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Abstract 

Background  Transcriptional enhancers are essential for gene regulation, but how these regulatory elements are 
best defined remains a significant unresolved question. Traditional definitions rely on activity-based criteria such as 
reporter gene assays, while more recently, biochemical assays based on chromatin-level phenomena such as chroma-
tin accessibility, histone modifications, and localized RNA transcription have gained prominence.

Results  We examine here whether these two types of definitions, activity-based and chromatin-based, effectively 
identify the same sets of sequences. We find that, concerningly, the overlap between the two groups is strikingly 
limited. Few of the data sets we compared displayed statistically significant overlap, and even for those, the degree 
of overlap was typically small (below 40% of sequences). Moreover, a substantial batch effect was observed in which 
experiment set rather than experimental method was a primary driver of whether or not chromatin-defined enhanc-
ers showed a strong overlap with reporter gene-defined enhancers.

Conclusions  Our results raise important questions as to the appropriateness of both old and new enhancer defini-
tions, and suggest that new approaches are required to reconcile the poor agreement among existing methods for 
defining enhancers.
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Background
Transcriptional enhancers play an essential role in gene 
regulation and are primary mediators of development, 
homeostasis, disease, and evolution [1–3]. Among many 
unanswered questions about enhancer biology, one 
stands out as fundamental: how should an enhancer be 
defined? In the genomic era, the functional definition that 
for a quarter-century described enhancers as sequences 
with the ability to drive expression of a reporter gene 
from a minimal promoter [4, 5] has entered into an 
uneasy co-existence with transcription and chromatin-
based definitions such as ability to bind specific sets of 
transcription factors or coactivators, presence of certain 
histone modifications, location in nucleosome-depleted 
regions, or transcription of enhancer RNA (eRNA) (e.g. 
[6–15]) (Fig.  1). It has become increasingly clear that 
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these chromatin-level enhancer definitions identify sets 
of sequences with strikingly low levels of overlap, with 
concerning implications for regulatory genome anno-
tation, ongoing studies of enhancer biology, and inter-
preting results from genome-wide association studies, 
expression quantitative trait locus studies, and the like 
[16–18]. However, it is unknown which of these various 
assays are in the best agreement with reporter gene data, 
which remains the “gold standard” for enhancer activity, 
and to what extent.

Here, we perform a comprehensive comparison to inves-
tigate whether one or a collection of chromatin-based 
assays are able to identify the majority of enhancers from 

an extensive reporter-gene defined set. We show that not 
only do the chromatin-level assays show poor agreement 
among themselves, but also that they fail to discover a sig-
nificant fraction of reporter-gene defined enhancers, often 
performing no better than random expectation. Our results 
raise questions as to whether any common current assays 
sufficiently interrogate the enhancer landscape, and about 
the accuracy of current regulatory genome annotations.

Results and discussion
In order to test for congruence between enhanc-
ers defined by reporter gene assays, and those defined 
by chromatin-based assays, we compared Drosophila 

Fig. 1  Competing methods for defining enhancers. Classical definitions of enhancers, based on functional tests such as reporter gene assays 
(bottom), are in tension with enhancer definitions based on chromatin-level assays (top right). For either type of assay, sequences can be chosen 
based on a large number of specific or undirected criteria (top left)
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enhancers obtained from two sources: REDfly [19] and 
EnhancerAtlas2.0 [20]. The REDfly database contains 
over 38,000 empirically-defined enhancers manually 
curated from the literature, split roughly evenly between 
in  vivo reporter gene assays and cell-culture based 
reporter gene assays. The EnhancerAtlas2.0 database, by 
contrast, is composed of 294,158 enhancers predicted by 
means of an unsupervised learning approach that com-
bines data from ChIP-seq, ATAC-seq, FAIRE-seq, and 
other chromatin-level assays [20]. This comparison is 
uniquely possible for Drosophila: as the overwhelming 
majority of REDfly’s enhancers are based on evidence 
developed without consideration of chromatin-level fea-
tures, they are therefore identified fully independently 
from those in EnhancerAtlas, using different evidence.

For an initial comparison, we took all REDfly enhanc-
ers 2  kb or shorter (11,549 total) and determined how 
many of these sequences overlapped an EnhancerAtlas 
enhancer, without regard for the annotated tissue-spec-
ificity of the REDfly enhancers (Fig.  2A; see Methods). 
Of the 21 tissue-specific Drosophila EnhancerAtlas data-
sets, 17 had statistically significant overlap (adjusted 
P < 0.01, two-tailed z test), three had no significant over-
lap, and, surprisingly, one had significantly less overlap 
than expected by chance (Fig. 3A “STARR-seq included”, 
Table S1a). Examination of these data revealed that more 
than three-quarters of the REDfly enhancers we were 
using (8779/11549, 76%) were identified using a single 
method, STARR-seq [21], a cell-culture based, episo-
mal reporter gene assay; these STARR-seq enhancers 
made up 80% of the REDfly-EnhancerAtlas overlapping 
enhancers (6027/7527). When we eliminated the STARR-
seq enhancers from the REDfly test set and repeated the 
analysis, the results were strikingly different: only five of 
the EnhancerAtlas datasets (24%) now showed significant 
overlap (with one additional dataset just below our sig-
nificance threshold), whereas ten datasets (48%) had sig-
nificantly less overlap than expected by chance (Fig.  3A 
“STARR-seq not included”, Table S1b [Additional File 1]).

STARR-seq-defined enhancers thus have a profound 
effect on how well sequences from the two databases 
compare. Only four EnhancerAtlas datasets make use of 
STARR-seq data, indicating that a simple confounding of 
the source data cannot explain the results. In the absence 

of STARR-seq enhancers, almost half of the REDfly data-
sets had less-than-expected overlap with EnhancerAtlas, 
suggesting that the majority of REDfly enhancers lack 
activity in most of the tissues covered by EnhancerAt-
las. Conversely, these results suggest that STARR-seq, 
performed in a cultured cell line and using an episomal 
rather than an integrated reporter, may be identifying 
many sequences indiscriminately with respect to their 
tissue specific activity.

To examine more directly how REDfly enhancers active 
in specific tissues compare with the EnhancerAtlas data-
sets, we constructed tissue-specific REDfly enhancer 
sets using only in-vivo reporter gene tested enhanc-
ers < 1000 bp in length (Fig. 2B; Table S2 [Additional File 
2]). Of the 21 EnhancerAtlas sets, 11 had one or more cor-
responding REDfly sets. We then determined how many 
enhancers from each paired set overlapped. Our expec-
tation was that there should be significant overlap, with 
the EnhancerAtlas sets (based on undirected genome-
wide assays) encompassing the great majority of REDfly 
enhancers (drawn from individual ad hoc experiments)
(Fig.  2C). Surprisingly, only four (36%) of the eleven 
EnhancerAtlas sets showed significant overlap with their 
corresponding REDfly set (P < 0.01, Fig.  3A “all tissue-
specific datasets”, Table  S1c [Additional File 1]). Moreo-
ver, even for the sets with significant overlap, the number 
of in-common enhancers was strikingly limited (median 
26%, range 5%-65%; Fig. 3B, Table S1c [Additional File 1]).

Since the EnhancerAtlas definitions integrate the data 
from multiple assays, we reasoned that the integration 
algorithm might be filtering out some of the true enhanc-
ers. To test this, we took the underlying data sets used 
by EnhancerAtlas (Table S1e [Additional File 1], referred 
to as EnhancerAtlas “subsets”; Fig.  2B) and compared 
them individually to the matched REDfly enhancer sets. 
Indeed, we saw a higher number of significantly overlap-
ping enhancer sets (66%, Fig. 3A, Table S1d,e [Additional 
File 1]), but again, the number of in-common enhancers 
within each matched set was low (median 39%, Fig. 3B, 
Table S1d,e [Additional File 1]).

The low degree of in-common enhancers could rep-
resent a small number of REDfly enhancers that con-
sistently match EnhancerAtlas enhancers, or different 
subsets of REDfly enhancers for each EnhancerAtlas 

(See figure on next page.)
Fig. 2  Schematic of REDfly-EnhancerAtlas comparisons performed in this study. See text and Methods for details. A REDfly enhancers under 
2000 bp in length were selected and tested for overlap against each of the 21 EnhancerAtlas Drosophila enhancer sets. Similar comparisons were 
made subsequently after filtering out all enhancers defined by STARR-seq assays. B REDfly enhancers were placed into tissue-specific sets after 
discarding all sequences longer than 1000 bp (600 bp for some sets). Eleven such sets were tested for overlap with eleven tissue-matched sets 
from EnhancerAtlas. Each EnhancerAtlas set was then split into multiple individual sets with the data from just a single component experiment 
(“subsets”), and each subset was tested for overlap against the corresponding REDfly tissue-matched set. C EnhancerAtlas data are based on 
genome-wide assays, while REDfly enhancers are drawn from individual reporter gene experiments. Therefore, we expect the majority of REDfly 
enhancers for a given tissue to comprise a subset of the EnhancerAtlas enhancers for the matched tissue
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Fig. 2  (See legend on previous page.)
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subset. To distinguish between these possibilities, we 
looked at the correlation between the sets of REDfly 
enhancers present in individual EnhancerAtlas subsets. 
The sets of enhancers found in different experiments 
were not overall well-correlated, suggesting that distinct 
REDfly enhancer sets are being identified (Fig. 4, Fig. S1 
[Additional File 3]). However, a clear correlation struc-
ture was evident in which assays from a particular labora-
tory and method tended to cluster together. For example, 
the REDfly enhancers from one set of experiments (series 
GSE102839) are highly correlated (Fig.  4, white box; 
mean r = 0.74 ± 0.11), and those from a different set of 
experiments (series GSE101827) are highly correlated 
(Fig.  4, yellow box; mean r = 0.67 ± 0.18). However, 
even though both sets contain ATAC-seq experiments, 
they find a disjoint group of REDfly enhancers (mean 
r = 0.12 ± 0.08). Although assay-specific correlation is 
occasionally observed (Fig.  4, yellow asterisks; r = 0.77), 
in other cases similar assays are only weakly correlated 
(e.g., Fig.  4, white asterisks; r = 0.45). EnhancerAtlas 
data based on ATAC-seq assays had a clear bias toward 
significant REDfly overlap (58/65 subsets significant; 
Table  S1d [Additional File 1]), as did other open-chro-
matin assays, while ChIP-based methods tended to be 
more evenly distributed between significant and non-sig-
nificant overlap (Table S1d [Additional File 1]). However, 
the fact that batch effects appear to dominate the correla-
tion structure makes it difficult to draw conclusions as to 
the most effective enhancer identification methods. For 
instance, we note that over two-thirds of the ATAC-seq 
results are from a single experiment series, GSE101287, 
and the number of subsets with significant REDfly over-
lap for the ATAC-seq experiments in series GSE102441 
and series GSE102839 was a more modest 60% and 50%, 
respectively.

These observations suggest two important conclusions: 
(1) identification of putative enhancers is highly depend-
ent on not just the type of assay performed, but on the 
precise conditions under which it is performed; and (2) 
enhancer identification is reasonably robust given a par-
ticular set of assays and replicates. The fact that the sets 
of REDfly enhancers are stable within groups of replicate 
assays suggests that these enhancers are being specifically 

(i.e., non-randomly) found, despite the fact that, as 
shown above, the number of REDfly enhancers identified 
through chromatin-level assays is frequently indistin-
guishable from random expectation. Thus, these assays 
do appear to be able to identify reporter-gene-defined 
enhancers, but with low efficiency and potentially high 
false-positive rates.

Recently, Gao et  al. released “scEnhancer”, an 
EnhancerAtlas-like database based on single-cell 
ATAC-seq data drawn from different embryonic time 
points [22]. Unlike the results using EnhancerAtlas, 
the majority of scEnhancer datasets had a significant 
degree of overlap with their REDfly set (45/56, 80%; 
Fig.  1A, Table  S1f [Additional File 1]), although simi-
lar to what we observed with EnhancerAtlas, the num-
ber of overlapping enhancers was low (median 27%, 
range 10%-65%; Table S1f [Additional File 1]). scATAC-
seq may thus represent a more promising method for 
enhancer detection, although a proper assessment is 
difficult as all of the Drosophila data currently in scEn-
hancer are from a single source.

Conclusions
Reporter gene assays have long been considered the 
gold standard for defining enhancers. On these grounds, 
our results would seem to suggest that not only do 
chromatin-level assays frequently fail to identify com-
mon sets of enhancer sequences [16], but neither are 
they particularly effective at covering the majority of the 
enhancer landscape. However, we would caution against 
automatically accepting this conclusion, as there are 
well-known deficiencies that could lead to a substantial 
number of both false-positive and false-negative results 
from reporter gene assays. These include enhancer-pro-
moter incompatibility, effects due to episomal expres-
sion or chromosomal integration, cell-type specificity, 
and ectopic expression due to missing repressor binding 
sites, as well as recent findings that enhancers can dou-
ble as silencers or functionally overlap other regulatory 
features (see discussions in [23–27]). It is also possible 
that the “right” set of chromatin assays has yet to be 
applied. For instance, Koenecke et al. [28] suggest that a 
key parameter for enhancer identification is the relative, 

Fig. 3  Comparisons between REDfly and EnhancerAtlas enhancer sets. REDfly and EnhancerAtlas datasets were compared and tested for 
significance as described in the text and TableS1 [Additional File 1]. Box plots show medians and the first and third quartiles. Data points shown 
in red are significant at a Bonferonni-adjusted P-value < 0.01. Dataset names correspond to the names in Table S1 [Additional File 1]. For the 
“tissue-specific comparisons” (Table S1c [Additional File 1]), when multiple REDfly sets corresponded to the same EnhancerAtlas set, the one 
with the highest degree of overlap was selected for analysis. For the subset comparisons (Table S1d,e [Additional File 1]), the REDfly set with 
the largest number of significantly overlapping individual EnhancerAtlas component sets was used. A z-score distributions for each of the 
REDfly-EnhancerAtlas comparisons. B Percent of REDfly enhancers found that overlap EnhancerAtlas enhancers. For the “all tissue-specific datasets” 
plot, datasets with significant z-scores are indicated in red. For the subset comparisons, values represent the median percent overlap of the 
constituent data subsets, as shown in Table S1e [Additional File 1]

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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rather than absolute, level of histone 3, lysine 27 acety-
lation (H3K27ac) flanking an enhancer, and many less-
frequently assayed histone modifications appear to be 
present in various combinations at at least some subsets 
of enhancers (e.g., [29–31]).

Without true “known” enhancer data, therefore, it is 
impossible to say whether our results reflect signifi-
cantly poor sensitivity in chromatin-level assays, or 
a much larger than heretofore recognized false posi-
tive rate in reporter gene assays. What is indisputable, 
however, is a clear need for approaches that can rec-
oncile the poor agreement between and among the 
various reporter gene and chromatin-level enhancer 
identification methods. In this regard, the increasing 
tractability of genome-engineering approaches, e.g., 

via CRISPR/Cas9 sequence deletion and replacement, 
holds out an encouraging potential to interrogate the 
enhancer capability of sequences within their native 
genomic contexts.

Methods
Data sources
For comparisons using all REDfly data (Table S1a, S1b), 
sequences were obtained from REDfly v7.1.1 (Aug. 14 
2020) by downloading all “CRM” entries in bed format, 
eliminating sequences > 2000  bp, and then removing 
overlapping sequences using the script “SelectSmall-
estFeature.py” (Kazemian and Halfon 2019). All RED-
fly data used in this study are based on experimental 
reporter gene assays curated from the primary literature 

Fig. 4  Correlations between REDfly enhancers overlapping enhancers from each EnhancerAtlas subset used for the “L3_wing_disc” EnhancerAtlas 
set. The correlation structure demonstrates that experimental batch effects predominate over assay-type effects. High correlations are seen 
between sets from the same experiment group (see white box, yellow box), even when assay types differ (dotted yellow box). Although 
assay-specific correlations are sometimes present (yellow asterisks), identical assays can also be poorly correlated when from different experiment 
groups (white asterisks). Individual experiments on the y-axis (“GSM” identifiers) are colored according to common experimental series (i.e., 
performed by the same laboratory as a specific set of experiments) as provided in GEO (“GSE” identifiers, see Table S1d [Additional File 1]). Sets 
labeled in black are unrelated. Label colors on the x-axis indicate assay types as follows: red, H3K4me1 ChIP-seq; green, H3K27ac ChIP-seq; orange, 
Grh ChIP-seq; cyan, Pol2 ChIP-seq; dark blue, ATAC-seq; black, ChIP-seq against various transcription factors
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by the professional REDfly biocuration team. The length 
cutoff of 2000 bp (and below, 600–1000 bp) was selected 
so as to reduce potential spurious results from the inclu-
sion of non-regulatory sequences, or multiple independ-
ent enhancers, in our comparisons. Because REDfly 
data are based on reporter gene assays, the length of the 
tested sequences can be arbitrarily large, but data from 
numerous deletion studies suggests that typical enhanc-
ers are on the order of hundreds, not thousands, of base 
pairs.

For comparisons using specific REDfly subsets (Table 
S1c-S1f ), “CRM” sequences were downloaded from RED-
fly v5.6.1 (Dec. 3 2019) in bed format with “cell-culture 
only” sequences excluded and a sequence length cutoff of 
either 1000 or 600 bp. Following removal of overlapping 
sequences using “SelectSmallestFeature.py” (Kazemian 
and Halfon 2019), the expression pattern annotations 
associated with each remaining sequence were used 
to place the sequences into one or more of 30 different 
tissue-specific groupings. Details of the composition of 
each set can be found in Supplementary Table S2.

For compatibility with EnhancerAtlas, genome coordi-
nates were converted from dm6 to dm3 using LiftOver 
[32] with minMatch = 0.25.

EnhancerAtlas sequences were downloaded from 
EnhancerAtlas 2.0 (http://​enhan​cerat​las.​org, Nov. 19 
2019). EnhancerAtlas sequences are compiled using the 
EnhancerAtlas unsupervised learning algorithm based 
on data from one or more of 12 types of chromatin-level 
assays [20]. In brief, data from each individual experi-
ment (“track”) are normalized and merged based on Jac-
card overlap across the genome. Importantly, a peak is 
only merged into the consensus profile if it is supported 
by at least 50% of the included tracks.

Identities of the component datasets for each of the 21 
tissue-specific EnhancerAtlas sets were obtained from 
the metadata files available in the “data source” section. 
The provided GEO accession codes were then used to 
obtain the sequence-level data from NCBI. Data pro-
cessing was performed as described in the EnhancerAt-
las paper [20] to ensure consistent results. Wig files were 
converted to bigWig format through the script wig2Big-
Wig, downloaded from the UCSC genome browser at 
genome.ucsc.edu/goldenpath/help/bigwig.html. BigWig 
files were converted to bedgraph format through the 
script bigWigtoBedGraph. Bedgraph files were converted 
to bed format through peak calling using MACS2 [33] 
with a cutoff enrichment of 2. Data sets where we were 
unable to replicate the exact EnhancerAtlas processing 
pipeline (primarily, raw sequencing data) were omitted 
from further analysis.

scEnhancer sequences were downloaded from scEnhancer 
(http://​enhan​cerat​las.​net/​scenh​ancer/, Feb. 28. 2022).

Comparison of data sets
Bed files were compared using BEDTools intersect [34] 
and the -wa and -u flags. Note that with these parame-
ters, even a single intersecting basepair will cause the two 
sequences to be scored as an intersection, making our 
tests highly sensitive to any degree of sequence overlap.

Significance of comparisons
Significance of dataset overlap was determined by per-
muting the coordinates of each REDfly dataset 500 
times using BEDTools shuffle [34] and repeating the 
tests for intersection. The mean and standard deviation 
of the permuted results were then used to calculate a 
z-score. A Bonferroni-corrected P value equivalent to 
P < 0.01 was determined for each set of comparisons.

Correlation analysis
For each comparison, each potential REDfly enhancer was 
scored as 1 (found) or 0 (not found). Correlations between 
all pairs of result vectors were determined using the R cor 
function and visualized as heat maps using ggplot.
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