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Abstract 

The prediction of major histocompatibility complex (MHC)-peptide binding affinity is an important branch in immune 
bioinformatics, especially helpful in accelerating the design of disease vaccines and immunity therapy. Although deep 
learning-based solutions have yielded promising results on MHC-II molecules in recent years, these methods ignored 
structure knowledge from each peptide when employing the deep neural network models. Each peptide sequence 
has its specific combination order, so it is worth considering adding the structural information of the peptide 
sequence to the deep model training. In this work, we use positional encoding to represent the structural information 
of peptide sequences and validly combine the positional encoding with existing models by different strategies. Exper-
iments on three datasets show that the introduction of position-coding information can further improve the perfor-
mance built upon the existing model. The idea of introducing positional encoding to this field can provide important 
reference significance for the optimization of the deep network structure in the future.

Keywords MHC-II molecules, Affinity prediction, Positional embedding

Introduction
T-cells present on their surface a specific receptor known 
as the T-cell receptor (TCR) that enables the recogni-
tion of antigens when they are displayed on the surface 
of antigen-presenting cells (APCs) bound to major his-
tocompatibility complex (MHC) molecules [1, 2], which 

play a significant role in the adaptive immune response 
mediated by T cells [3, 4]. Due to the time-consuming 
and labor-intensive process of biochemical experiments 
[5, 6], the machine learning-based method of predict-
ing MHC binding peptides has attracted more and more 
attention and has been used to optimize the selection of 
a small number of promising high-affinity binding pep-
tides, which are further verified by biochemical experi-
ments [7–9]. In general, there are two major classes of 
MHC molecules: MHC Class I (MHC-I) and MHC Class 
II (MHC-II) with subclasses in each of these two classes. 
MHC-I mainly has A, B, and C subclasses, while MHC-
II mainly has DP, DQ, and DR subclasses encoded in the 
human leukocyte antigen (HLA) gene [10] and in the his-
tocompatibility2 (H-2) gene of mouse [11]. Furthermore, 
note that different from MHC-I molecules consisting of 
one chain [12], each MHC-II molecule has two chains, α 
and β [13, 14].

Most MHC-I peptide ligands have 9 residues, made 
from a single chain α , and can promise better pre-
dicted results for these peptides that hold this size 
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[15]. However, the MHC-II molecules’ peptide bind-
ing groove is open at both ends, allowing the peptide 
to extend beyond the binding groove (9-22 residues in 
length), although there is only a core of nine residues in 
the MHC-II binding groove [16, 17]. Therefore, peptide 
binding predictions for MHC-II molecules are of great 
challenge compared to those for MHC-I molecules. 
Therefore, how to design an effective algorithm frame-
work to predict affinity peptides for MHC-II molecules 
has become a hot but difficult topic [18, 19]. To date, a 
variety of methods have been developed to predict the 
binding capacity of peptides to MHC-II [20–22], among 
which prediction of MHC-II peptide binding based on 
panspecificity is the most common and efficient compu-
tational solution [23, 24].

Early panspecific-based methods can be divided into 
various techniques, such as support vector machine 
(SVM) [25], motif matrix (MM) [26], artificial neural net-
work (ANN) [27], and kernel-based methods [28]. Fur-
thermore, NetMHCIIpan-4.0, an ANN-based method, 
exploited customized machine learning strategies to inte-
grate different types of training data, resulting in happy 
performance and outperforming their competitors in that 
year [29]. Recently, pan-specific based methods began to 
be oriented toward deep learning (DL) [30]: PUFFIN used 
a deep residual network-based computational approach 
that quantifies uncertainty in peptide-MHC affinity pre-
diction; The attention mechanism used by MHCAttnNet 
provided a heatmap over the peptide sequences [31]; And 
DeepSeaPanII was an end-to-end neural network model 
without the need for pre- or post-processing on input 
samples [32]. It is worth noting that the above DL-based 
methods only encode the text information of the peptide 
sequences and input them into the corresponding model, 
and do not take into account the structural information 
of the peptide sequence or its implicit presence in the 
network structure design [33].

Although some traditional methods utilize the struc-
tural information of the peptide sequences [34, 35], it 
is difficult to combine these deep learning algorithms 
properly. In recent research in the field of natural lan-
guage processing (NLP) [36], positional encoding (PE) 
is used to encode the relative position of words in a sen-
tence, allowing deep models to retain position informa-
tion among words [37, 38]. Supplementing the structure 
information can effectively help the deep network to 
achieve better performance, especially those networks 
that are not sensitive to position information, such as 
the Transformer [39]. Apart from this, [40] showed that 
the structural information was crucial for modular rein-
forcement learning, substantially outperforming prior 
state-of-the-art methods on multi-task learning [41, 42]. 
Therefore, in the MHC-II affinity peptide prediction task, 

the introduction of position encoding can be expected to 
further improve the performance of the training deep-
learning model, especially when the internal position of 
each peptide sequence is completely determined [43].

In this paper, the proposed algorithm is based on 
DeepMHCII, the current state-of-the-art DL-based algo-
rithm [44]1, to validate our proposed strategy. To study 
the effectiveness of introducing positional encoding, 
this paper discusses the placement of positional encod-
ing in different positions and the use of different encod-
ing schemes. To intuitively compare the performance of 
different positional encoding-adding strategies, the same 
datasets and evaluation as the DeepMHCII algorithm are 
used, such as 5-fold cross-validation, independent test-
ing set verification, and binding core prediction. Experi-
mental results show that the introduction of positional 
encoding information can further improve the perfor-
mance of the DeepMHCII model. We believe that intro-
ducing position encoding into this task can provide an 
important reference for future model optimization.

Methods
Preliminary
Consider two primary sequences: a peptide sequence 
denoted by P and an MHC-II molecule sequence denoted 
by Q. Both sequences consist of the 20 standard amino 
acids. Our objective is to establish a regression model 
that predicts the binding affinity ẑ ∈ [0, 1] when given a 
specific pair of P and Q. The binding affinity between P 
and Q is primarily influenced by two factors:

– The peptide’s binding core: The principal segment 
actively participates in interactions with the MHC-II 
molecule.

– The MHC-II molecule’s binding groove: A region 
marked by its nine specialized pockets, which is par-
amount for the peptide’s accommodation.

In addition, it should be noted that peptide flank-
ing residues (PFRs) play a role. Although these residues 
reside outside the core binding groove, research has 
shown their significant impact. PFRs not only influence 
the binding affinity of the peptide, but also play a role 
in enhancing both peptide processing and T cell activa-
tion [45]. To facilitate our study and in alignment with 
prior research settings, we focus on a 34-residue pseudo 
sequence derived from Q. This representation of MHC-
II molecules is an amalgamation of two parts: 15 amino 
acid residues from the α chain and 19 from the β chain 
of MHC-II. The extraction of these residues is based on 

1 https:// github. com/ yourh/ DeepM HCII

https://github.com/yourh/DeepMHCII
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their presence in the MHC-II peptide complexes found in 
the Protein Data Bank (PDB) [46].

Overview of DL‑based MHC‑II binding prediction
The burgeoning field of immunological research has 
turned to Deep Learning (DL) methodologies, espe-
cially panspecific methods, to offer granular insights 
[47]. These methods can be distilled into a structured 
deep framework as shown in Fig. 1. Based on this, exist-
ing frameworks employ an embedding layer dedicated to 
encoding peptide sequences into an embedding matrix, 
X ∈ R

Lpeptide×d . Currently, another separate embedding 
layer focuses on translating the pseudo-sequences of 
MHC-II into a unified embedding matrix, Y ∈ R

Lpseudo×d . 
After initial encoding, both embedding matrices undergo 
a transformation mediated by the information process 
module. In doing this, sophisticated structures are tai-
lored to extract the underlying Information Represen-
tation Matrix, revealing the dynamic interplay between 
peptides and MHC-II molecules. Drawing the process to 
a close, the framework takes advantage of an output layer. 
Its primary objective is dual: to calculate the binding 
affinity, denoted by ẑ , and to discern the predictive scores 
associated with potential binding cores of nine lengths.

The purpose of this paper is to delve deeper into the 
architectural intricacies of this framework. Emphasis 
will be laid on the integration of structural data, with a 
dedicated segment elucidating the strategic application 

of positional encoding to bolster the prediction accu-
racy. When considering positional encoding (PE) strat-
egies for peptide sequences in the context of machine 
learning, especially for tasks like predicting the bind-
ing affinity between peptides and MHC-II molecules, 
various strategies can be formulated by combining dif-
ferent aspects of positional encoding. These strategies 
could include variations in the position of the addi-
tion of encoding, the method of encoding, and the use 
of positional peptide encoding alone. Let us explore 
what each of these aspects means and how they can be 
combined.

How to implement the positional encoding
In this section, we explore the computation of posi-
tional encoding for the peptide sequence and the 
MHC-II pseudo-sequence. Let us consider a peptide 
sequence, P, and an MHC-II pseudo-sequence, Q. 
These sequences are mapped to their corresponding 
positional encodings, XPE ∈ R

L×d and YPE ∈ R
34×d , 

representing the positional encoding matrices for P 
and Q, respectively. The MHC-II pseudo-sequence Q is 
a 34-length sequence extracted from the entire MHC-
II molecule sequence. The positional encoding can be 
defined as:

where xi ∈ R
d denotes the positional encoding vector for 

the i-th residue of the peptide sequence, and yj ∈ R
d rep-

resents the positional encoding vector for the j-th residue 

(1)XPE = (x1, x2, . . . , xL)
⊤ ∈ R

L×d
, YPE = (y1, y2, . . . , y34)

⊤ ∈ R
34×d

,

Fig. 1 The architecture of our proposed method. The blue dashed box denotes the Pre-PE condition and the red dashed box denotes the Post-PE 
condition
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of the MHC-II pseudo-sequence. Here, L signifies the 
length of the input peptide sequence.

Due to the peptide-binding groove alignment on MHC-
II molecules being open at both ends [48], which allows 
the peptide to extend beyond the binding groove (9-22 
residues in length), practical sequences of equal length 
are achieved by zero padding at both ends of the peptide 
sequence. Thus, amino acids at these zero positions will 
produce invalid encoding which has been considered by 
the traditional peptide embedding process. Therefore, 
this article proposed a new positional encoding strategy 
for the encoding of the peptide sequence, Calibrated PE, 
based on Direct PE, as shown in Fig.  2. The positional 
encoding of a sequence P when using calibrated PE can 
be rewritten as follows:

where L′ denotes the truth length of the peptide 
sequence. For computing positional encoding, a fixed 
sinusoidal relative PE method that is derived from sinu-
soidal functions and fixed during the model training [49]. 
For example, consider the dimension 2k , (x2, x4, ..., x2k , ...) 
and the dimension 2k + 1, (x1, x3, ..., x2k+1, ...) of a pep-
tide-encoded PE, respectively:

Where to add the positional encoding
The next thing to consider is where to add the positional 
encoding information. Positional encoding information 
can be inserted into the pre (pre-PE) or post (post-PE) 
information process module according to Fig.  1, respec-
tively. Here, the information process module is the bind-
ing interaction convolutional layer (BICL) proposed by 

(2)XC−PE = (x0, ..., x0, x1, ...xL′ , x0, ..., x0)
T ∈ R

L×d
,

(3)
PE(pos, 2k) = sin

pos

10002k/d

PE(pos, 2k + 1) = cos
pos

10002k+1/d

DeepMHCII. Briefly, BICL generates different kernels for 
each MHC-II molecule and performs a convolution opera-
tion on the peptide embedding matrix. On the other hand, 
we also consider whether the positional encoding is applied 
exclusively to the peptide sequence, which may highlight 
the importance of the peptide’s position in binding with-
out affecting the encoding of the MHC-II molecule, or 
to both the peptide and MHC-II sequences, allowing the 
model to learn the relative positions of both in the binding 
interaction.

As for Pre-PE, just simply add the position-encoding 
information matrix to the amino acid embedding matrix 
to make the trained model contain position-encoding 
information, shown in the blue dashed box of Fig.  1. Let 
XEmb ∈ R

L×d and YEmb ∈ R
34×d , representing the embed-

ding matrices for P and Q, respectively. Thus, the combined 
embedding matrices which will undergo a transformation 
mediated by the Information Process Module can be given 
as follows:

When it comes to Post-PE (the red dashed box of Fig. 1), 
things are going to get a little more complicated. As can be 
seen from DeepMHCII framework, the peptide sequence 
information representation matrix, denoted as the output 
of BICL can be written as:

Where Wk is the weight matrix, bk is the bias, f is the 
activation function, and k denotes different kernel sizes. 
Considering the effect of both the binding core and PFRs, 
BICL used four different kernel sizes ( sk ): 9, 11, 13, and 15. 
For each kernel size, there is a different number of kernels 
( hk ). In the peptide-only strategy, a 1D convolution layer 
is used to learn the positional information representation 
matrix and add this to the output of BICL. To satisfy the 

(4)
X = XEmb + XPE(or XC−PE) ∈ R

L×d
, Y = YEmb + YPE ∈ R

34×d
.

(5)CEmb = f
(

f
(

Wk
Y

)

X + bk
)

,

Fig. 2 Illustration of two different positional encodings: Direct PE and Calibrated PE
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size with the output of BICL, the kernels ( Wk
PE−O ) of con-

volution hold the size of hk × d × sk and the output of this 
layer can be described as follows:

where bkPE−O is the bias, f is the activation function, and 
k denotes different kernel sizes. In both considering the 
peptide and the MHC-II strategy, the same structure of 
BICL was employed and the interaction between XPE and 
YPE can be given as follows:

where Wk
PE−T with the size of hk × sk × 34 to gener-

ate the kernels and bkPE−T is the bias. Same as the Pre-
PE condition, the combined information representation 
matrix can be given as follows:

Datasets
Three available benchmark datasets are used to train and 
evaluate our proposed method:

• BC2015: a binding core benchmark, which was used 
to evaluate the performance of NetMHCIIpan3.22 
in identifying the binding core of an MHC-II pep-
tide complex. BC2015 consists of 51 complexes from 
PDB.

• BD2016: It contains 134,281 data points on MHC-
peptide binding affinities for 80 different MHC-II 
molecules, including 36 HLA-DR, 27 HLA-DQ, 9 
HLA-DP and 8 H-2 molecules. BD2016 already pro-
vides a 5-fold cross-validation (5-fold CV) split that 
groups peptides with common motifs into the same 
fold.

• ID2017: an independent test dataset in DeepMHCII, 
ID2017, by removing data points that overlapped 
with BD2016 and retained MHC-II molecules with 
more than 50 peptides for robust performance evalu-
ation. There are 10 HLA-DB molecules with 857 pep-
tides in practice.

The following experiments will be conducted to vali-
date the performance of our method: (i) the performance 
comparison among different PE-adding strategies on 
ID2017; (ii) the performance of different PE-adding strat-
egies by 5-fold CV over BD2016; (iii) visualization of the 
binding motifs of MHC-II molecules obtained by each 

(6)CPE = f
(

Wk
PE−O · XPE + bkPE−O

)

,

(7)CPE = f
(

f
(

Wk
PE−TYPE

)

· XPE + bkPE−T

)

,

(8)C = CEmb + CPE ,

model as sequence logos; (iv) predict the binding core 
over BC2015.

We have set the minimization of the mean square error 
as our primary goal in training. To achieve this, we have 
implemented an ensemble learning strategy, wherein we 
trained T distinct models, each initialized with unique 
random weights. The final prediction is derived by calcu-
lating the mean of the predictions of all T models.

The area under the receiver operating characteristic 
curve (AUC) for each MHC-II molecule and the average 
AUC were reported. The Pearson correlation coefficient 
(PCC) was calculated to examine the linear relationship 
between the predicted binding affinity. Spearman rank 
correlation coefficient (SRCC) measured the monotonic 
relationship based on ranks. Furthermore, mean square 
error (MSE) was used to provide a measure of the average 
prediction error of the proposed strategy.

Results
Experimental settings
In this paper, the following hyperparameter values can 
be found, which are the same as DeepMHCII: d = 16 . 
The number of kernels hk with kernel sizes sk of 9, 11, 
13, and 15 was 256, 128, 64, and 64, respectively. f was 
ReLU. While training, the batch size was 128, the num-
ber of epochs was 20 and the optimizer was Adaelta [50] 
with a learning rate of 0.9 and weight decay of 1e-4. T 
(number of trained models) was 20. Apart from that, this 
paper discussed 8 types of combined PE-adding strate-
gies: 2 PE-adding positions (where), 2 PE encoding meth-
ods (how), and consider whether to use peptide-only 
PE. Each strategy would have its advantages and could 
be tested empirically to see which yields the associated 
accurate predictions.

Comparison of different pe‑adding strategies on ID2017
Table  1 offers a detailed analysis of the performance 
(AUC) on the ID2017 independent test set when differ-
ent positional encoding (PE) strategies are applied to the 
baseline DeepMHCII model. The tables elucidate that 
Calibrated PE, particularly the Pre-PE(T) strategy, out-
performs other configurations with an impressive AUC 
of 0.777, marking an enhancement over the baseline per-
formance of DeepMHCII, which has an average AUC of 
0.770. Examining individual allele performance further, 
the Calibrated PE method demonstrates a clear advan-
tage. For instance, allele DRB1*0301 shows a significant 
increase from an AUC of 0.629 with DeepMHCII to 0.676 
with Calibrated Pre-PE(T). Similarly, allele DRB1*0701’s 
AUC escalates to 0.845 with Calibrated Post-PE(T), com-
pared to 0.814 with the baseline. However, not all alleles 
react equally to the addition of PEs. Allele DRB1*0401, 
for example, maintains a higher AUC with the baseline 2 http:// www. cbs. dtu. dk/ suppl/ immun ology/ NetMH CIIpa n3.2

http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan3.2
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DeepMHCII at 0.863, compared to 0.790 with Calibrated 
Pre-PE(T). Across the alleles, Calibrated PE’s average 
AUC exhibits a notable increment compared to Direct 
PE’s average AUC. More importantly, the same conclu-
sion can be drawn from the results in Tables A1 and A2. 
These observations corroborate the inference that cali-
brated PE, especially the Pre-PE(T) strategy, is generally 
more beneficial than direct PE in improving the predic-
tion accuracy of the DeepMHCII model on the ID2017 
dataset.

Comparison of different PE‑adding strategies on BD2016
Table  2 delineates the performance metrics of various 
positional encoding (PE) strategies in comparison to the 
baseline DeepMHCII on the BD2016 dataset. A care-
ful examination of the figures reveals that Post-PE con-
figurations generally surpass Pre-PE strategies across 
all measured criteria. This finding contrasts with the 
observations from the ID2017 dataset, where the Cali-
brated Pre-PE(T) strategy was notably effective. In par-
ticular, the Direct Post-PE(O) approach outperforms 
other strategies with the highest AUC of 0.857, which is 
marginally better than the baseline DeepMHCII’s AUC 
of 0.856. Similarly, this strategy achieved the top Pearson 

Correlation Coefficient (PCC) of 0.694, slightly improv-
ing upon the baseline’s 0.691. This trend continues 
with Spearman’s Rank Correlation Coefficient (SRCC), 
where the Direct Post-PE(O) achieves an SRCC of 0.685, 
approaching the highest value in the table, 0.687, as seen 
with Calibrated Post-PE(T). Furthermore, the Mean 
Squared Error (MSE) metric also supports the superi-
ority of Post-PE methods. Both Calibrated Post-PE(T) 
and Direct Post-PE(O) strategies share the lowest MSE 
of 0.0299, indicating a statistically significant reduction 
from the DeepMHCII baseline of 0.0308. These results 
highlight that, for the BD2016 dataset, the application 
of Post-PE, especially the Direct Post-PE(O) strategy, 
is particularly beneficial, surpassing the pre-encoding 
strategies and improving upon the baseline DeepMHCII 
model across multiple performance metrics. Detailed 
results for BD2016 are shown in Tables A3, A4 and A5. 
Besides, we further showed the PCC difference in Cali-
brated Post-PE (T) and Direct Post-PE (O) surpasses 
that in DeepMHCII (Fig. 3).

Binding core prediction and sequence logos
Furthermore, we have graphically represented the bind-
ing motifs of MHC-II molecules derived from each 

Table 1 Performance (AUC) of using different positional encoding conditions and DeepMHCII on ID2017. ’O’ denotes using 
peptide-PE only, and ’T’ denotes using peptide-PE and MHC-II-PE together

Allele DeepMHCII Calibrated PE Direct PE

Pre (O) Pre (T) Post (O) Post (T) Pre (O) Pre (T) Post (O) Post (T)

DRB1*0101 0.882 0.868 0.873 0.885 0.871 0.883 0.883 0.875 0.877

DRB1*0301 0.629 0.602 0.676 0.622 0.632 0.628 0.620 0.629 0.610

DRB1*0401 0.863 0.813 0.790 0.854 0.814 0.807 0.778 0.810 0.816

DRB1*0701 0.814 0.792 0.845 0.802 0.823 0.812 0.821 0.825 0.821

DRB1*0901 0.889 0.875 0.844 0.893 0.859 0.856 0.844 0.841 0.842

DRB1*1101 0.657 0.642 0.649 0.658 0.648 0.652 0.641 0.628 0.633

DRB1*1202 0.788 0.758 0.811 0.763 0.725 0.788 0.733 0.716 0.735

DRB1*1301 0.615 0.566 0.736 0.636 0.660 0.517 0.651 0.643 0.572

DRB1*1501 0.799 0.798 0.821 0.807 0.823 0.810 0.798 0.817 0.806

DRB1*1502 0.764 0.752 0.728 0.734 0.700 0.726 0.720 0.679 0.687

Average 0.770 0.747 0.777 0.765 0.755 0.748 0.749 0.746 0.740

Table 2 Performance of using different positional encoding conditions and DeepMHCII on BD2016

Allele DeepMHCII Calibrated PE Direct PE

Pre (O) Pre (T) Post (O) Post (T) Pre (O) Pre (T) Post (O) Post (T)

AUC 0.856 0.844 0.820 0.855 0.856 0.843 0.820 0.857↑ 0.855

PCC 0.691 0.679 0.634 0.689 0.693↑ 0.675 0.633 0.694↑ 0.692↑

SRCC 0.682 0.672 0.630 0.681 0.687↑ 0.666 0.626 0.685↑ 0.686↑

MSE 0.0308 0.0301↓ 0.0337 0.0312 0.0299↓ 0.0315 0.0341 0.0299↓ 0.0301↓
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PE-adding strategy in the form of sequence logos, which 
are accessible at the WebLogo portal3 [51, 52]. For 
illustrative purposes, we selected three MHC-II mole-
cules-DRB10401, DRB10901, and DRB1*1202-from the 
ID2017 set and subjected them to random testing. Fig-
ure 4 displays the sequence logos corresponding to these 
MHC-II molecules as influenced by different encoding 
strategies. On the sequence logos, the x-axis encom-
passes positions 1 through 9 (referred to as pockets), 
where the overall height at each position is indicative of 
the relative informational significance attributed to that 
specific site within the motif. Concurrently, the stat-
ure of individual letters within each position correlates 
to the prevalence of the respective amino acid at that 
site. Typically, pockets 1, 4, 6, and 9 constitute the four 
main anchor positions, considered critical for the bind-
ing affinity of peptides [53]. The findings suggest that all 
strategies except for Direct Post-PE(O) exhibited sub-
stantial promise and conferred valuable insights perti-
nent to peptide binding. Upon evaluating the prediction 
accuracy of the binding core over the BC2015 data-
set, the performance of Calibrated PE was observed to 
eclipse that of Direct PE, as evidenced by the data articu-
lated in Tables A6 and A7.

Discussion
In this study, we introduced a novel approach to inte-
grate structural information to enhance the predic-
tions of binding affinity of MHC-II molecule using the 
DeepMHCII framework. The results from our proposed 
methodology indicate a noticeable improvement in 

DeepMHCII’s performance, affirming the utility of posi-
tional encoding (PE) strategies in this domain. The com-
prehensive analysis provided herein lays a foundation for 
empirical understanding and sets a precedent for future 
investigative pursuits. Intriguingly, our findings under-
score the variability in performance outcomes contin-
gent upon the dataset and evaluative measures employed, 
thereby suggesting a necessity for meticulously tailored 
positional encoding techniques to accommodate differ-
ent research requirements.

While our results are promising, they also reveal the 
heterogeneity of performance across different datasets 
and evaluation metrics, suggesting that a one-size-fits-
all approach to positional encoding may not be viable. 
Instead, there is a compelling need for the careful design 
of positional information that aligns with specific tasks 
and datasets. Moreover, the landscape of positional 
encoding methodologies extends beyond the scope of 
our current work, with avenues such as learnable PEs 
presenting opportunities for further exploration. These 
adaptive encoding methods could potentially reveal more 
nuanced structural relationships within the binding affin-
ities of MHC-II molecules.

Potential applications of this research are vast, 
including the development of more accurate predic-
tive models for vaccine design, where understanding 
peptide-MHC-II interactions is crucial. Such mod-
els could substantially expedite the identification of 
potent epitopes, thereby bolstering the development 
of peptide-based vaccines and therapeutics. How-
ever, the limitations must be acknowledged. One such 
constraint is the reliance on available structural data, 
which may not fully capture the dynamic nature of 
peptide-MHC interactions. Future work could aim 

Fig. 3 PCC difference in Calibrated Post-PE (T) and Direct Post-PE (O) surpasses that in DeepMHCII

3 https:// weblo go. berke ley. edu/

https://weblogo.berkeley.edu/
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to incorporate three-dimensional spatial structures, 
potentially offering a more holistic view of the bind-
ing process. This could be achieved through the inte-
gration of molecular dynamics simulations or the 
application of advanced imaging techniques, further 
enhancing the predictive capabilities of deep learning 
models in this field. Ultimately, our work serves as a 

stepping stone toward the realization of deep learning 
methodologies that not only utilize positional informa-
tion, but also encapsulate the rich structural intrica-
cies inherent to biological processes. This could pave 
the way for a new era of bioinformatic tools capable of 
tackling complex biological predictions with greater 
accuracy and efficiency.

Fig. 4 Sequence logos by using different positional encoding
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