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Abstract 

Background  DNA methylation, instrumental in numerous life processes, underscores the paramount importance 
of its accurate prediction. Recent studies suggest that deep learning, due to its capacity to extract profound insights, 
provides a more precise DNA methylation prediction. However, issues related to the stability and generalization per-
formance of these models persist.

Results  In this study, we introduce an efficient and stable DNA methylation prediction model. This model incor-
porates a feature fusion approach, adaptive feature correction technology, and a contrastive learning strategy. The 
proposed model presents several advantages. First, DNA sequences are encoded at four levels to comprehensively 
capture intricate information across multi-scale and low-span features. Second, we design a sequence-specific feature 
correction module that adaptively adjusts the weights of sequence features. This improvement enhances the model’s 
stability and scalability, or its generality. Third, our contrastive learning strategy mitigates the instability issues result-
ing from sparse data. To validate our model, we conducted multiple sets of experiments on commonly used datasets, 
demonstrating the model’s robustness and stability. Simultaneously, we amalgamate various datasets into a single, 
unified dataset. The experimental outcomes from this combined dataset substantiate the model’s robust adaptability.

Conclusions  Our research findings affirm that the StableDNAm model is a general, stable, and effective instrument 
for DNA methylation prediction. It holds substantial promise for providing invaluable assistance in future methylation-
related research and analyses.

Keywords  DNA methylation, Multi-scale and low-span features, Contrastive learning, Feature correction, Stability and 
scalability

Background
DNA methylation, a process involving the addition of 
methyl or hydroxymethyl groups to genetic molecules, is 
pivotal to significant biological reactions [1]. This modi-
fication of genetic molecules [2] regulates transcription 
[3, 4] and gene expression [5], playing an essential role 
in various life processes. For instance, it is crucial for the 
growth and development of certain mammalian species, 
as it orchestrates the silencing of specific gene categories, 
fosters the differentiation process of embryonic stem cells 
(ESCs), and upholds the stability of the parental genome 
[6]. Additionally, DNA methylation fluctuates throughout 
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different life stages due to environmental factors. On the 
one hand, they can result in transcriptional inactivation 
and aging in living organisms [6, 7]. On the other hand, 
they may trigger diseases such as cancer [8–11].

Current research in DNA methylation primarily focuses 
on three types of modifications: 4mC (N4-methylcyto-
sine), 5-Hydroxymethylcytosine (5hmC), and N6-meth-
ylenenene adenine (6mA) [12]. 4mC refers to the 
modification of the amino group at the fourth position 
of N-4 Cytosine, catalyzed by specific enzymes [13]. This 
modification can protect DNA from enzymatic degrada-
tion [14], playing a crucial role in DNA self-recognition, 
the regulation of DNA replication, and the correction of 
DNA replication errors [15]. 5hmC is the hydroxylated 
form of 5-methylcytosine (5mC), which can regulate 
genes and potentially be involved in cancer development 
[16]. Studies suggest that 5hmC can serve as a biomarker 
due to its diverse decoration patterns across different 
biological tissues [17]. Furthermore, 5hmC is involved in 
gene silencing, promoting the diverse functions of ESCs, 
tumorigenesis, among other processes [17]. 6mA refers 
to the methylation of adenine at the sixth position, facili-
tated by enzymes. It is a common, low-level modification 
method [18, 19] with functions that vary among different 
organisms [20]. For instance, it can uphold the stability 
of base pairing [21], regulate gene transcription, and play 
a pivotal defensive role in the host body. With the ongo-
ing deterioration in the current ecological environment, 
which significantly impacts the regulation and expression 
processes of biosphere genes, identifying DNA methyla-
tion sites has become an urgent and vital task for explor-
ing life development and preventing diseases.

In the early stages, DNA methylation detection primar-
ily relied on traditional experimental techniques. Lister 
et  al. utilized whole-genome sulfurous acid sequencing 
methods to analyze methylated Cytosine in human 
embryonic stem cells (ESCs) [22]. Meissner et  al. pro-
posed a method to decrease the randomness of sulfurous 
acid sequencing, thereby enabling the analysis of meth-
ylation decoration patterns [23]. Building on this, several 
innovative experimental methods have recently emerged. 
Hu et  al. introduced a mapping technique known as 
“Jump seq” for 5hmC, which more effectively identifies 
and expands 5hmC [24]. Xiao et al. discovered that 6mA 
exists not only in prokaryotes but also to a lesser extent 
in human genes [9]. Ye et  al. combined long-read tech-
nology to identify 4mC in Casuarina equisetifolia [25]. 
Despite these advancements, sequencing technologies 
still exhibit several drawbacks, such as low localization 
efficiency. Given that the three prevalent types of methyl-
ation often exist in a low-level form in nature, highly sen-
sitive experimental methods are required for detection. 
As such, the development of computational methods for 

methylation prediction has become a pressing need to 
enhance efficiency and reduce costs.

Machine learning methods have seen substantial suc-
cess in the field of biology [26–28], spurring the rapid 
advancement of research related to DNA methylation 
prediction. DNA4mC-LIP employs a linear weighting 
strategy to integrate six prediction models and constructs 
mixed features to predict 4mC sites [29]. DeepTorrent 
combines CNN and LSTM technologies to predict 4mC 
sites across multiple datasets, employing various encod-
ers to enhance sequence representation, and utilizing 
Bayesian methods for model optimization [30]. Cong 
et  al. introduced the MM-6mAPred model, grounded 
on the Markov model, to identify 6mA sites in DNA 
sequences [31]. Yu et  al. suggested the SNNRice6mA 
model for predicting 6mA sites in rice, which stacks mul-
tiple one-dimensional CNN layers and fully connected 
layers. This model utilizes one-hot encoding for feature 
extraction as an alternative to traditional manual feature 
extraction [32]. The Deep6mA model, similar in tech-
niques to the DeepTorrent model, predicts 6mA sites 
in rice and can also be applied to predict 6mA sites in 
other plants [33]. Building on this, Sho et  al. proposed 
the BERT6mA model to predict 6mA, which integrates 
the GRU module and the Transformer encoder module, 
demonstrating robust performance [34]. Zhang et  al. 
developed the iPromoter-5mC model, based on fully 
connected networks, to predict 5mC sites, incorporating 
three encoding features [35]. Additionally, BiLSTM-5mC 
trains multiple submodels based on Bi-LSTM and fully 
connected layers and executes integration operations to 
predict 5mC sites [36]. While these computational meth-
ods excel at predicting individual DNA methylation sites, 
they rarely consider or can be extended to the identifica-
tion of multiple types of DNA methylation.

The key to solving the recognition task of multiple 
DNA methylation types lies in the adoption of appropri-
ate feature encoding methods and universal models. Lv 
et  al. integrated three different feature encoding meth-
ods and employed a random forest ensemble method to 
distinguish and identify various DNA methylation types, 
which proved to be effective [37]. Due to the need for 
improved feature extraction capabilities, Yu et  al. sub-
sequently designed a loss function based on conditional 
entropy techniques, utilizing self-attention mechanisms 
for adaptive feature encoding, thereby enhancing the rec-
ognition efficiency of different DNA methylation types 
[38]. In addition, Jin et al. achieved the current best per-
formance in DNA methylation recognition by utilizing 
dual-scale encoding and a novel feature fusion approach 
[39]. For these state-of-the-art methods, multi-scale 
information is not fully extracted. There is no adaptive 
adjustment of weights for the extracted features, which 
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may result in inability to apply to different datasets. In 
addition, the problem of sparse data is not considered.

Computational methods have been continuously 
refined, significantly enhancing the efficiency of DNA 
methylation predictions and expanding their applica-
tions. Despite these advancements, three main limita-
tions persist. Firstly, there is the challenge of acquiring 
more robust feature representations. Secondly, construct-
ing a stable and scalable model remains a significant 
obstacle. Lastly, dealing with sparse datasets remains an 
ongoing issue. To address these challenges, we propose 
a model based on adaptive feature correction learning, 
named StableDNAm. First, our model integrates multi-
scale and low-span features to enhance the robustness of 
sequence representations. Second, we design a sequence-
based feature correction module that adaptively adjusts 
feature weights by strengthening local features, contrib-
uting to the model’s stability and scalability. Finally, we 
apply a contrastive learning module that enhances the 
model’s stability and adaptability, particularly when deal-
ing with sparse datasets. Our main contributions are as 
follows: 

1.	 Leveraging the transformer encoder, we develop a 
DNA methylation recognition model, termed Sta-
bleDNAm, which has demonstrated trustworthy 
performance. Additionally, we consolidated the train-
ing and testing sets from seventeen datasets, which 
further attests to the scalability of the StableDNAm 
model in this unified dataset.

2.	 We craft a low-span, multi-scale feature fusion 
methodology that integrates four-scale features 
of 3−mer, 4 −mer, 5−mer , and 6−mer DNA 
sequences. This design allows for the extraction of 
more intricate information while ensuring important 
data across different datasets is not lost.

3.	 We engineer a feature correction module named 2-D 
SENET, capable of adaptively adjusting the weight of 
sequence features for diverse datasets. This allows 
our model to accommodate diverse types of meth-
ylation datasets, thereby substantially enhancing the 
model’s stability and scalability.

4.	 We incorporate a contrastive learning module into 
the model’s training process, thereby enhancing the 
model’s adaptability when dealing with sparse data-
sets.

Results
Datasets
We primarily evaluate StableDNAm and its compara-
tive models using two sets of datasets. The first set com-
prises seventeen standard DNA methylation datasets as 
described in prior research [39]. These datasets include 

5hmC_H.sapiens, 5hmC_M.musculus, 4mC_C.equisetifo-
lia, 4mC_F.vesca, 4mC_S.cerevisiae, 4mC_Tolypocladium, 
6mA_A.thaliana, 6mA_C.elegans, 6mA_C.equisetifolia, 
6mA_D.melanogaster, 6mA_F.vesca, 6mA_H.sapiens, 
6mA_R.chinensis, 6mA_S.cerevisiae, 6mA_T.thermophile, 
6mA_Tolypocladium, and 6mA_XocBLS256. For the sake 
of brevity, we denote these as D1 through D17, respectively. 
The second set forms a comprehensive dataset, which is a 
combination of the aforementioned seventeen methylation 
datasets, subsequently split into a 1:1 ratio into training and 
testing subsets. To demonstrate our data distribution, we 
compiled the distribution of positive and negative samples 
across all datasets, as shown in Table 1. It is evident that the 
sample sizes vary across different datasets, with some data-
sets containing tens of thousands of samples while others 
have only a few hundred.

Evaluation metrics
To evaluate the performance of the StableDNAm model 
relative to other comparative models, we employed com-
mon performance metrics in this study, including Accuracy 
(ACC), Sensitivity (SN), Specificity (SP), and Matthew’s 
Correlation Coefficient (MCC). The computation of these 
metrics is as follows:

(1)ACC =
TP + TN

TP + TN + FP + FN
,

Table 1  The number of positive and negative samples in the 
datasets

Datasets Positive samples Negative samples

5hmC_H.sapiens 2344 2344

5hmC_M.musculus 3680 3680

4mC_C.equisetifolia 366 366

4mC_F.vesca 15796 15796

4mC_S.cerevisiae 2000 2000

4mC_Tolypocladium 15326 15326

6mA_A.thaliana 31872 31872

6mA_C.elegans 7960 7960

6mA_C.equisetifolia 6066 6066

6mA_D.melanogaster 11190 11190

6mA_F.vesca 3100 3100

6mA_H.sapiens 18334 18334

6mA_R.chinensis 598 598

6mA_S.cerevisiae 3786 3786

6mA_T.thermophile 107600 107600

6mA_Tolypocladium 3378 3378

6mA_Xoc BLS256 17214 17214

Unified dataset 267824 267824



Page 4 of 16Zhuo et al. BMC Genomics          (2023) 24:742 

where TP indicates the number of DNA methylated cor-
rectly identified, FN indicates the number of DNA meth-
ylated as unmethylated, TN indicates the number of 
unmethylated correctly identified, and FP indicates the 
number of DNA unmethylated identified is the number 
of methylations. ACC​ and MCC are comprehensive indi-
cators for performance evaluation. In addition, this study 
also utilizes AUROC and AUPR curves [40] to evalu-
ate the overall performance of the model. In this study, 
AUROC can be commonly abbreviated as AUC​ (the area 
under the ROC curve). These curves provide an intuitive 
visualization of the model’s superiority.

Comparison with other models
We compared the proposed StableDNAm model with 
six current standard models across seventeen distinct 
datasets. Table  2 presents the ACC​,  AUC​,   and MCC 
metrics for all models on these datasets, respectively. 
Performance comparisons using other metrics can be 
found in the Supplementary file (All-indicators.xlsx). 
Details on the training parameters for the other models 
(training_parameters.pdf ) and the standard deviations 
for each dataset (k-mer.xlsx) are also available in the 
Supplementary files. Evidently, our model outperforms 
the existing six models in 12 out of the 17 datasets. Spe-
cifically, the average ACC​ index of the proposed Sta-
bleDNAm model exceeds the second and third ranked 
models, iDNA-ABF and iDNA-ABT, by 1.6% and 0.87%, 
average AUC by 2.17% and 1.33%, and average MCC by 
1.88% and 3.10% respectively. Importantly, on the data-
sets 4mC_C.equisetifolia, 6mC_C.elegans, and 6mA_C.
equisetifolia, the StableDNAm model showcases signifi-
cant improvements, with the ACC​ scores increasing by 
ranges of 2.8%-14.22%, 1.83%-18.63%, and 1.17%-7.48% 
respectively. In addition to the ACC​ scores, similar 
trends can be observed in the AUC​ and MCC metrics. 
To Intuitively illustrate the superior performance of the 

(2)SN =
TP

TP + FN
,

(3)SP =
TN

TN + FP
,

(4)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

,

(5)PRE =
TP

TP + FP
,

(6)F1 =
2 ∗ PRE ∗ SN
PRE+ SN

,

proposed StableDNAm model compared to other meth-
ods, we utilize the Uniform Manifold Approximation 
and Projection (UMAP) [41] technique for visualizing 
the distribution within the model’s output feature repre-
sentation space. UMAP is a commonly adopted visuali-
zation tool that discloses crucial data attributes through 
dimensionality reduction. For visual comparison, we 
selected the second-best performing model, iDNA-ABF, 
and analyzed it alongside the proposed StableDNAm 
model on the 5hmC_H.sapiens dataset. As illustrated in 
Fig. 1, Subfigures A and B display the feature space dis-
tribution of the StableDNAm model and the iDNA-ABF 
model on the 5hmC_H.sapiens dataset, respectively. 
Dots symbolize samples, with methylated sites (positive 
samples) marked in blue and unmethylated sites (nega-
tive samples) in red. As seen in Subfigure A, the pro-
posed StableDNAm model distinctly segregates positive 
and negative samples, with each class clustering tightly 
without scattering. Meanwhile, as observed in Subfig-
ure B, though the feature space of the iDNA-ABF model 
demarcates some boundary between positive and nega-
tive samples, the positive and negative samples in the 
right section are essentially fused, posing limitations for 
a classification model.

The StableDNAm model demonstrates significantly 
higher discrimination between the two classes of sam-
ples in the feature space compared to the second-best 
performing iDNA-ABF model. This signifies that our 
model is proficient in learning robust feature representa-
tions from diverse class samples. This may be attributed 
to several factors. Firstly, the robust pre-training model 
aids in capturing more latent contextual semantic infor-
mation from millions of background genome sequences. 
Secondly, the model is effectively fine-tuned based on the 
dataset. Moreover, the fusion of multiple features includ-
ing 3−mer, 4 −mer, 5−mer , and 6−mer , coupled 
with the use of SENET technology for adaptive feature 
adjustment on various methylation datasets, contributes 
to the robust performance of our model. Conversely, 
even though the iDNA-ABF model also utilizes pre-
training, it appears to struggle with effective fine-tuning 
in downstream datasets. This issue might be related to 
overfitting, a problem we will further demonstrate in 
subsequent experiments.

Comparison on a unified dataset
To evaluate the adaptability of our proposed StableD-
NAm model, we composed a unified dataset by amal-
gamating seventeen different species and multiple types 
of methylation datasets. We then divided this collective 
dataset into distinct training and testing sets. Concur-
rently, we conducted comparative tests with the iDNA-
ABF model, which has proven to perform second-best 
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across various datasets. As depicted in Fig.  2, the com-
parative performance of the StableDNAm and iDNA-
ABF models on the unified dataset reveals distinct 
differences. The ACC​ and MCC of the iDNA-ABF 
model on the unified dataset, showcased on the left 
plot of Fig. 2, hover around the 50% mark, indicative of 
its insufficient predictive abilities. This performance 
alludes to the iDNA-ABF model’s specialization for indi-
vidual methylation types, and its limited adaptability to 
a diverse range of methylation varieties. In contrast, the 
StableDNAm model demonstrates significant adaptabil-
ity, achieving an ACC​ of 83.5% and an AUC​ of 91.0%. The 
p-value, derived from T-tests and displayed in the figure, 
further substantiates the model’s stability, suggesting its 
capacity to comprehend and generalize across an array of 

data types after training. Our proposed model leverages 
a unified dataset that assimilates a variety of methyla-
tion data types, thus empowering the model with exten-
sive knowledge. Conversely, the iDNA-ABF model may 
be constricted to specific data types, resulting in limited 
scalability. This disparity might stem from the fact that 
our model can be effectively fine-tuned based on pre-
training, while the iDNA-ABF model is excessively reliant 
on its pre-trained state, making downstream fine-tuning 
challenging. Following this analysis, it’s evident that the 
StableDNAm model can be both trained and utilized for 
predictions based on a consolidated methylation data-
set, circumventing the need for individual training for 
different methylation data types. This indicates that the 
StableDNAm model serves as a general tool for DNA 

Fig. 1  Comparison of UMAP visualization results of the model on 5hmC_H.sapiens dataset

Fig. 2  Performance of the iDNA-ABF model and the StableDNAm model on a unified dataset measured by ACC and AUC metrics
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methylation prediction, significantly diminishing the 
intricacies of methylation analysis while enhancing its 
efficiency.

Model stability and robustness
To evaluate the stability and robustness of the Sta-
bleDNAm model, we carried out comparative tests 
against the iDNA-ABF model, which has exhibited the 
second-best performance among existing solutions. 
After thorough testing across seventeen datasets, our 
StableDNAm model’s superior stability and robust-
ness compared to the iDNA-ABF model, which exhib-
ited inadequate stability, were evident. Figures 3 and 4 
detail the experimental results for both models across 
all datasets, focusing on the training loss and accuracy 
(ACC) during the final 5 epochs. As depicted in Fig. 3, 
the loss heatmap for the iDNA-ABF model displays a 
significant increase in loss towards the latter training 

stages, highlighting its instability. Figure 4 offers a com-
parison of ACC between each dataset and the iDNA-
ABF model. Its right subfigure uses a stacked bar chart 
to illustrate the cumulative ACC metric over the last 
five epochs, with higher stacking implying better met-
ric stability during these epochs. This detailed analysis 
showcases the StableDNAm model’s potential for deliv-
ering robust and stable predictions across a variety of 
methylation datasets. We delve into the results from 
selected datasets, such as 4mC_Tolypocladium and 
6mA_Tolypocladium, due to space constraints, while 
additional dataset results are available in the Supple-
mentary files. In Figs.  5 and 6, the left and right sub-
graphs represent the performance of the StableDNAm 
and iDNA-ADF models, respectively. The iDNA-ABF 
model shows significant fluctuation in crucial met-
rics like ACC and AUC, and lacks a steady decline in 
the loss function. For instance, the results display 

Fig. 3  Performance of the iDNA-ABF model and the StableDNAm model on seventeen datasets concerning the loss during training

Fig. 4  Performance of the iDNA-ABF model and the StableDNAm model on seventeen datasets with respect to the ACC over the last five epochs



Page 8 of 16Zhuo et al. BMC Genomics          (2023) 24:742 

Fig. 5  Performance comparison of the models on the 4mC_Tolypocladium dataset

Fig. 6  Performance comparison of the models on the 6mA_Tolypocladium dataset
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the iDNA-ABF model’s AUC and ACC curves for the 
4mC_Tolypocladium and 6mA_Tolypocladium data-
sets, which initially rise but eventually plateau around 
0.5, without further improvement. This behavior can 
be attributed to the iDNA-ABF model’s overreliance 
on the pre-trained model, creating difficulties in fine-
tuning it to specific datasets. Also, despite the fusion 
of 3−mer and 6−mer at varied scales during data 
input processing, the broad scale range may fail to cap-
ture intricate data characteristics, resulting in unstable 
predictions.

Contrarily, experimental results indicate that the 
StableDNAm model’s ACC and AUC metrics across 
all datasets consistently increase with more train-
ing iterations, accompanied by a decline in loss 
value. This behavior is a testament to the StableD-
NAm model’s exceptional stability and robustness 
across a range of datasets. Several factors contrib-
ute to this: Firstly, the StableDNAm model integrates 
3−mer, 4 −mer, 5−mer , and 6−mer multi-scale, 
low-span features, enabling more comprehensive and 
robust feature extraction. Secondly, the 2D-SENET 
module adaptively adjusts sequence feature weights for 
different types of datasets. This adaptation allows the 
model to better understand and utilize critical input 
data features, enhancing model stability. Concurrently, 
the model can adapt to a variety of input scenarios, bol-
stering the robustness of prediction results. Lastly, the 

incorporation of a contrastive learning module reduces 
the impact of sparse data, enabling the model to more 
effectively distinguish between different class samples, 
thereby improving model stability and generalizability.

In an effort to bolster our analysis, we segmented the 
DNA sequences into chunks of 41 base pairs, as illus-
trated in Fig.  7. This procedure facilitated the conduct 
of Motif logos analysis across both positive and negative 
datasets pertaining to three distinct species. Upon exam-
ination of the highlighted areas within the figure, one can 
observe marked differences. Our proposed model, which 
is fundamentally constructed on multiple k −mer s, lev-
erages the latent information embedded within these 
sequences. Subsequently, a 2D-SENNT module is 
deployed to perform feature normalization, thereby fur-
ther enhancing the accuracy and efficacy of the model.

Ablation experiment
To appraise the contributions of key modules within 
the StableDNAm model, we conducted several abla-
tion experiments using the 5hmC_M.musculus data-
set. Figure 8 presents the experimental outcomes, with 
subfigure A demonstrating the performance of the 
complete StableDNAm model, subfigure B displaying 
the performance with the contrastive learning module 
removed, subfigure C showing the performance with-
out the 2D-SENET module, and subfigure D indicating 
the performance in the absence of the fusion module.

Fig. 7  Conducting Motif Logos analysis on positive and negative datasets of three different species
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In subfigure A, the model’s loss value progressively 
decreases with the increase in training iterations on the 
5hmC_M.musculus dataset, suggesting that the model’s 
adaptability to the test set improves with an increasing 
number of training rounds. Concomitantly, as the train-
ing advances, there is a steady increase in the ACC​ and 
AUC​ values, rising from 88.62% to 96.44%, and from 
93.13% to 98.49% respectively. This upward trend reflects 
an enhancement in the model’s classification perfor-
mance and its ability to classify samples more accurately.

Comparing subfigures A and B, we observe the 
model’s loss value continues to decrease, and the ACC​ 
and AUC​ values consistently increase, even without 
the contrastive learning module. However, in com-
parison to subfigure A, there is a slight fluctuation in 
the loss value during the latter phase of training in 
subfigure B, suggesting the model performs better 

wSubfigureontrastive learning module is included. This 
module helps the model more effectively discern differ-
ences and similarities between samples, thereby bol-
stering the model’s representation learning ability and 
generalization capacity.

The outcomes in subfigure C reveal that eliminating the 
2D-SENNT module results in considerable fluctuations 
in the three curves, with no evidence of stabilization. 
Moreover, as the number of training rounds increase, 
the loss curve starts to ascend, while the ACC​ and AUC​ 
curves begin to descend, with the ACC​ curve exhibiting a 
more pronounced downward trend. These results suggest 
that the 2D-SENNT module significantly enhances the 
model’s convergence performance and elevates the ACC​ 
and AUC​ values. This module adaptively adjusts feature 
weights to suit different datasets, minimizes the inter-
ference of superfluous features, and enables fine-tuning 

Fig. 8  The results of ablation experiments, subfigure A shows the performance of the StableDNAm model, subfigure B shows the performance 
without the contrastive learning module, subfigure C shows the performance without the 2D-SNET module, and subfigure D shows 
the performance without the fusion module
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of model parameters, thereby accommodating a wider 
range of downstream datasets.

As shown in subfigure D, starting from the 6-th itera-
tion, the loss value begins to rise, corresponding to a 
gradual decrease in ACC​ and AUC​. These curves also 
exhibit varying degrees of fluctuation. In contrast, when 
the fusion module is removed, the model performs 
poorly. In this study, we used a 3−mer scale for learn-
ing, and to comprehensively demonstrate the effect of 
integrating different scales, we conducted experiments, 
which can be found in the Supplementary file (k-mer.
xlsx). From the results in this file, it can be observed that 
this module has the ability to fuse sequences of different 
scales, namely 3−mer, 4 −mer, 5−mer , and 6−mer , 
which helps capture more complex features. At the same 
time, this low-span multi-scale design minimizes the loss 
of critical information.

A synthesis of the above findings reveals that per-
formance without the contrastive learning module is 
superior to that without the fusion module, while per-
formance without the fusion module exceeds that with-
out the 2D-SENNT module. This indicates that the 
2D-SENET module, which adaptively adjusts the features 
of different datasets, is the most pivotal component of 
the model, enhancing its stability and adaptability. Sub-
sequently, the multi-scale and low-span feature fusion 
methodology, which captures complex features and 
reduces the loss of crucial dataset information, ranks as 
the second most significant component of the model. 
Finally, the contrastive learning module, which mitigates 
the impact of sparse data, is the third most important 
part of the model.

Discussion
According to the analysis presented in Table 2, the Sta-
bleDNAm and iDNA-ABF models, utilizing a pre-train-
ing strategy, demonstrate the top two performances 
across seventeen datasets. This exemplifies the significant 
effectiveness of the pre-training strategy in enhancing 
the efficiency of the models. Furthermore, the integra-
tion of a transformer encoder in our approach enables 
the models to autonomously extract DNA sequence 
characteristics, allowing it to adapt to the identifica-
tion tasks of various types of DNA methylation datasets. 
The results from a unified dataset suggest that the pro-
posed StableDNAm model can serve as a general tool 
for predicting methylation, while the iDNA-ABF model 
encounters challenges in identifying methylation sites. 
In-depth comparative analysis on seventeen individual 
datasets, as depicted in Figs. 5 and 6 and Supplementary 
files (All-curves.pdf ), reveals that the iDNA-ABF model 
is excessively reliant on the pre-training model, which 
leads to difficulties in fine-tuning to accommodate the 

downstream dataset, resulting in highly variable perfor-
mance. In contrast, our proposed StableDNAm model is 
capable of not only leveraging pre-training strategies for 
information accumulation but also adaptively fine-tuning 
in downstream datasets, thereby exhibiting efficient and 
stable performance. The observed robustness of the Sta-
bleDNAm model could be attributed to the integration 
of a 2-D SENET module that adaptively refines sequence 
features, a multi-scale and low-span fusion module, and 
a contrastive learning strategy based on varying dropout 
rates. The influence of these three modules on the model 
performance was confirmed through ablation experi-
ments. Nevertheless, the presented model comes with 
specific constraints. Its training demands over 16GB of 
GPU memory. Optimizing the model to operate effec-
tively on a smaller GPU memory footprint will be focus 
of our upcoming research endeavors. Moreover, we aim 
to incorporate graph structure data of DNA and addi-
tional information to enhance the accuracy of DNA 
methylation prediction.

Conclusions
This study delves into various models for DNA meth-
ylation prediction, revealing that the performance of 
existing models is often hampered by limited stability 
and scalability. As a result, we introduce the StableD-
NAm model, a new model capable of predicting various 
types of DNA methylation using a Transformer encoder 
and a contrastive learning strategy. Our model incor-
porates a unique low-span, multi-scale feature fusion 
strategy to integrate 3−mer, 4 −mer, 5−mer , and 
6−mer sequence features, thereby capturing more com-
plex features. Simultaneously, this low-span, multi-scale 
design aids in minimizing the loss of vital information. 
Additionally, we crafted a novel 2D-SENNT module 
that adaptively adjusts sequence feature weights in dif-
ferent datasets, further bolstering the model’s stability 
and scalability. The contrastive learning module embed-
ded within our model also addresses the issue of sparse 
data, mitigating its impact. We conducted exhaustive 
verification experiments across seventeen diverse meth-
ylation datasets, alongside a comparison with a uni-
fied dataset composed of these seventeen datasets. Our 
research findings affirm that the StableDNAm model is a 
general, stable, and effective instrument for DNA meth-
ylation prediction. It holds substantial promise for pro-
viding invaluable assistance in future methylation-related 
research and analyses.

Methods
Model architecture
This paper presents StableDNAm, a novel deep-learning 
model built on the Transformer architecture, specifically 
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designed for the reliable and efficient identification of 
DNA methylation. Our model is characterized by three 
strategic components: feature fusion, feature correction, 
and contrastive learning. Figure  9 provides a detailed 
visual representation of the proposed StableDNAm mod-
el’s architecture and workflow. (A) The initial module 
revolves around data collection. (B) In this module, the 
representation of the sequence is computed across four 
scales ( 3−mer, 4 −mer, 5−mer, 6−mer ). To accom-
modate the diverse range of input DNA sequences stem-
ming from various datasets, we implement a four-scale 
approach to derive a more complex feature set and thus 
enhance adaptability across different datasets. (C) Fol-
lowing this, four BERT encoders are deployed to extract 
features at these four scales. (D) This module integrates 
the multi-scale embeddings provided by the previ-
ous module. (E) In this module, the output from the 
2D-SENET module undergoes a feature weight adjust-
ment. This key step adaptively corrects the fused features 
respective to different datasets, contributing significantly 
to the model’s stability and scalability. (F) The StableD-
NAm model employs a contrastive learning strategy to 
formulate positive and negative samples, enhancing the 
differentiation and similarity within the original data. 
This effectively mitigates the adverse effects of sparse 
datasets on the model. (G) Finally, the model stacks 

multiple fully connected layers to predict the methylation 
status of the input DNA sequence. Each of these modules 
is described in further detail in the ensuing sections.

Multi‑scale and low‑span features
To enhance the applicability of the model to various 
DNA methylation datasets, we construct the initial DNA 
sequence embedding utilizing multi-scale and low-span 
features ( 3−mer, 4 −mer, 5−mer, 6−mer ). This strat-
egy allows for a more effective dataset adaptation and a 
more comprehensive sample information capture, while 
minimizing the loss of lesser important details. Conse-
quently, it ensures the model’s performance remains both 
stable and scalable. In previous research (ABF), only two 
scales ( 3−mer and 6−mer ) were utilized as initial DNA 
sequence features. This method, due to its large span, 
could only account for information at longer ( 6−mer ) 
and shorter ( 3−mer ) scales.

The k −mer process mainly revolves around construct-
ing the DNA sequence’s initial features. Specifically, the 
DNA sequence is segmented into several subsequences, 
each of length k and a step size of 1; these subsequences 
are referred to as “tokens”. In a manner akin to Natural 
Language Processing (NLP), this method initially seg-
ments the sequence and treats each subsequence as a 
“word”. For instance, given a DNA sequence “GGT​CCA​”, its 

Fig. 9  The overall architecture and workflow of the StableDNAm model. A represents the data collection process described in Datasets section. The 
model architecture of the StableDNAm model mainly consists of six modules: B multi-scale data processing module, C BERT encoder module, D full 
feature fusion module, E 2D-SENET module, F contrastive learning module, and G classification module
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corresponding 3−mer token list would be [“GGT”, “GTC”, 
“TCC”, “CCA”]. Coupled with a few specific tokens, these 
establish the comprehensive initial features of the DNA 
sequence based on the k −mer.

BERT encoder
BERT is a cornerstone module predominantly used in 
natural language processing (NLP). Its main role is to uti-
lize the self-attention mechanism inherent in the Trans-
former architecture for text processing. BERT proves 
effective in various language tasks as it can comprehend 
text in context with high accuracy. In this research, we 
treat DNA sequences as text sequences, enabling their 
efficient processing with the BERT encoder. Pre-training 
on large-scale datasets typically results in superior per-
formance on subsequent tasks. Correspondingly, the 
StableDNAm model also employs a pre-training model 
called DNABERT [42], rendering it more apt for handling 
downstream datasets.

A DNA sequence is composed of numerous bases 
with a certain degree of correlation, which allows gene 
fragments to execute specific functions. Studying gene 
correlations based on a single base provides limited 
insight. BERT proves highly compatible with such DNA 
sequences, treated as text, as it can expose connec-
tions between multiple adjacent bases. BERT employs 
a stacked Transformer architecture, primarily encom-
passing multi-head attention and feedforward network 
modules. For the initial feature of the DNA sequence of 
k −mer , the attention mechanism computation proceeds 
as follows:

where X ∈ ×d1 represents the initial characteristics 
of the DNA sequence, n represents the number of ini-
tial tokens of the DNA sequence, and d1 represents the 
dimension of the token. Q,K ,V ∈ n× d2represent 
Query, Key, and Value matrices respectively, W1 , W2 , and 
W3 represent the corresponding weight matrix, and d2 
represents the dimension. fAtt represents the attention 
function. The multi-head attention mechanism can be 
expressed as:

where XW1,i,XW2,i and XW3,i respectively represent 
the linear transformation matrix of Query, Key, and 
Value of the j − th attention head, and H represents the 
total number of attention heads. Then, the results of 

(7)Q = XW1,K = XW2,V = XW3,

(8)fAtt(Q,K ,V ) = softmax(QKT / dk)V ,

(9)hi = fAtt(XW1,i,XW2,i,XW3,i), i = 1, 2, ...,H ,

(10)fmultiAtt(Q,K ,V ) = [h1, h2, ..., hH ]Wm,

the multi-head attention are mapped through the linear 
transformation matrix Wm.

Feature fusion
The DNA sequence undergoes processing through four 
BERT encoders, each extracting distinctive features based 
on four scales ( 3−mer, 4 −mer, 5−mer, 6−mer ). 
Smaller scales capture local specific information, while 
larger scales represent longer dependencies between 
bases. Fusing features based on these different scales 
integrates both long-dependent and short-dependent 
information. Given that different levels of information 
may hold varying significance for different datasets, it is 
crucial to reasonably fuse multi-layered information. For 
the output results of the four BERT encoders, we utilize a 
linear layer for weighted fusion instead of traditional con-
catenation. The detailed computation is as follows:

where hfusion represents the fused features, F represents 
the calculated mapping matrix, and h3mer , h4mer , h5mer , 
and h6mer represent the features extracted by DNA 
sequences using BERT encoders based on 3−mer , 
4 −mer , 5−mer , and 6−mer , respectively. This mod-
ule considers the importance of different scales, but does 
not consider the importance of features, which may lead 
to unstable performance of the model when process-
ing different datasets. Therefore, this study subsequently 
designed a feature correction module to adaptively adjust 
the weight of features.

Feature adaptive adjustment (2D‑SENET)
SENET, a highly efficient model in the field of image 
processing, is capable of adaptively adjusting feature 
weights based on feature channels [43]. It effectively 
extracts more important features while downplaying the 
less significant ones. Due to its excellent performance 
on numerous image tasks and its relatively lightweight 
nature, SENET is widely used in the field of imaging. 
Traditionally, SENET targets two-dimensional or three-
dimensional images, and its application in sequence pro-
cessing remains limited. In this study, we made suitable 
modifications to make SENET compatible with sequence 
feature correction. Specifically, as shown in Fig.  10, we 
treat the length of the sequence as a channel. By utiliz-
ing average pooling and multiple fully connected layers, 
where average pooling helps extract local features by 
taking the average of features within each pooling win-
dow, emphasizing local information and highlighting 
useful details, this mechanism is particularly suitable 

(11)F = σ(ω1 · h3mer + ω2 · h4mer + ω3 · h5mer + ω4 · h6mer),

(12)hfusion = F · (h3mer + h4mer + h5mer + h6mer),
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for adjusting the importance of sequence features. It can 
adaptively adjust the weights of the features obtained 
through feature fusion in Feature fusion section. As a 
result, our model can accommodate different types of 
methylation datasets, enhancing model stability and 
scalability.

Contrastive learning
Contrastive learning strategies are widely employed 
in training deep learning models. They are particu-
larly adept at discerning the similarities and differences 
between samples, and can help alleviate the effects of 
sparse samples on the performance of the model. In our 
study, each DNA sequence is inputted into 12 BERT 
encoders. The initial features of each DNA sequence at 
various scales ( 3−mer, 4 −mer, 5−mer, 6−mer ) are 
simultaneously fed into BERT encoders functioning at 
three distinct dropout rates (0.15, 0.3, and 0.9). Follow-
ing this, the feature fusion module integrates the features 
at the four scales ( 3−mer, 4 −mer, 5−mer, 6−mer ) at 
the same dropout rate, yielding three groups of fused fea-
tures with different dropout rates. These are then adap-
tively fine-tuned through the 2D-SENET module.

As indicated in previous research [44], representations 
with similar dropout rates manifest more similarities, 

while those with higher dropout rates demonstrate more 
significant differences. Operating under this premise, we 
utilize the InfoNCE function [45] to compute the loss of 
contrastive learning. The corresponding formula is as 
follows:

where zr,i , zs,i , and zt,i represent the embeddings obtained 
from sample xi through BERT encoders with dropout 
rates of 0.15, 0.30, and 0.90, respectively, and sim(.,  .) 
denotes the similarity function, which in this case is 
cosine similarity. τ stands for the temperature parameter. 
To maximize the mutual information between positive 
sample pairs and minimize it between negative sam-
ple pairs, relevant information is often integrated when 
constructing different positive and negative samples. 
Changes in the dropout rates lead to the learning of dif-
ferent features in sparse datasets. By constructing these 
samples three times and incorporating them into the 
InfoNCE loss function, we maximize the mutual infor-
mation among similar samples. This can be understood 
as emphasizing important features, and this emphasis 
step mitigates the impact of sparse datasets on the model.

Classification
This module mainly comprises three components: a 
fully connected layer, an activation function, and binary 
cross-entropy (BCE) loss. Once we acquire the final fea-
ture Xfinal of the DNA sequence, we undertake feature 
mapping via the fully connected layer. For this model, we 
select the RELU activation function. In the final fully con-
nected layer, its dimension is set to 2. After a sequence 
of transformations are carried out on Xfinal by the clas-
sification module, a two-dimensional vector is eventually 
generated, representing the probability of the two classes. 
Using the two-dimensional vector of the positive and 
negative samples, we employ the BCE loss function to 
calculate the loss of these samples. The formula for BCE 
loss is as follows:

where x represents the current DNA sequence, p repre-
sents the predicted score, y represents the true label, and 
θ represents all parameters of the model.
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