotide polymorphism (SNP) data [5]. In a principal 
component analysis (PCA), Abaga Black was the most 
genetically distinct from the other four populations while 
the Baicha Iron Hoof was partitioned into two clusters, 
one of which was similar to the Sanhe, Wuzhumuqin and 
Wushen populations. Although Wuzhumuqin, Wushen 
and Sanhe clustered in the first two principal compo-
nents (PCs), the pairwise fixation index (FST) value of 
0.005 estimated for the most closely related populations, 
Wushen and Wuzhumuqinm, was higher than the pair-
wise FST value (0.002) estimated for Paint and Quarter 
Horse, which are recognised as distinct breeds [6, 7]. 
Therefore, we hypothesised that long-term selection 
pressure for population-specific traits (i.e. gaitedness, 
strong hooves and black coat colour) may have contrib-
uted to the observed genomic diversity among the Chi-
nese Mongolian populations. Furthermore, these five 
Chinese Mongolian as well as two other Asian popula-
tions (the Mongolian horse populations in Mongolia and 
Tuva) were genetically similar to each other but distinct 
from other global horse populations and were positioned 
between two large regional groups (European and Ameri-
can/Iberian/Middle Eastern) in the PCA analysis [5]. 
These results therefore lead to the hypothesis that natu-
ral and artificial selection will have left signatures in the 
Chinese Mongolian populations for long-term environ-
mental adaptation when compared to other global horse 
populations.

Here, we report novel genome-wide signals of selection 
in the Baicha Iron Hoof population identified by com-
parison with four other Chinese Mongolian populations 
and signals for adaptation to regional environmental 
conditions in Asian horses compared with European as 
well as American/Iberian/Middle Eastern horse popula-
tions by applying the composite selection signals (CSS) 
approach [8] that summarises multiple tests for selection 
using genome-wide SNP data for 30 global horse breeds, 
including five Chinese Mongolian populations grouped 
by phenotype.

Results
Selection signals for alternative gait in Wushen horse
The ability to pace (a two-beat lateral gait) has been 
selected in Wushen horses by local herdsmen since 
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pacing improves the comfort of riding, particularly over 
long distances. In addition, Wushen horses are bred 
to race with a paced gait since gaited horse racing is a 
popular type of racing in Inner Mongolia. The CSS test 
approach successfully identified the DMRT3 gene on 
ECA23, that has a well-established major effect on alter-
native gait (pace) [9] by comparing Wushen (n = 22) to 
the four other Chinese Mongolian populations (n = 78) 
(Fig. 1, Table S10).

Selection signals for black coat colour in Abaga Black horse
Contrary to the results for gaitedness, the genomic region 
containing the ASIP gene on ECA22 was not immediately 
evident as a selection signature in Abaga Black, when 
Abaga Black (n = 15) horses were compared with other 
Mongolian horses (n = 85) (Fig. S1, Table S2 and S10). 
The CSS component statistics for SNPs within or proxi-
mal to the ASIP locus were therefore examined in more 
detail, but none of the three statistics (ΔSAF, FST and 
XP-EHH) was significant for any proximal SNPs using 
the threshold for significance among the top 0.1% SNPs 
(data not shown). However, by relaxing the threshold to 

include the top 1% SNPs, there was evidence for variation 
at the ECA22 locus containing ASIP (Fig. S2, Table S3).

Selection signals for ‘Iron Hoof’
The Baicha Iron Hoof horse is the mountain-type of Chi-
nese Mongolian horse and it is also commonly known 
simply as the ‘Iron Hoof ’ for its strong, tough hooves. 
To test the hypothesis that the ‘Iron Hoof ’ trait is under-
pinned by genes on which positive selection is acting, we 
performed CSS for the comparison of the Baicha Iron 
Hoof (n = 19) versus other Chinese Mongolian horses 
(n = 81). Genome-wide distribution of the smoothed 
CSS (−log10P) for the comparison identified 10 genomic 
regions with clusters of significant SNPs among the 
top 0.1% SNPs on ECA1, ECA3, ECA4, ECA7, ECA11, 
ECA18, ECA21, ECA26 and ECA31(Fig.  2, Table S4). 
In the selection peaks and their flanking regions, a total 
of 193 genes were identified (Table S4). Genes within 
selection peaks and flanking regions with functions that 
may be associated with hoof health are summarized in 
Table 1. The highest ranked region by CSS score (includ-
ing the flanking region) spanned ~ 1.44 Mb on ECA1 and 

Fig. 1  A chromosome-wide plot of composite selection signals (CSS) scores for the Gaited (n = 22 Wushen) vs. Non-gaited (n = 78 other 
Mongolian) horses in dataset cohort. 1) Unsmoothed results, 2) Smoothed results, obtained by averaging the CSS scores of SNPs within 100 kb 
sliding windows. The dashed red lines indicate the genome-wide 0.1% thresholds of the empirical scores. The red arrow indicates the location of 
DMRT3 on ECA23
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Fig. 2  A chromosome-wide plot of the composite selection signals (CSS) scores for Iron Hoof (n = 19) vs. Non-Iron Hoof (n = 81) in the dataset 
cohort. 1) Unsmoothed results, 2) Smoothed results, obtained by averaging the CSS scores of SNPs within 100 kb sliding windows. The dashed red 
lines indicate the genome-wide 0.1% thresholds of the empirical scores. Ten genomic regions with clusters of significant SNPs among the top 0.1% 
SNPs were identified on ECA1, ECA3, ECA4, ECA7, ECA11, ECA18, ECA21, ECA26 and ECA31

Table 1  Genes within selection peaks and flanking regions with functions that may be associated with hoof health were detected in 
the Baicha Iron Hoof horse

ECA Region (Mb) Top 0.1% 
SNPs (n)

CSS value Cluster rank Candidate genes Gene function

1 119.28–119.72 88 2.83 1 CSPG4, PEAK1 Matrix metalloproteinase 2 activity

SEMA7A, CSK, PSTPIP1 Rheumatoid arthritis

7 16.77–17.08 56 2.71 2 GUCY1A2 Rheumatoid arthritis

EXPH5 Inherited Skin Fragility

3 39.62–40.1 65 2.50 3 EMCN Rheumatoid arthritis

3 20.14–21.01 104 2.34 5 WWP2 Plantar fibromatosis

TERF2 Dyskeratosis congenita

PSMD7 Ankylosing spondylitis

NQO1 Injury and inflammation

NOB1 Osteosarcoma

NFAT5 Inflammatory arthritis

HAS3 Hyaluronan metabolism in human 
keratinocytes and atopic dermatitis 
skin

31 12.94–13.16 53 2.28 6 OPRM1 Rheumatoid Arthritis
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contained the genes CSPG4, PEAK1, SEMA7A, CSK and 
PSTPIP1 (also known as CD2BP1). The second ranked 
region on ECA7 flanked the EXPH5 gene. Furthermore, 
six candidate genes were identified on ECA3; WWP2, 
PSMD7, NQO1, NOB1, NFAT5 and HAS3. Additionally, 
we identified several genes (SEMA7A [10], CSK [11], 
GUCY1A2 [12], EMCN [13], OPRM1 [14]) that are asso-
ciated with rheumatoid arthritis (RA).

Selection signals relating to geographic origin / adaptation
To understand genomic variation contributing to 
regional adaptation we searched for selection signals in 
the Asian populations (n = 133) that distinguish them 
from European (n = 191) and America/Middle Eastern 
breeds (n = 281). To assess functional significance of 
genes in selected regions, we assigned functional anno-
tation to all genes in the regions defined by the top 0.1% 
SNPs (including those with < 5 SNPs) using the DAVID 
functional annotation tool [15] as well as the GeneCards 
[16].

The genome-wide distribution of the smoothed CSS (−
log10P) for Asian versus American/Middle Eastern pop-
ulation groups revealed six genomic regions on ECA6, 
ECA17, ECA21, ECA26 and ECA27 exhibiting signatures 
of selection (Table S5, Fig. S3). These six regions with 
flanking regions contained 113 genes including those 
associated with deafness, immune response, response to 
cold, intellectual disability, nervous system development, 
mitochondria, muscular dystrophy, muscle contraction, 
heart development, spermatogenesis, heart contraction, 
and brain development (Table 2, Table S6).

On the other hand, comparison of the Asian versus 
European population groups localised a single signifi-
cant genomic region on ECA3 that spanned ~ 1.5 Mb. 
The selection and its flanking regions contained 52 genes 
including genes that are related to lactation and groom-
ing behaviour, mitochondria, inflammatory response, 
innate immune system, motor coordination, metabolic 
pathways, nervous system development, heart develop-
ment, pigmentation, sperm mobility and gonad devel-
opment, and intellectual disability (Fig. 3, Table 3, Table 
S7–8).

Most strikingly, the selection peak contained the 
ZFPM1 gene (Fig. S4), which overlaps with one of the 
two selection peaks identified among the domestic horse 
clade, DOM2, representing the earliest domesticates that 
became geographically widespread following 4200 YBP 
[17].

Discussion
Tests for genome-wide selection signatures were per-
formed using the CSS approach in regional subgroups 
of Chinese Mongolian and Asian horse breeds that have 
experienced long-term natural and artificial selection as 
discrete population units. This contrasts with previous 
studies that have identified selection signals for traits 
in domestic horse breeds that have experienced intense 
selection pressure applied over a relatively recent evolu-
tionary time period [7, 8].

The major genetic determinants of the ability to per-
form an alternative form of gait (i.e. pace) and various 
coat colour traits in the horse are well understood and 
therefore provide phenotypes to demonstrate the utility 

Table 2  Genes with functional significance identified in the selection peaks and flanking regions in the Asian versus American/Middle 
Eastern horse cohorts

ECA Region (Mb) CSS value Candidate genes Function

6 82.81–82.81 2.16 MSRB3, LLPH, HELB Deafness

IRAK3, HMGA2, CAND1 Immune response

17 57.06–57.22 1.64 SLITRK6 Deafness

21 2.62–3.62 1.72 IL12RB1, BST2, JAK3, IFI30, UBA52, AP1M1 Immune response

SLC27A1 Response to cold

KCNN1, SIN3B Intellectual Disability

TMEM59L, NR2F6, MAP1S, NCAN, HAPLN4, CHERP Nervous system development

YJEFN3, MRPL34, MPV17L2, GTPBP3, SLC25A42, NWD1, 
NDUFA13, HSH2D, FAM32A

Mitochondria

TMEM38A Muscular Dystrophy

TPM4 Muscle contraction

BORCS8 Heart development

CALR3 Spermatogenesis

27 17.56–17.75 1.754087 SGCZ Heart contraction

DLC1 Brain development



Page 6 of 11Han et al. BMC Genomics           (2023) 24:35 

of the CSS test in these populations. Here, the detection 
of a known genomic selection signal for gaitedness in the 
Wushen population suggests that this method can be 
used to identify other genomic regions containing genes 
for traits under selection within the studied populations.

The genomic region containing the ASIP gene on 
ECA22 was not immediately evident as a selection signa-
ture in Abaga Black, which has been bred for black coat 
colour (Fig. S1 and Table S2). However, when we included 
the top 1% SNPs, evidence for variation at the ECA22 

Fig. 3  A chromosome-wide plot of composite selection signals (CSS) scores for the Asian (n = 133) vs. European horse (n = 191) populations in the 
dataset cohort. 1) Unsmoothed results, 2) Smoothed results, obtained by averaging the CSS scores of SNPs within 1 Mb sliding windows. The dashed 
red lines indicate the genome-wide 0.1% thresholds of the empirical scores. A single region with clusters of significant SNPs among the top 0.1% 
SNPs was identified on ECA3 containing the ZFPM1 gene within the selection peak

Table 3  Genes with functional significance identified in the selection peaks and flanking regions in the Asian versus European horse 
cohorts

ECA Region (Mb) CSS value Candidate genes Function

3 34.7–36.22 2.59 APRT Lactation, grooming behaviour

CA5A, CTU2, MAP1LC3B, SPG7, ACSF3, CYBA Mitochondria

CYBA, IL17C, APRT Inflammatory response

GALNS, IL17C Innate immune system

JPH3, KLHDC4, SNAI3 Motor coordination

MVD Metabolic pathways

SLC7A5, SPG7 Nervous system development

ZFPM1, TCF25, FOXL1, FOXF1, FOXC2, DBNDD1 Heart development

MC1R Pigmentation

GAS8, FANCA Sperm motility, gonad development

CDH15, ANKRD11 Intellectual disability
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locus containing ASIP was identified (Fig. S2, Table S3). 
The weaker than expected signal may be explained by 
the breeding history of this population. Although it is 
recorded that local herdsmen have favoured black horses 
since the thirteenth century and it is common to see 
black horses in this geographic area, the Abaga Black has 
only been officially recognised as a distinct breed since 
2006, therefore the selection history may not be long 
enough to be captured by the initial stringent threshold 
criteria. Also, it is possible that there is a novel gene in 
this population contributing to the coat colour pheno-
type observed in this population that may be different 
from the common black coat colour observed in modern 
horse breeds [3]. Indeed, a number of rare coat colours 
have been identified in Mongolian horse populations that 
are not found in the more common modern European/
American breeds [18]. Since several genomic regions 
on other chromosomes were identified in the Abaga 
Black, these genomic regions may harbour genes and/or 
genomic regulatory elements influencing the coat col-
our phenotype and other uncharacterised traits in this 
population.

Selection signals for ‘Iron Hoof’
The equine hoof is a highly complex structure of the 
integument, which is produced by a modified epidermal 
layer covering the tip of the distal phalanx. The heritabili-
ties of hoof shape and hoof wall quality phenotypes have 
previously been estimated as 0.12 and 0.10, respectively 
[9] indicating a modest genetic contribution to varia-
tion in hoof characteristics in the horse. Furthermore, a 
recent study that investigated the environmental effect 
on the morphometrics of the hooves of 100 feral Aus-
tralian horses from five populations has suggested that 
a hard ground surface environment has an effect on the 
hooves, such as thickening of the hoof wall [10].

For the detection of selection signals in ‘Iron Hoof ’, 
the CSPG4 gene on ECA1 has been observed to be 
expressed in connective tissues, basement membranes 
and developing blood vessels [19]. Both CSPG4 and 
PEAK1 are expressed in equine hoof lamellar tissue [20] 
and involved in MMP-2 activity [21, 22], a member of the 
matrix metalloproteinases (MMP) family that is present 
in normal hoof wall lamellae [23]. The lamellar basement 
membrane changes may be the first step in lamellar fail-
ure occurring prior to detection with conventional meth-
ods [24]. Considering their function in MMP activity 
and expression in equine lamellar tissue, we hypothesise 
that genetic variation in CSPG4 and PEAK1 may influ-
ence MMP activity in the epidermal lamellae for mainte-
nance of lamellar health. CSPG4 could represent a strong 
candidate as it is also involved in dermal thickness, skin 

vascularization, vessel development [25] and keratiniza-
tion [26].

There are several other candidate genes contained 
within the selection signals with functions that may be 
relevant to hoof biology. The selected region on ECA7 
flanked the EXPH5 gene, which is related to inherited 
skin fragility [27]. Six candidate genes on ECA3, WWP2, 
PSMD7, NQO1, NOB1, NFAT5 and HAS3, are expressed 
in equine lamellar tissue and are likely to be involved in 
the biology of the hoof (Table 1). For example, in humans, 
a SNP (rs62051384) located within WWP2 is associated 
with plantar fibromatosis, a rare fibrous hyperprolif-
eration of the deep connective tissue of the foot [28]. A 
polymorphism (rs17336700) in the PSMD7 gene is asso-
ciated with ankylosing spondylitis in Chinese subjects 
[29]. The NQO1 is a representative target of the nuclear 
factor, erythroid 2 like 2 (NFE2L2) transcription factor, 
which causes suppression of the macrophage inflamma-
tory response [30]; inflammatory damage to the lamellae 
is one of the biological processes known to cause lamini-
tis [31]. The protein product of NFAT5 regulates synovial 
proliferation and angiogenesis in chronic arthritis [32]; 
the NOB1-encoded protein is likely to be a potential tar-
get for the treatment of osteosarcoma [33]; and the HAS3 
product is related to hyaluronan metabolism in human 
keratinocytes and atopic dermatitis skin [34].

Finally, several genes (SEMA7A [10], CSK [11], 
GUCY1A2 [12], EMCN [13], OPRM1 [14]) are associated 
with rheumatoid arthritis (RA). RA is a complex genetic 
disease that is relatively common and affects the joints 
with occasional skin manifestations [35]. However, it 
is unclear how this may relate directly to hoof strength, 
therefore further investigation of the association between 
RA-associated candidate genes and hoof strength may 
provide new insights to understand equine hoof physi-
ology and possibly shed further light on RA in humans. 
Also, it may be possible that the Iron Hoof horses have 
been selected for traits other than the principle hard 
hooves phenotype.

Selection signals relating to geographic origin
No genomic regions were common across the Asian ver-
sus European and Asian versus American/Middle East-
ern population group comparisons. Only one selection 
signal was identified for the Asian versus American/Mid-
dle Eastern comparison. This selection signal contained 
the HMGA2 gene, which has been reported to be associ-
ated with height variation and metabolic traits in ponies 
[36–38]. Generally, Asian horses tend to have smaller 
stature than western breeds. However, in the absence of 
additional phenotypic information for the horses used in 
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this study, it is not possible to understand which trait the 
selection signal may be underpinning.

For the Asian versus European comparison, the selec-
tion peak for the highest ranked selection signal on 
ECA3 (35,533,253 bp) was closest to two genes, ZNF469 
(3:35654813–35,666,467 bp) and ZFPM1 (35,728,941-
35,748,261 bp) (Fig. S4). To our knowledge, there are no 
known associations for ZNF469 among horse breeds. 
However, it is noteworthy that this selection signal over-
laps with one of the two selection peaks identified among 
the domestic horse clade, DOM2. This clade represents 
the earliest domesticates that became geographically 
widespread following 4200 YBP [17]. The previously 
described selection peak at ZFPM1 distinguished DOM2 
from non-DOM2 archaeological specimens representing 
an early domestic group that did not contribute to mod-
ern horse populations. This selection signature has been 
hypothesised to reflect the emergence of docility and 
stress traits, which may reflect cognitive changes accom-
panying horse husbandry practices among intensively 
managed populations.

Two possible explanations may be proposed for the 
concordance of the ZFPM1 selection peaks. First, extant 
Asian and European populations differ considerably in 
their mode of husbandry, with Mongolian horses being 
free-ranging, mimicking natural herd structures with 
little human interaction, and therefore they may have 
quite different cognitive requirements [1]. However, 
examination of genotype frequencies of the top SNP 
(chr3.35533253, rs68458737) among 806 horses from 
a range of global breeds (Table S9 and Fig. S5), suggests 
that the selection signal may be driven by native British 
Isles horse breeds rather than a behavioural phenotype 
distinctive of the Asian horses. The highest frequency of 
the GG genotype was observed in Shire (0.82), Clydes-
dale (0.71), Fell Pony (0.48) and Exmoor (0.33) and was 
absent or at low frequency (< 0.05) in six of the seven 
Asian breeds (Baicha Iron Hoof, Wuzhumuqin, Sanhe, 
Mongolian, Tuva and Wushen). Notably, Clydesdale and 
Shire are among the largest horse breeds [39], and the 
ZC3H18 gene, located within the selection peak, is asso-
ciated with body weight in other species [40]. However, 
an association of the G allele with body mass traits is 
not supported by the observation that Exmoor and Fell 
Pony breeds are small breeds and because the alterna-
tive homozygous genotype (AA) is fixed in the Belgian 
Draught sample.

We recently suggested that Mongolian horse popula-
tions may preserve ancient genomic variants that do not 
exist in other global horse breeds [5] as their paternal lin-
eages can be dated to the early domesticates, at least 1400 
YBP [41]. Therefore, a second possible explanation is that 
DOM2 horses did not replace all locally domesticated 

horse populations and Chinese Mongolian (and Mongo-
lian and Tuva) horses may be the result of an entirely sep-
arate domestication event not linked to the Volga-Don 
origins. However, this is not supported by modelling of 
ancestral population structure in the Chinese Mongolian 
horses [5]. Consequently, based on these observations, 
a distinct contribution from native British Isles horses 
to modern horse genetic variation becomes plausible. 
Indeed, there is historical, morphological, and genetic 
evidence that has led to the assertion that wild horses 
survived in Great Britain and the Exmoor pony, for 
example, may be an ancient relic of pre-domestic horses 
[42]. Therefore, accurate reconstruction of the history of 
horse domestication using paleogenomes requires inte-
gration of sufficient genome-wide data from geographi-
cally representative modern horse populations, including 
older landrace or heritage breeds.

To further study regional adaptations in Chinese Mon-
golian horse populations, future research should focus on 
genome sequencing data for appropriate regional popula-
tions, rather than genotype data arising from SNP geno-
typing arrays. There can be considerable ascertainment 
bias in equine genomic studies that focus on the more 
common European and European-derived breeds. This 
is because the EquineSNP50 Genotyping BeadChip was 
designed predominately using information from poly-
morphic SNPs observed in seven European breeds [43], 
which has resulted in a genotyping array with low rep-
resentation of rare variants within non-European breeds 
such as Asian horses. This ascertainment bias may there-
fore be responsible for the lower number of selection sig-
natures detected using the 36 K SNP data set compared 
to the 511 K SNP data set. In addition, one of the compo-
nent tests of CSS, the XP-EHH test, is haplotype-based 
and likely compromised by lower SNP densities [44].

Conclusion
We have identified several genomic regions that under-
lie adaptive traits that have been shaped by long term 
microevolutionary processes in Asian horse popula-
tions. Importantly, plausible candidate genes that may 
be involved in hoof health have been identified in the 
Baicha Iron Hoof horse. The Baicha Iron Hoof is a criti-
cally endangered breed and the identification of genetic 
variants under selection in this population, that distin-
guish them from other local populations, emphasises the 
need for efforts to protect and conserve ancient, heritage 
and landrace livestock with distinct microevolutionary 
histories. In addition, the signal of selection detected in 
Asian populations highlights the importance of inclusion 
of modern breeds in the interpretation of paleogenomic 
data for inference of population history. The coincidence 
of a selection peak among modern horse breeds at an 
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evolutionarily critical locus, raises the question whether 
DOM2 horses replaced all locally domesticated horses, 
or whether some other archaic lineages still survive, with 
their ancestors not yet identified.

Methods
DNA samples and genotypic data
Methods for sample collection were performed in 
accordance with approval from the University College 
Dublin Animal Research Ethics Committee (AREC-E-15-
14-Hill). Tail hair samples were collected from horses and 
155 horses from five distinct Chinese Mongolian popu-
lations were genotyped using the Axiom™ MNEC670 
Equine Genotyping Array (Applied Biosystems/Ther-
moFisher Scientific). Following removal of closely related 
horses (pi_hat > 0.3 in PLINK v1.9) [45], 100 horses were 
included for analysis. Sample information and SNP data 
are described in detail in [5]. After SNP quality control 
(genotype missing rate > 0.05 and MAF < 0.01) 511,913 
autosomal SNPs that mapped to EquCab 3.0 were 
used for the Chinese Mongolian population genomics 
analyses.

To expand the number of comparator horse popula-
tions, publicly available genotypes generated from the 
Illumina EquineSNP50 Genotyping BeadChip were 
obtained and merged with the Chinese Mongolian 
horse data. After SNP quality control (genotype miss-
ing rate > 0.05 and MAF < 0.01), 36,351 autosomal SNPs 
that mapped to EquCab 3.0 were retained. The publicly 
available horse samples and SNP genotypes have been 
previously reported [46] and the data were obtained 
from www.​anima​lgeno​me.​org/​repos​itory/​pub/​UMN20​
13.​0125. Imputation of missing genotypes and haplotype 
phasing were performed using BEAGLE 3.3 [47].

Composite selection signature (CSS) cohorts of contrasting 
phenotypes of interest
The phenotypes for the five Chinese Mongolian horse 
populations were documented and photographs of each 
horse taken at the time of sample collection. The detailed 
information has been previously described [5]. Contrast-
ing cohorts selected from additional global breeds were 
defined to identify signatures of selection. The overall 
comparison cohorts are shown in Table S10.

To validate the CSS approach, two datasets (A and B) 
were created from the Chinese Mongolian populations 
(511 K SNPs) to evaluate selection for traits known to 
be under the control of single genes with major effects, 
namely gait and black coat colour. Dataset A included a 
single gaited horse population (Wushen) and four non-
gaited horse populations. A SNP (23:22359351) tagging 
the DMRT3 gene located on ECA23 (ECA23: 22,378,399 
– 22,392,510) is highly associated with the ability to 

pace in horses [9]. Dataset B consisted of animals from 
a population selected for black coat colour (Abaga Black) 
and four non-black coat colour populations. The ASIP 
gene for black coat colour is located on ECA22 (ECA22: 
26,009,341 – 26,072,655). Horses that are homozygous 
for an 11 bp deletion in exon 2 of the ASIP gene are black 
in colour [48].

Dataset C (511 K SNPs) included the ‘Iron Hoof ’ popu-
lation (Baicha Iron Hoof) and four non-Iron hoof horse 
populations; Dataset D and dataset E (36 K SNPs) were 
generated to identify signatures of selection in Asian 
populations (five Chinese Mongolian horse populations 
and two publicly available Asian populations) compared 
with American/Iberian/Middle Eastern and European 
populations: dataset D was for Asian versus American/
Iberian/Middle Eastern; dataset E was for Asian versus 
European.

Composite selection signal (CSS) method
The composite selection signals (CSS) approach was 
developed to investigate genomic signatures of selection 
and has been successful at localising genes for mono-
genic and polygenic traits under selection in livestock [8, 
49]. As the CSS uses fractional ranks of constituent tests 
and does not incorporate the statistics with P-values, it 
allows a combination of the evidence of historical selec-
tion from different selection tests. For the present study, 
the CSS combined the fixation index (FST), the change in 
selected allele frequency (ΔSAF) and the cross-popula-
tion extended haplotype homozygosity (XP-EHH) tests 
into one composite statistic for each SNP. FST statistics 
were computed as the differentiation index between the 
population/s of interest (as selected) and the contrast-
ing/reference population/s (as non-selected). XP-EHH 
and ΔSAF statistics were computed for the selected 
population/s against the reference population (as non-
selected). The composite selection statistics (CSS) were 
computed as followed by [8]. To reduce spurious signals, 
the individual test statistics were averaged (smoothed) 
over SNPs across chromosomes within 100 kb sliding 
windows for the 511 K SNP data and 1 Mb for the 36 K 
SNP data, respectively.

Identification of selected genomic regions, candidate gene 
mining
To localise genomic regions and genes under selection, 
for the both SNP data sets (~ 511 K SNPs and ~ 36 K 
SNPs), significant genomic regions (called as clus-
ter regions) were defined as those that harbour at least 
one significant SNP (top 0.1%) surrounded by at least 
five SNPs among the top 1%. SNPs among the top 0.1% 
smoothed CSS values within the sliding windows were 
considered significant. Consecutive clusters spaced 

http://www.animalgenome.org/repository/pub/UMN2013.0125
http://www.animalgenome.org/repository/pub/UMN2013.0125
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< 1 Mb apart were merged into a single cluster. Genes 
underlying the selection peaks as well as flanking regions 
(±0.5 Mb) were mapping to an annotated protein-coding 
gene list from EquCab3.0 downloaded from Ensembl. 
These genes were then examined for function annotation 
using review of literature, DAVID functional annotation 
tool [50, 51] and the GeneCards database [52].
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