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Abstract
Background  Improving the egg production of goose is a crucial goal of breeding, because genetics is the key factor 
affecting egg production. Thus, we sequenced the genomes of 55 Chinese indigenous geese from six breeds, which 
were divided into the high egg-laying group (ZE, HY, and SC) and low egg-laying group (ZD, LH, and ST). Based on the 
results of the inter-population selection signal analysis, we mined the selected genome regions in the high egg-laying 
germplasm population to identify the key candidate genes affecting the egg-laying traits.

Results  According to the whole-genome sequencing data, the average sequencing depth reached 11.75X. The 
genetic relationships among those six goose breeds coincided with the breed’s geographical location. The six 
selective signal detection results revealed that the most selected regions were located on Chr2 and Chr12. In total, 
12,051 single-nucleotide polymorphism (SNP) sites were selected in all six methods. Using the enrichment results 
of candidate genes, we detected some pathways involved in cell differentiation, proliferation, and female gonadal 
development that may cause differences in egg production. Examples of these pathways were the PI3K-Akt signaling 
pathway (IGF2, COMP, and FGFR4), animal organ morphogenesis (IGF2 and CDX4), and female gonad development 
(TGFB2).

Conclusion  On analyzing the genetic background of six local goose breeds by using re-sequencing data, we found 
that the kinship was consistent with their geographic location. 107 egg-laying trait-associated candidate genes 
were mined through six selection signal analysis. Our study provides a critical reference for analyzing the molecular 
mechanism underlying differences in reproductive traits and molecular breeding of geese.
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Background
Egg-laying performance is the foundation of the poultry 
breeding industry. The egg-laying ability directly deter-
mines poultry production and the speed and scale of 
poultry industrialization. Compared with other poultry 
industries, industrialization of the goose industry has 
severely slowed down because of low production of egg-
laying geese. Therefore, improving egg production is the 
important goal of goose breeding, and genetics is a key 
factor affecting goose egg production.

Significant differences exist in egg-laying produc-
tion of goose germplasm. For example, the annual egg 
production of high-yield goose germplasm can exceed 
100, whereas that of low-yield goose germplasm is only 
approximately 30. As egg production is influenced by 
genetics, nutrition and management factors, genetics 
plays a fundamental role in this process. The key caus-
ative factor for this difference is that different goose 
breeds have been artificially selected for a long time, 
which has changed the genome region. The imprint on 
the genome affected by selection is called the selection 
signal [1, 2]. After several generations of rapid fixation, 
beneficial mutation sites tend to reduce the genetic varia-
tion region upstream and downstream of these sites. 
Selective signal detection is essential for understanding 
the origin of livestock breeds and the genetic processes 
influencing phenotypic differentiation. In addition, 
detecting selection signals is of great significance for 
characterizing genetic resources of livestock and identi-
fying genetic variants that lead to economically crucial 
traits [3].

The development and application of next-generation 
sequencing (NGS) technology and high-density SNP 
chips, as well as advanced statistical methods and bio-
informatics tools have substantially improved the ability 
to detect genomic selected regions in livestock and poul-
try breeds. Selective signal detection is currently among 
the main research concerns of animal genetics and breed-
ing experts. Numerous studies have unearthed genes 
and beneficial mutations that exert selection advantages 
in specific livestock and poultry populations. Li studied 
the whole genome of nine Chinese chicken breeds at alti-
tudes between 400 and 3000 m. They found that artificial 
and natural selection have played a gigantic role in the 

evolution of domestic chickens, and the selected regions 
of Tibetan chickens carried genes adapted to high alti-
tudes [4]. Zhang performed genome sequencing on two 
wild and seven domestic duck populations obtained 
from different parts of China. The domestic ducks had 
undergone strong artificial selection, especially in plum-
age, brain and nervous system development, and energy 
metabolism [5]. On performing selective signal detec-
tion analysis on high egg-laying goose, Liu found that the 
selected candidate genes related to egg production per-
formance [6]. However, because the reference genome 
adopted by the research institute was not at the chro-
mosome level, locating the candidate gene is impossible. 
A study conducted the selection signal analysis of Jux-
ian high- and low-yield geese populations [7]. Although 
some egg production-affecting candidate genes were 
identified, the common candidate genes among high-
yield egg germplasms could not be detected.

In this study, we sequenced the genomes of 55 Chinese 
indigenous geese from six breeds. ZE goose, originating 
from Jilin Province, China, is one of the breeds with the 
highest egg production in China. HY goose, originating 
from Liaoning Province, China, is a high egg-producing 
breed. SC goose, originating from Sichuan Province, 
China, is also a high egg-producing breed. The other 
three low egg-producing goose breeds, ZD, LH, and ST, 
primarily selected for meat breeds and originate from 
Zhejiang Province, Jiangxi Province, and Guangdong 
Province in China, respectively. These breeds originate 
from various genetic background and geographic origins. 
According to the egg production level [8], the geese were 
divided into the high (more than 60 eggs per year) and 
low egg-laying (approximately 30 eggs per year) groups. 
We then performed the inter-population selection signal 
analysis to explore the selected genome regions in the 
high egg-laying germplasm population, so as to find the 
key candidate genes affecting egg-laying traits.

Results
Genome resequencing and genetic variation
We combined the original data from 19 blood samples 
(HY and LH) with 36 database resequencing data (ZE, 
ZD, SC, and ST) to form the 55 samples (Table  1) in 
the study. Based on the sequencing results, the average 
sequencing depth reached 11.75X, with the min and max 
being 8.07X and 14.94X, respectively (Supplement Table 
S1). The alignment rate with the reference goose genome 
was a mean of 98.29%. A total of 5,599,640 SNPs were 
annotated after quality control and annotation of muta-
tion sites (Table 2). The quality and quantity of SNPs can 
allow further analysis.

Table 1  Information of the goose populations used in this study
Breed Abbreviation Sample 

Size
Egg-laying 
Production

Huoyan HY 9 High

Zie ZE 9 High

Sichuan SC 10 High

Zhedong ZD 8 Low

Lianhua LH 10 Low

Shitou ST 9 Low
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Population genetics structure and relationships
To examine genetic relationships among those six goose 
breeds, the PCA (Fig. 1A–C), NJ phylogeny and admix-
ture (K = 4) analyses were performed using the whole-
genome sequencing data (Fig. 1E). PC1, PC2, and PC3 in 
the PCA explained that the proportions of total variance 
were 21.2%, 14.04%, and 12.78%, respectively (Fig.  1A–
C). PC1 could clearly separate ST from other breeds. 
From the perspective of PC2, HY and ZE were closer. To 
resolve the phylogenetic relationships of those breeds, a 
NJ tree was constructed among the 55 individuals. When 
ST was used as a reference population for revealing evo-
lutionary relationships in other breeds, ST was found to 
be closer to ZD and farthest from ZE, which coincided 
with the breed’s geographical location. The population 
structure analysis was performed for detecting the pos-
sible ancestry proportions among the breeds. The clus-
tering result for K = 4 indicated the presence of a clear 
division between the breeds with high egg-laying produc-
tion (ZE, HY, and SC) and low egg-laying production (ST, 
ZD, and LH). This is also consistent with the results of 
the PCA and NJ tree.

To further investigate the degree of selection of differ-
ent goose breeds, we calculated LD values for each breed 
(Fig. 1D). According to the LD analysis, ZE had the sec-
ond longest LD decay distance (half r2 value = 2000 bp) of 
all breeds (Supplement Table S2). These results indicated 
that ZE was artificially bred at a higher selection intensity 
than the other four breeds. According to the half r2 value 
of the six breeds, we considered 10  kb as the SNP site-
linked distance for the signal detection window.

Genome-wide selective signature detection
To better mine the functional areas closely related to 
egg-laying traits, we assigned three breeds (HY, ZE, SC, 
total 28 samples) to the high egg-laying group, and other 
three breeds (ZD, LH, ST, total 27 samples) to the low 

egg-laying group. Considering that a single method may 
generate false-positive selection signals, the results of FST 
and πratio analysis methods were combined to screen out 
the sites that appeared in the top 5% window of the Z(FST) 
value (≥ 1.94) sliding window analysis and the top 5% 
window of the log2(πratio) value ( ≥ − 0.54) analysis as the 
high-group selected candidate target sites (Fig. 2A). More 
windows of selection (1411 and 1119) were present on 
Chr1 and Chr17, respectively. Among them, the region 
of Chr1:63306001–63,316,000 exhibited the highest FST 
value of 8.77. We next identified the high and low group-
selected genomic regions by comparing the ROD (reduc-
tion of diversity) using a 10-kb window with a 1-kb step 
size (Fig. 2B). The top 5% of windows or regions with the 
highest ROD value (threshold ≥ 0.53) were defined as the 
high group sweep. More windows of selection (6287 and 
4356) were present on Chr12 and Chr23, respectively. 
The region of Chr12:18159001–18,169,000 exhibited the 
highest ROD value of 0.99. Tajima’s D, which is based 
on allele frequencies, was used to detect the high group-
selected regions, the Tajima’s D value (threshold ≥ 2.94 
and ≤ -1.45)as the selected region (Fig. 2C). Chr12 exhib-
ited the largest distribution of selected regions (816 
SNPs). Using the cross-population composite likelihood 
ratio test, we selected the top 5% window as the high 
group-selected region, which had a xpclr value of ≥ 18.89 
(Fig.  2D). The region with the highest values (32.02) 
appeared on Chr15:10575001:10585000. Chr2 exhibited 
the largest distribution of selected regions (3221 SNPs). 
We further performed selective signal detection on the 
high group by using the inter-population haplotype-
based XP-EHH method (Fig. 2E). The xpehh value of sites 
on the high group-selected region was between ≥ 2 and 
≤ − 2, and the largest number of sites was observed on 
Chr2, accounting for 15.5% of all chromosomes. Overall, 
the six selective signal detection results revealed that the 
most selected regions were located on Chr2 and Chr12. 
Furthermore, the significant regions and loci identified 
by each method, as well as the loci shared among all six 
methods,  methods were detailed list in supplementary 
Table S3.

Candidate gene enrichment analysis
We performed Venn analysis of SNP sites in selected 
regions found in the high egg-laying group among the 
six methods. A total of 12,051 SNP sites were selected in 
all six methods (Fig. 3A). Then, annotation of these com-
mon SNP sites resulted in 107 candidate genes. To bet-
ter evaluate the candidate gene functions, GO and KEGG 
enrichment analyses were performed on these genes. The 
enrichment results (Table  3) revealed some pathways 
(Fig. 3B) involved in cell differentiation, proliferation, and 
female gonadal development, such as the PI3K-Akt sig-
naling pathway (IGF2, COMP, and FGFR4), animal organ 

Table 2  Characteristics and numbers of identified SNPs for 
individuals of six breeds
Category Number 

of SNPs
Upstream 49,882

Exonic Stop gain 310

Stop lose 26

Synonymous 37,850

Non-synoymous 16,102

Splicing 182

Downstream 45,191

Upstream/downstream 2662

Intergenic 2,119,882

Transformation 2,373,051

Transversion 954,502

Total 5,599,640
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morphogenesis (IGF2 and CDX4), and female gonad 
development (TGFB2).

We used the STRING tool for the protein interaction 
network analysis of proteins encoded by the candidate 

genes (Fig. 3C) and obtained five subnetworks. The larg-
est subnetwork included six nodes and five edges, com-
posed of ABCG8, ABCG5, FGFR4, IGF2, TGFB2, and 
RUNX3 genes, and the pivot gene was IGF2.

Fig. 1  Population genetics structure. (A–C) Principal component analysis of identified SNPs. (D) Linkage disequilibrium (LD) decay. (E) Genome-wide 
admixture analysis
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Fig. 3  Candidate gene function enrichment and protein interaction analyses. (A) Venn diagram showing the SNPs overlap among Fst andπ, ROD, Tajima’s 
D, xpclr, and xpehh. (B) Bubble plot of the candidate gene function enrichment pathway. (C) The protein interaction diagram of the candidate gene

 

Fig. 2  Multiple selection sweep analysis in the high egg production group. (A) Fst andπratio selective elimination analyses. (B) The ROD plot of selective 
sweeps in the high group (threshold = 0.53). (C) Tajima’s D plot of selective sweeps in the high group (threshold = 2.94 and − 1.45). (D) The xpclr plot of 
selective sweeps in the high group (threshold = 18.89). (E) The XPEHH plot of selective sweeps in the high group (threshold = 2 and − 2)
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Discussion
The characterization of the population structure and 
genomic comparisons between closely related species are 
essential for genetic assessment, as well as for the utiliza-
tion and conservation of goose breed genetic resources. 
We here performed whole-genome sequencing of 55 
Chinese indigenous geese from six breeds that belonged 
to the low egg-laying to high egg-laying production 
groups. We explored the population genetic structure 
of six breeds by using PCA, NJ tree, and STRUCTURE. 
The genetic background analysis exhibited that the six 
goose breeds had a relatively separate genetic back-
ground. Overall, the partitioning of genetic diversities of 
the breeds was consistent with their geographic distribu-
tions. Although the genetic backgrounds of the six goose 
breeds are relatively independent, there is also a certain 
common ancestor between the breeds. For example, ZE 
and HY were genetically close and their blood compo-
sition was similar. SC with a high egg-producing trait 
shared part of the ancestral lineage with ZE and HY 
(Fig.  1E). ZD, LH, and ST had less exchange of blood. 
This may be related to their obvious physical features 
and mountainous separation. In general, the background 
analysis results were consistent with the formation his-
tory of each breed.

Regarding the mining of egg-laying trait genes of 
goose, most predecessors have conducted the popula-
tion association analysis based on polymorphisms of a 
single candidate gene. Only a few studies have conducted 
population association analysis based on polymorphisms 
at the genome-wide level. Liu used various selection sig-
naling methods for analyzing the egg-producing traits of 
geese [6]; However, limited by the assembly level of the 
reference genome version, locating the chromosome on 
which the candidate gene is located is impossible. In this 
study, the latest version of the chromosome-level refer-
ence genome was used for detecting genome-wide varia-
tion. Because the latest version can accurately identify the 
location of the variation interval, which is more advan-
tageous in mining new variants. Humans improve the 
egg-laying ability of high-laying geese through long-term 

artificial selection, and determining which genes are 
selected under long-term selection conditions is the key 
to studying the genes that affect egg-producing traits.

Since the probability of finding a false-positive inter-
val is high with the single-choice signal method, various 
selection signal analysis methods (Fst, π, ROD, Tajima’s 
D, xpclr, and xpehh) were used for detecting population 
selection signals in the goose germplasm with signifi-
cant differences in egg production performance. These 
methods also allowed exploration of candidate genes 
that affect egg production performance. In the aforemen-
tioned signal analysis methods, we established the selec-
tion defining criteria generally considered in the research 
field as the threshold of the selected region. For example, 
top 5% values included Fst, π, ROD, and xpclr; top 2.5% 
and bot 2.5% values included Tajima’s D; and the exceed-
ing threshold line (value = 2 and − 2) of xpehh. To identify 
the common SNPs in the selected regions, we performed 
Venn analysis of 12,051 SNP sites selected in the six 
methods. These candidate SNPs were annotated to a total 
of 107 genes, and an average of more than 100 sites were 
annotated to a gene. To better comprehend the function 
of candidate genes, we performed the functional enrich-
ment analysis and protein interaction network analysis.

According to our results, the candidate genes were 
significantly enriched in the pathways related to 
female organ development and cell proliferation and 
differentiation, such as the mitogen-activated pro-
tein kinase (MAPK) signaling pathway (hsa04010), 
PI3K-Akt signaling pathway (hsa04151), response to 
progesterone (GO:0032570), animal organ morphogen-
esis (GO:0009887), oogenesis (GO:0048477), and female 
gonad development (GO:0008585). The candidate genes 
contained in the aforementioned pathways were mainly 
IGF2, FGFR4, TGFB2, and NAIF1.

The MAPK signaling pathway is a well-conserved 
intracellular signal transduction pathway in eukaryotes, 
playing a vital role in cell proliferation, differentiation, 
apoptosis, and metabolism [9]. It is also crucial for ani-
mal reproduction. Inhibition of MAPKK-MAPK mem-
bers and ERK pathway scaffold proteins transcription 

Table 3  Results of enrichment analysis for the candidate genes of egg-laying production
Database Term ID P Value Enrich Genes (Position)
KEGG Glycerolipid metabolism hsa00561 0.0002 DGKQ (Chr23), GK (Chr16), DGKE (Chr28)

KEGG Fat digestion and absorption hsa04975 0.0025 ABCG8 (Chr10), ABCG5 (Chr10)

KEGG ECM–receptor interaction hsa04512 0.0100 COMP (Chr35), GPIX (Chr18)

KEGG MAPK signaling pathway hsa04010 0.0145 IGF2 (Chr2), FGFR4 (Chr24), TGFB2 (Chr10)

KEGG PI3K-Akt signaling pathway hsa04151 0.0232 IGF2 (Chr2), COMP (Chr35), FGFR4 (Chr24)

GO Positive regulation of the Notch signaling pathway GO:0045747 0.0026 TGFB2 (Chr10), ASCL1 (Chr3)

GO Animal organ morphogenesis GO:0009887 0.0122 IGF2 (Chr2), CDX4 (Chr22)

GO Oogenesis GO:0048477 0.0358 NAIF1 (Chr29)

GO Response to progesterone GO:0032570 0.0358 TGFB2 (Chr10)

GO Female gonad development GO:0008585 0.0405 TGFB2 (Chr10)
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effectively halts insect ovarian development, leading to 
immature ovaries, reduced egg production, and complete 
inhibition of fecundity, highlighting the critical role of 
the MAPK signaling pathway in female insect reproduc-
tion [10].

The PI3K-Akt signaling pathway regulates various cel-
lular processes, including metabolism, proliferation, cell 
survival, growth, and angiogenesis, in response to extra-
cellular signals. In poultry, follicular atresia increases 
with age, leading to reduced fecundity. Thus, preventing 
follicular atresia is essential for maintaining high egg pro-
duction in poultry. Inhibiting the PI3K/AKT pathway in 
the insulin signaling pathway can accelerate granulosa 
cell (GC) apoptosis and result in premature ovarian fail-
ure. In the poultry industry, an increase in the number 
of atretic follicles (AFs) directly reduces egg production. 
By contrast, reducing the number of AFs increases the 
chance of development of follicles into graded follicles, 
thereby increasing egg production [11]. Therefore, the 
PI3K-Akt signaling pathway significantly influences poul-
try egg-laying traits. Studies on laying hen fecundity have 
identified differentially expressed genes (DEGs) associ-
ated with high laying rates, particularly those involved in 
the regulation of the PI3K-Akt signaling pathway in the 
hypothalamic-pituitary-gonadal (HPG) axis [12]. Simi-
larly, research in Muscovy ducks has demonstrated the 
importance of the PI3K-Akt signaling pathway and ovar-
ian steroid synthesis in follicle development and fecun-
dity [13]. Additionally, the activated PI3K/Akt/mTOR 
signaling pathway plays a crucial role in the proliferation 
and anti-apoptosis of granulosa cells in geese [14].

The progesterone receptor (PR) is a nuclear receptor for 
progesterone that plays a crucial role in various aspects 
of female development and reproduction. PR expression 
significantly decreases during the nesting stage [15]. Spe-
cific hormone response and pituitary transcriptional reg-
ulation in the spawning and hatching stages of Muscovy 
duck [16]. Ovarian differentiation and maturation are 
integral to the complex process of gonadal development, 
which directly impacts fertility and reproductive success 
later in life. This study focused on gonadal development, 
suggesting a potential link between differences in egg-
laying performance among germplasms and embryonic 
stage gonadal development.

Insulin-like growth factor 2 (IGF2) has a vital role 
in follicular development. In mammals, IGF2 is highly 
expressed in dominant follicles, thereby supporting key 
functions of follicular development [17]. IGF2 can stimu-
late the proliferation of granulosa cells and synthesis of 
related hormones, and regulate follicular development 
through FSH [18], thereby affecting the fecundity of sows 
and cattle [19, 20]. Furthermore, IGF2 expression in the 
rat ovary directly affects the development of dominant 
follicles [21]. The luteinizing hormone and FSH also 

regulate the ovarian function of birds. IGF2 is widely 
expressed in different chicken tissues, but the highest 
expression is observed in ovaries. Follicular IGF2 expres-
sion was significantly higher in high-yielding chickens 
than in low-yielding chickens. A certain relationship 
was observed between ovarian IGF2 expression and egg 
production [22]. Similarly, IGF2 is implicated in the fol-
licular development of Muscovy ducks and regulates ovi-
position. The linkage loci Amur1864G and Cmer1704G 
of IGF2 are significantly correlated with E59W, indicating 
a positive association between IGF2 and egg-laying traits 
[23]. These in vivo and in vitro studies highlight the criti-
cal role of IGF2 in ovarian follicular development [24] 
and its relevance to poultry egg-laying traits.

FGFR4, a protein-coding gene, plays a regulatory role 
in various pathways, including cell proliferation, differ-
entiation, migration, and vitamin D metabolism. In the 
kidney, FGFR4 gene expression is significantly higher 
during the peak laying period compared to the early and 
late stages [25]. Within bovine granulosa cells, FGFR4 
mRNA levels increase in medium-sized E2-inactivated 
follicles during follicle selection and innervation, sug-
gesting its involvement in preventing differentiation of 
antral follicles of this size [26]. Interestingly, several fibro-
blast growth factors that preferentially bind to FGFR1c, 
FGFR2c, FGFR3c, and FGFR4 seem to serve as key 
regulators of large follicular differentiation and atresia. 
For example, FGF2 (preferentially binds to FGFR1c and 
FGFR3c), FGF9 (preferentially binds to FGFR3c and to 
FGFR2c), and FGF17 and FGF18 (preferentially binds 
to FGFR3c and then to FGFR4) inhibit steroid synthase 
activity and the production of GC-mediated stimulation 
of FSH-stimulated E2. The FGFR4 protein is expressed in 
all follicular types of oocytes [27].

Transforming growth factor β 2 (Tgfb2)is a protein-
coding gene. Tgfb2 is mainly expressed in mammalian 
ovarian cells. The Tgfb2 gene and protein are expressed 
in granulosa cells; membrane cells of bovine [28]; human, 
rat, and mouse ovaries; and mouse oocytes. Tgfb2 was 
highly expressed in the ovary on the 4th day after birth, 
when the ovary mainly contained primordial follicles, 
primary follicles, and progenitor cells [29]. The afore-
mentioned studies have shown that Tgfb2 is crucial for 
follicular development and can be used as a key candi-
date gene for studying follicular development.

Conclusions
This study provides a comprehensive overview of 
genomic variations in goose by using WGS data. The kin-
ship relationship between high and low egg-laying goose 
germplasms was clarified. The relationship was consistent 
with the geographical location of distribution. In addi-
tion, using six selection signal analysis methods, we iden-
tified 107 candidate genes related to the egg-producing 
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traits. These candidate genes offer an important research 
basis for further elucidating the formation mechanism of 
goose egg production.

Methods
Samples and re-sequence data
The blood samples of 9 HY and 10 LH geese were col-
lected from the Taizhou waterfowl breeding farm, and 
5 mL sublingual vein blood was drawn into blood col-
lection tubes containing the EDTA-K2 anticoagulant. 
The birds were released after their blood was sampled. 
By employing the CWE9600 Magbead Blood DNA Kit, 
DNA was extracted using the magnetic bead method. 
Paired-end libraries with an insert size of 350–500  bp 
were constructed for each bird. After the library inspec-
tion was qualified, pooling was performed based on the 
effective library concentration and the demand for the 
target data volume. The sequencing method of PE150 was 
selected using the DNBSEQ-T7 sequencer for machine 
sequencing.

To profoundly explore the common genes of high 
and low egg production traits, we collected additional 
36 samples by referring to the raw sequence database 
uploaded by previous studies [6, 30]. These 36 samples 
included ZE (n = 9), SC (n = 10), ZD (n = 8), and ST (n = 9). 
In total, 55 bird samples were used in this study. All sam-
ples were divided into the high egg-laying production 
(HY, ZE, and SC) and low egg-laying production (ZD, 
LH, and ST) groups.

SNP calling and annotation
To ensure the quality of the sequencing data, fastp was 
used to perform a series of quality control checks for raw 
reads following standard procedures [31]. The raw data 
were filtered in accordance with the following conditions:

1)	 Reads containing the linker sequence were filtered;
2)	 The N content in single-ended access reads 

exceeding 10% of the read length was set as the 
standard for deleting paired reads;

3)	 When the number of low-quality (≤ 5) bases 
contained in the single-ended sequencing read 
exceeded 50% of the length of the read length, the 
paired reads were removed.

After data were filtered, the index was built using the 
goose chromosome-level reference genome version 
[32]. Then, clean reads were compared to the reference 
genome by using BWA 0.7.17 software [33], sorted, and 
indexed using samtools1.7. The bam file was dedupli-
cated using the module provided with GATK 4.1.8.0 soft-
ware [34]. Then, the sequencing depth, genome coverage, 
and other information of each sample were calculated 
based on the bam file.

By using GATK 4.1.8.0 software to call SNPs, SNP 
mutations were detected based on the comparison results 
of clean reads in the reference genome. Then, the SNP 
standard was filtered using the variant filtration module. 
The nucleotide variants were filtered based on the qual-
ity requirement with the read depth (dp > 2), missing 
rate (Miss < 0.1), and MAF (> 0.05) using the SAMtools. 
Finally, SNP variant sites were annotated using annovar 
software.

Population genetics analysis
In this study, principle component analysis (PCA) was 
performed based on all SNPs. The first three principal 
components of the population (parameter --pca 3) were 
calculated using Plink software (version: 1.9) [35]. The 
distribution plots of PC1–PC2, PC1–PC3, and PC2–PC3 
samples were mapped using the “ggplot2” package in R 
software.

The identity-by-state (IBS) genetic distance matrix 
(parameter -- distance 1-ibs square) was constructed 
using Plink software (version: 1.9). Using the neighbor-
joining (NJ) method, the evolutionary tree was con-
structed with MEGACC software. Finally, the Interactive 
Tree Of Life online tool was used to visualize the evolu-
tionary tree results to present the evolutionary relation-
ship between individuals of the six goose breeds.

The computationally efficient admixture software was 
used to analyze the population structure of the six goose 
breeds [36]. The parameters were set by software default 
settings, and the number of subgroups was K = 2– 6 for 
simulation calculation. The “pophelper” package in R 
software was used to map the structure of subgroups to 
study the stratification of all populations [37].

The linkage disequilibrium (LD) decay with physical 
distance between SNPs was calculated and visualized 
using PopLDdecay software [38] with the parameter 
(--MaxDist 500).

Detection of selective signatures
Genome scans for selection in the high egg-laying popu-
lation were performed using five methods and 4 strate-
gies. First, based on population differentiation, VCFtools 
[39] were used to calculate the fixation index (Fst) 
between the high and low group breeds. Based on the 
LD results, the window was finally set to 10 kb and the 
step size to 1 kb. Second, based on genomic heterozygos-
ity πratio and ROD, πlow/πhigh was calculated using a 10-kb 
window with a 1-kb step size, and the top 5% of windows, 
we identified genomic regions selected by the high and 
low groups by comparing the ROD using a 10-kb window 
with a 1-kb step size. The top 5% of windows or regions 
with the highest ROD value were defined as the high 
group sweep. Third, based on allele frequency profiles, 
Tajima’s D value was calculated with VariScan (version 



Page 9 of 10Zhao et al. BMC Genomics          (2023) 24:750 

2.0.3) by using a 100-kb window and a 10-kb step size. 
The cross-population composite likelihood ratio (xpclr) 
was calculated for sites in the 10-kb window with a 1-kb 
step size of each chromosome by using xpclr software 
[40]. Fourth, based on LD, the inter-population XP-EHH 
analysis was performed using Shapit software to con-
struct genome haplotype information, and the rehh pack-
age (version 3.1.2) in R software was to perform [41]. A 
selective signal detection method based on population 
differentiation (FST) and genomic heterozygosity (πratio) 
was used for combinatorial analysis, so that FST and πratio 
could be mutually validated to avoid false positives and 
screen overlapping sites detected by combining the two 
methods. To facilitate the overlapping sites detected, the 
obtained FST and πratio values were converted to ZFST 
and Zπratio values through standard normal conversion 
(Z-transformed). The ZFST and Zπratio values were then 
sorted, and the overlap region with the selection signal 
was presented as the selected candidate region in the 
top5% regions of both methods.

Candidate gene functional annotation
For a better understanding of the gene functions and sig-
naling pathways of the identified candidate genes, online 
GO and KEGG pathway enrichment analyses were per-
formed using KOBAS 3.0. Candidate genes in key path-
ways were analyzed using the STRING database (https://
string-db.org/) for protein interaction network analysis.
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