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Abstract 

Background The expression of biological traits is modulated by genetics as well as the environment, and the level 
of influence exerted by the latter may vary across characteristics. Photosynthetic traits in plants are complex quantita‑
tive traits that are regulated by both endogenous genetic factors and external environmental factors such as light 
intensity and  CO2 concentration. The specific processes impacted occur dynamically and continuously as the growth 
of plants changes. Although studies have been conducted to explore the genetic regulatory mechanisms of indi‑
vidual photosynthetic traits or to evaluate the effects of certain environmental variables on photosynthetic traits, 
the systematic impact of environmental variables on the dynamic process of integrated plant growth and develop‑
ment has not been fully elucidated.

Results In this paper, we proposed a research framework to investigate the genetic mechanism of high‑dimensional 
complex photosynthetic traits in response to the light environment at the genome level. We established a set 
of high‑dimensional equations incorporating environmental regulators to integrate functional mapping and dynamic 
screening of gene‒environment complex systems to elucidate the process and pattern of intrinsic genetic regulatory 
mechanisms of three types of photosynthetic phenotypes of Populus simonii that varied with light intensity. Further‑
more, a network structure was established to elucidate the crosstalk among significant QTLs that regulate photosyn‑
thetic phenotypic systems. Additionally, the detection of key QTLs governing the response of multiple phenotypes 
to the light environment, coupled with the intrinsic differences in genotype expression, provides valuable insights 
into the regulatory mechanisms that drive the transition of photosynthetic activity and photoprotection in the face 
of varying light intensity gradients.
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Conclusions This paper offers a comprehensive approach to unraveling the genetic architecture of multidimensional 
variations in photosynthetic phenotypes, considering the combined impact of integrated environmental factors 
from multiple perspectives.

Keywords Photosynthesis, Electron transport rate, Photochemical quenching, Nonphotochemical quenching, Light 
environment, Genetic variation

Background
Photosynthesis, as a crucial physiological process on 
Earth, serves as the fundamental basis for the sustenance 
of the biosphere. In recent years, research on photo-
synthesis has advanced significantly, leading to notable 
breakthroughs in the analysis of photosynthetic struc-
ture [1] and the elucidation of the genetic mechanisms 
underlying photosynthesis [2–5]. With the advancement 
of chlorophyll fluorescence technology, the investigation 
of photosynthesis has witnessed a new breakthrough 
through the analysis of photosynthetic phenotypes, 
including chlorophyll fluorescence parameters [6, 7]. 
Photosynthetic phenotypes represent intricate quantita-
tive traits, wherein the quantitative characteristics of an 
organism are subject to a complex, multilevel, and mul-
tistage process involving intrinsic genetic control, recip-
rocal perturbations, and environmental influences. The 
complex and variable climate, along with diverse topog-
raphy, gives rise to variations in environmental regula-
tory patterns, including temperature, humidity, altitude, 
and light intensity [8–10]. Capturing the dynamic pro-
cesses of complex traits and constructing gene‒environ-
mental regulation systems are of great significance for 
elucidating photosynthesis mechanisms and quantify-
ing the patterns of change in high-dimensional, complex 
quantitative traits. This knowledge can provide valu-
able guidance for forest tree production and ecosystem 
management.

Genetic variation and environmental influences 
jointly contribute to the survival and development of 
organisms, encompassing both plants and animals. 
The environment plays a crucial role in shaping gene 
expression and phenotypic traits in these organisms 
[11], while gene regulation is central to the biological 
adaptation of organisms to environmental changes [12]. 
For example, certain genes, such as OsGI, Hd1, and 
OsphyB, participate in the regulation of the high adap-
tive potential exhibited by rice landraces in response to 
climate change [13]. The phenotypic variation in photo-
synthetic traits was also highly influenced by complex 
and diverse environmental conditions. Unfavorable 
environmental conditions, stress regulatory networks, 
and plant biochemical processes collectively constrain 
the photosynthetic efficiency of plants [14, 15]. By 
considering integrated environmental variables as an 

influential factor, the incorporation of these variables 
into the dynamic data of photosynthetic phenotypes 
presents a novel approach to unraveling the gene‒envi-
ronmental regulatory mechanisms underlying genetic 
variation in photosynthetic phenotypes.

In this study, we developed a comprehensive frame-
work that integrates functional mapping [16–19], 
dynamic screening of gene‒environment complex 
systems, and differential networks based on evolu-
tionary game theory [20] to investigate the dynamic 
genetic mechanisms underlying multiple phenotypes in 
response to the influence of integrated environmental 
variables. In this study, we investigated a natural popu-
lation of Populus simonii as a case study. We employed 
optimal function mapping using the maximum likeli-
hood method to identify genome-wide genetic loci 
associated with three key phenotypic traits, electron 
transfer rates (ETR), photochemical quenching (qP), 
and nonphotochemical quenching (qN), in photosys-
tem II and established a set of candidate loci obtained 
through preliminary screening, referred to as “potential 
key QTL sets.” For the loci that potentially contribute 
to the dynamic changes in photosynthetic phenotypes 
in response to light intensity, we employed high-dimen-
sional equations with environmental regulators (HDEE) 
based on a mapping approach to identify the dominant 
quantitative trait loci (QTLs) governing the photo-
system. Additionally, we investigated the influence of 
environmental factors on different genotypes within 
the population by analyzing the mode of environmen-
tal effects. Furthermore, by constructing gene networks 
and enriching gene functions, we classified and delin-
eated the roles of these loci. The schematic diagram 
of the model framework implemented in this paper is 
shown in Fig. 1. On the one hand, we revealed the epi-
static relationship among significant gene loci involved 
in regulating photosynthetic phenotypes in response 
to light changes. On the other hand, key QTLs affect-
ing multiple phenotypes were identified to investigate 
their pleiotropic expression in the photosynthetic sys-
tem. This study employed statistical and computational 
methods to visually uncover the genetic mechanisms of 
photosynthesis, providing a feasible approach to eluci-
date the genetic plasticity of high-dimensional pheno-
type systems under dynamic environmental conditions.
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Results
Construction and fitting of the HDEE
We decompose photosynthetic phenotype under gradient 
light into autogenic regulation terms φi(l) and environ-
mental disturbance terms ωi(l) , as well as the perturba-
tion parameters ǫij for different populations of samples. 
The dynamic variation in the photosynthetic pheno-
type with light intensity, represented by φi(l) , follows an 
S-shaped pattern, which can be effectively modeled using 
a growth curve, such as the Gompertz [21] and Logistic 
[22] curves, among others. The selection of the optimal 
expression of φi(l) is based on the numerical experi-
mental results of phenotype fitting, including standard 
error, goodness of fit, and the comparative implementa-
tion of three information criteria (S Table  1, Additional 
file 2). In this study, the dataset of 98 samples was divided 
into 6 groups using Admixture software, as depicted in 

Fig. 2A, and the difference curves of photosynthetic phe-
notypes among the 6 groups with varying light intensities 
are presented in Fig.  2B. The trajectories of phenotypes 
with varying light intensities reveal a consistent average 
dynamic trend among different groups. The differences 
are primarily observed in the variance of the group phe-
notypes. Figure 2C-E show the distribution of group dis-
turbance parameter values, providing a more intuitive 
observation that despite variations in the overall distribu-
tion range of group disturbance parameters, the median 
among different groups are highly similar. This similar-
ity is further supported by Kruskal-Wallis tests with 
p-value greater than 0.05. The results of variance analysis 
for the parameters of the three phenotypes across dif-
ferent groups indicated nonsignificant population dif-
ferences, as evidenced by p-values much higher than 
0.05 in S Table 2 (see Additional file 2). Furthermore, we 

Fig. 1 Schematic diagram of the model framework. It is applied to high‑dimensional photosynthetic phenotypic data by constructing a set 
of potential key QTL sets to identify the key loci that regulate the changes in photosynthetic phenotypes under gradient light intensity to explore 
the mechanism of phenotypic response to different light gradients
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conducted an analysis of the genetic relationships among 
all samples (Fig. 2F) and determined that the correlation 
coefficient of the genetic relationships ranged from 0 to 
0.48. Moreover, it was observed that more than 98.46% 
of the genetic relationships had correlation coefficients 
below 0.3. Based on these findings, it can be inferred 
that the impact of kinship within the natural popula-
tion studied is relatively weak. In this study, the impact 
of population structure differences and genetic relation-
ships among samples on phenotypic data was found to 
be negligible. Therefore, the disturbance term associated 
with population structure was omitted from the model. 
Combined with the results of the numerical analysis in S 
Table 1, high-dimensional equations with environmental 
regulators (HDEE) can be expressed as (See the Materials 
and Methods for details):

S Table  1 illustrates that the equations incorporating 
the environmental disturbance term provide a more pre-
cise characterization of the changing patterns observed 
in the growth and development of the three photosyn-
thetic phenotypes compared to the classical growth 
equations. Figure  3A-C depict scatter plots illustrating 
the variation in mean values for the three phenotypes in 
response to changes in gradient light intensity. The over-
all fitted curve, obtained using the HDEE model, closely 
aligns with the observed mean values of the actual phe-
notype, indicating a strong correspondence between the 
model and the real data. The independent growth curves 
and the environmental disturbance curves elucidate the 
dynamics of photosynthetic phenotypes and the varia-
tion attributed to environmental disturbance during the 
gradient light intensity change process. As light inten-
sity increased, the phenotypic values of electron trans-
fer rates (ETR) and nonphotochemical quenching (qN) 
exhibited a gradual increase, whereas the value of photo-
chemical quenching (qP) decreased. The corresponding 

(1)
y1 =

K1

1+ a1e
−b1l

+ c1l
d1

y2 = K2 1− a2e
−b2l + c2l

d2

y3 = K3e
−

a3

lb3 + c3l
d3

independent growth curves consistently followed this 
trend. However, the trend of the environmental distur-
bance curves did not entirely align with that of the over-
all phenotype. While the environmental disturbance 
showed a promoting effect on the increase in phenotypic 
values, the environmental disturbance of ETR increased 
with light intensity, the environmental disturbance of qP 
decreased with light intensity, and the environmental dis-
turbance of qN tended to approach zero.

In addition, Fig.  3D-F show the proportion of inde-
pendent growth curves and environmental disturbance 
curves in the overall phenotype. It can be observed that 
while the independent growth of ETR exhibits an upward 
trend with increasing light intensity, its relative propor-
tion in the overall dynamics gradually decreases, while 
the proportion of environmental disturbance dynam-
ics gradually increases. This indicates that the influence 
of light intensity gradually enhances the role of “envi-
ronmental disturbance” in the photosynthetic pheno-
type. For qP, its environmental disturbance curve shows 
a downward trend, but its proportion in the overall 
phenotype is gradually increasing, indicating that the 
impact of environmental interference on qP is also 
gradually increasing. Although the disturbance curve of 
qN is approximately 0, the scale diagram reveals that at 
low light intensities (approximately 2), the proportion 
of environmental interaction components is 100%, but 
the proportion gradually decreases to 0 when the value 
reaches approximately 3. This observation indicates that 
qN is weakly influenced by the environment under condi-
tions of high light intensity. The intensity of environmen-
tal disturbance is clearly influenced by light intensity, and 
the dynamic changes in phenotypic autogenic regulation 
in response to gradient light intensity may be influenced 
by genetic regulation.

Identification of QTLs for high‑dimensional photosynthetic 
system
In the quantitative trait locus (QTL) mapping analysis, 
we initially conducted a genome-wide association analy-
sis on 4,996,309 high-quality Single Nucleotide Polymor-
phism (SNP) data using the functional mapping approach 
with several classical equations (specifically focusing on 

(See figure on next page.)
Fig. 2 Population structure and kinship analysis of 98 samples of Populs simowii. A The population structure of 98 samples. Each color represents 
a group. Each column represents a sample, and each colored part in each column represents the proportion of the contribution of the population 
to the samples. B The photosynthetic phenotypic dynamics under gradient light intensities of ETR, qP, and qN of different groups. C Box plots 
illustrating the values of the population structure disturbance term of ETR, along with the p‑value for the median from the Kruskal‑Wallis test, are 
presented in the figure. D Box plots illustrating the values of the population structure disturbance term of qP, along with the p‑value for the median 
from the Kruskal‑Wallis test, are presented in the figure. E Box plots illustrating the values of the population structure disturbance term of qN, 
along with the p‑value for the median from the Kruskal‑Wallis test, are presented in the figure. F Heatmaps of the correlation coefficient of kinship 
for 98 samples
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Fig. 2 (See legend on previous page.)
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the autogenic regulators in Eq. 1). This analysis led to the 
identification of 10,000 SNP loci as potential key QTL 
sets, which were considered to have the highest likeli-
hood of influencing the photosynthetic phenotype under 
investigation. The histogram in S Fig.  1 (see Additional 
file  1) and the results of the Kolmogorov-Smirnov test 
indicated that the gradient light intensity and the aver-
age photosynthetic phenotype followed an approximately 
normal distribution. For the loci with high probabilities 
of influencing the dynamic process of photosynthetic 
phenotypes in response to light intensity, we employed 
static methods to identify sites that significantly regu-
late photosynthetic phenotypes across 11 light intensity 
groups, as depicted in S Fig.  2 (see Additional file  1). 
The identified gene loci have a significant impact on the 
variation in photosynthetic phenotypes under varying 
light intensities, and the gradual increase in light inten-
sity results in alterations in the number and pathways of 
associated genetic loci involved in phenotypic plasticity. 
To investigate how significant QTLs regulate dynamic 
changes in phenotypes under gradient light intensity, we 
performed a high-dimensional phenotype-genotype asso-
ciation analysis based on HDEE. This analysis allowed us 
to identify the top 3% of significant quantitative trait loci 
associated with the three phenotypes, as illustrated in 
Fig. 4. Based on the autoregulatory growth model, which 

is represented by the classical growth equation, we found 
that in the association analysis of ETR, qP, and qN, 127 
(42.33%), 96 (32.00%), and 76 (25.33%) of the significant 
sites, respectively, were annotated to genes with known 
functions in Populus trichocarpa. By utilizing HDEE 
for association analysis, we identified 129 (43.00%), 101 
(33.67%), and 71 (23.67%) SNPs within genes of known 
function, respectively.

In the comparative analysis of significant loci identi-
fied using the autoregulatory growth model and HDEE 
(Fig.  5), we specifically emphasize loci that exhibit 
significant effects in both models. This is important 
because it allows us to mitigate the potential presence 
of false positives in the QTL mapping results. The loci 
that exhibit significance in both models simultaneously 
are considered to have higher reliability. These shared 
loci play a crucial genetic role in the genetic variation of 
the corresponding photosynthetic phenotype, exerting 
a strong and significant effect on the associated pheno-
type. Furthermore, these loci were identified through 
screening with HDEE, incorporating environmental 
regulators. This suggests that the regulation of gene loci 
in phenotypic expression may be influenced, to some 
extent, by environmental perturbations in addition to 
autologous growth regulation. For the ETR, qP, and qN 
phenotypes, we identified 209, 216, and 268 significant 

Fig. 3 Photosynthetic phenotypic dynamics and component proportions. A HDEE fitting curve of phenotypic ETR, which is decomposed 
into an autogenic regulation curve (purple dashed line) and an environmental disturbance curve (brown dotted line). The observed phenotypic 
ranges of all samples are indicated by light yellow dots. B HDEE fitting curve of phenotypic qP. The observed phenotypic ranges of all samples are 
indicated by light green dots. C HDEE fitting curve of phenotypic qN. The observed phenotypic ranges of all samples are indicated by light orange 
dots. D The proportion of the autogenic regulation term (purple shaded portion) and environmental disturbance term (brown shaded portion) 
in overall ETR phenotypic dynamics. The lines represent the actual phenotypic values of autogenic dynamics and environmental interactions. 
E The proportion of the autogenic regulation term and environmental disturbance term in overall qP phenotypic dynamics. F The proportion 
of the autogenic regulation term and environmental disturbance term in overall qN phenotypic dynamics
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loci, respectively, that regulate photosynthetic pheno-
types in response to changes in gradient light intensity. 
S Figs. 3, 4 and 5 displays the results of the gene ontol-
ogy (GO) function enrichment analysis for the genes 
associated with these identified loci (see Additional 
file 1). Specifically, for the ETR phenotype in response 
to changes in light intensity, the top three enriched 
functions of the regulating genes include biologi-
cal processes such as nucleic acid binding and protein 
binding, along with a molecular function related to cat-
alytic activity. Significant sites that regulate the dynam-
ics of qP phenotypes exhibit important functions such 
as Adenosine Triphosphate (ATP) binding and protein 

phosphorylation in biological processes, along with the 
molecular function of protein kinase activity. Similarly, 
significant gene functions at prominent sites associated 
with qN phenotypes also involve ATP binding, protein 
kinase activity, and protein phosphorylation.

Moreover, within the intersection of these pairs of 
significant loci, several noteworthy QTLs were found 
to regulate the growth and development of two phe-
notypes simultaneously (highlighted in the red box 
in Fig.  5B). Specifically, SNPs 2309065 and 3844928 
influence the changes in both qP and qN in response 
to light intensity. Additionally, SNP 2443013 exerts an 
impact on both ETR and qP dynamics under varying 

Fig. 4 Manhattan plots of p values across 19 chromosomes of the Populus genome. A Test statistic values of SNPs were calculated by functional 
mapping based on the classical growth model (the upper panel) and HDEE (the lower panel) for the photosynthetic phenotypes of ETR. B Test 
statistic values of SNPs for the photosynthetic phenotypes of qP. C Test statistic values of SNPs for the photosynthetic phenotypes of qN. Red 
horizontal lines are the critical thresholds at the top 5% significance levels of potential key QTL sets

Fig. 5 Comparative analysis of significant loci based on different growth models. A Venn plot of intersections of significant loci. B UpSet plot 
of the intersection of significant loci, in which the red boxes indicate the number of loci that have significant effects on two or more phenotypes
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light intensities. The pleiotropic effects of these loci are 
believed to be significant in the context of high-dimen-
sional photosynthetic phenotypic systems.

QTL network construction for photosynthetic phenotypes
The overlapping QTLs between the significant loci iden-
tified using the autogenous regulatory growth model and 
those identified using HDEE demonstrate significant reg-
ulatory effects on the associated photosynthetic pheno-
types. Furthermore, there exist interactive relationships 
among the effects of these QTLs on phenotypes during 
adaptation to varying light intensities across gradients. 
Utilizing the dynamic curve of genetic effects of QTLs 
governing phenotypic changes, we established genetic 
regulatory networks among QTLs based on the princi-
ples of differential evolutionary game theory and mod-
eled how the genetic regulation of a significant QTL on 
phenotype is influenced by its inherent control and the 
strategies employed by other QTLs (Fig.  6A-C). In the 
context of a network node A, an outgoing link refers to a 
link originating from node A and pointing toward other 
nodes. Conversely, an incoming link of node A denotes 
a link directed toward node A from another node. Based 
on the statistical data depicted in Fig. 6D-F, it is evident 
that despite the potentially large number of nodes within 
the network structure, each node is primarily influenced 
by only a limited number of other nodes in the network. 
Specifically, the number of incoming links between nodes 
tends to concentrate within the range of 1–13. This 
observation provides empirical evidence confirming the 
network sparsity principle within the genetic regulatory 
network that governs the photosynthetic phenotype. 
Nevertheless, there is substantial variation in the number 
of outgoing links among different nodes, ranging from 0 
to 107, with only a few nodes exhibiting a notably high 
number of outgoing links. In the global network struc-
ture, nodes characterized by a significant number of out-
going links are referred to as network hubs. In this study, 
the designation of hubs is attributed to nodes with out-
going link counts exceeding 20% of the total number of 
nodes in the network. Given the robust regulatory influ-
ence exerted by hubs on other nodes within the network, 
they assume a crucial role in the dynamic manifestation 
of photosynthetic phenotypes.

 Within the ETR QTL network structure, a mere 865 
links (1.99% of all possible links among 209 nodes) were 
identified. Among these links, 58.15% were determined 
to be positive, indicating their promotion of regulatory 
interactions, while the remaining 41.85% were classified 
as inhibitory links. The relationship observed among 
genetic loci governing ETR in response to varying light 
intensity primarily exhibited a cooperative nature. 
The network is distinguished by the presence of hubs, 

namely, SNP 4258266, SNP 4519045, SNP 2161006, SNP 
4536279, SNP 4317096, SNP 3650470, SNP 4283036, SNP 
4855429, SNP 3719550, and SNP 2691420. Based on gene 
function annotation results, it was determined that SNP 
4519045 is positioned within the gene Potri.018G018800, 
which exhibits the function of 3-hydroxyisobutyryl CoA 
hydrolase activity (GO:0003860) in Populus trichocarpa. 
This specific site corresponds to the protein family Enoyl-
Coa hydratase/isomerase (PF16113). Furthermore, SNP 
4536279 is situated within the Potri.018 G036600, SNP 
4317096 is located within the Potri.017 G017000, and 
SNP 4855429 is positioned within the Potri.019 G098500. 
Additionally, SNP 3719550 is located within the Potri.014 
G118100, and SNP 2691420 is positioned within the 
Potri.009 G023800. For detailed information regarding 
the specific functions of genes in Populus trichocarpa 
and the homologous genes in Arabidopsis thaliana, 
please refer to S Table 3 (see Additional file 2).

Individuals harboring different genotypes can exhibit 
varying responses to environmental fluctuations, result-
ing in diverse phenotypic landscapes. To investigate 
the specific genetic structure underlying the regulatory 
changes in phenotypic traits, we focused on an inter-
cross locus, namely, SNP 4536279, which was selected 
from the hub node within the ETR network. Based on 
the analysis of genotypic difference curves (Fig.  7A) for 
SNP 4536279, it was observed that samples with the TT 
genotype exhibited higher phenotypic values (asymptotic 
growth value) of ETR with increasing light intensity, fol-
lowed by samples with the GG genotype and then the GT 
genotype. The independent curves showed consistent 
differences in line with these observations. The sample 
corresponding to the TT genotype exhibited a greater 
environmental disturbance term, while the perturbation 
term associated with the GT genotype was larger than 
that associated with the GG genotype. These findings 
suggest that although the sample with the GT genotype 
had a lower ETR value, it demonstrated a higher propor-
tion of regulation in response to the light environment.

The disparity in phenotypic values among different gen-
otypes represents the manifestation of the genetic effect 
of the QTL on the phenotype. From Fig.  7B, it is evi-
dent that the overall genetic effect value of SNP 4536279 
exhibits an upward trend as the light intensity increases. 
This indicates that the genetic regulation of genes on the 
ETR response to changes in light intensity intensifies 
with higher light intensity. The curves depicting inde-
pendent genetic effects displayed similar trends as the 
light intensity changed. However, when the light inten-
sity reached 6, the value of independent genetic effects 
was notably lower than that of the overall genetic effects. 
The higher overall genetic effect of SNP 4536279 can be 
attributed to the promotion exerted by SNP 4258266 and 
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SNP 4519045, specifically within the Potri.018 G018800. 
Interestingly, based on the observed trend in the effect 
curve, it can be noted that the promoting effect of SNP 
4519045 gradually diminished after reaching a light 

intensity of 7, eventually even transitioning into a nega-
tive value, indicating an inhibitory role. Conversely, the 
promoting effect of SNP 4258266 demonstrated a gradual 
increase after the light intensity reached 7. Consequently, 

Fig. 6 Genetic regulatory network analysis of significant SNPs. A Network structure of 209 significant SNPs with respect to the variation in ETR 
with gradient light intensity. B Network structure of 216 significant SNPs with respect to the variation in qP with gradient light intensity. C Network 
structure of 268 significant SNPs with respect to the variation in qN with gradient light intensity. The arrow indicates the direction in which one 
SNP activates (red arrow) or inhibits (blue arrow) another SNP. Highlighted pink nodes represent the hubs of the network. The size of the node 
represents the size of its own independent effect average. D Distribution of the number of outgoing and incoming links over 100 chosen nodes 
in the ETR network. E Distribution of the number of outgoing and incoming links over 100 chosen nodes in the qP network. F Distribution 
of the number of outgoing and incoming links over 100 chosen nodes in the qN network. The red and blue cumulative bars correspond 
to the arrows of the coincident colors in networks
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it is plausible to suggest that the effects of these two sites 
on SNP 4536279 may exhibit mutual exclusivity.

As a hub node that assumes a dominant regulatory 
role within the network, our primary focus lies in under-
standing how this particular site regulates other sites. 
Based on the findings depicted in Fig. 7C, SNP 4536279 
exerts a regulatory effect on 65 nodes. Among these 
nodes, the promotion effect accounts for 55.38%, while 
the inhibition effect accounts for 44.62%. The intensity of 
regulation remained close to 0 within the light intensity 
range of 2–6. However, as the light intensity continued 
to increase, the regulatory effect significantly intensified. 
Notably, the most pronounced regulation occurred when 
the promotion effect on SNP 142656 reached 0.45 and 
the inhibition effect on SNP 150702 reached 0.41, both 
observed at a light intensity of 8.

Within the genetic regulatory network of qP, a total 
of 908 links were identified, which corresponds to 
1.96% of all potential pairwise regulations. Among 
these links, approximately 66.96% were found to have 
a positive regulatory role, while approximately 33.04% 
exhibited a negative regulatory role. Cooperation 
emerged as the primary interaction strategy among 

the genetic loci involved in regulating qP changes in 
response to varying light intensity gradients. The hub 
nodes in the qP network, characterized by having the 
number of outgoing links surpassing 20% of the total 
number of nodes, encompass SNP 4363461, SNP 
2637121, SNP 3075616, SNP 4889531, SNP 4389471, 
SNP 4289989, SNP 667824, SNP 2802797, and SNP 
4535545. SNP 4289989 is situated within the candidate 
gene Potri.016 G130600, which exhibits GTPase activ-
ity (GO:0003924) and GTP binding (GO:0005525). 
Additionally, according to the Protein FAMilies data-
base (Pfam) annotation, it belongs to the Ras family 
(PF00071), a significant regulator involved in vesicle 
formation, motility, and fusion. We conducted an anal-
ysis of the genotypic curves (Fig.  7D) associated with 
the hub locus responsible for regulating the photo-
synthetic phenotype qP in response to varying light 
intensity gradients. Our findings revealed that environ-
mental interference under different genotypes consist-
ently exhibited a promotion effect on the qP phenotype 
as the light intensity gradient changed. However, it was 
observed that the promoting effect diminished with 
increasing light intensity. Additionally, it was found 

Fig. 7 Analysis of genetic control of phenotypic dynamics by hub nodes. A ETR dynamic curves of different genotypes for SNP 4536279. B Curves 
of genetic effects on the phenotype of ETR for SNP 4536279. The overall genetic effect (blue line) is decomposed into independent effects (red 
line) and dependent effects (green line) due to regulation by other SNPs. C All dependent curves of SNP 4536279’s action on other SNPs in the ETR 
network. D qP dynamic curves of different genotypes of SNP 4535545. E Curves of genetic effects on the phenotype of qP for SNP 4535545. F All 
dependent curves of SNP 4535545’s action on other SNPs in the qP network. G qN dynamic curves of different genotypes of SNP 1461140. H Curves 
of genetic effects on the phenotype of qN for SNP 1461140. I All dependent curves of SNP 1461140’s action on other SNPs in the qN network
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that the samples with genotype GA exhibited a higher 
degree of environmental disturbance.

Based on the analysis of the genetic effect of the hub 
SNP 4289989 (Fig. 7E), the effect curve exhibited an ini-
tial increase within the range of low light intensity (2–3) 
and subsequently decreased with the changing gradient 
light intensity. Moreover, the trend and variation range 
of the independent genetic effect curves were essentially 
similar to those of the overall curves. SNP 4535545 is 
promoted by SNP 768114 (Potri.002G095700) and inhib-
ited by SNP 4851971. Additionally, the effect of SNP 
4713423 (Potri.019G016100) exhibits a promotion trend 
within the range of 2–5, followed by inhibition within the 
range of 5–7 and subsequent promotion within the range 
of 7–8. In the overall network structure, SNP 4535545 
exhibited regulatory effects on 35 SNPs, with the pro-
moting effect accounting for 62.86% and the inhibiting 
effect accounting for 37.14% (Fig.  7F). The more sig-
nificant regulatory effects of SNP 4535545 included the 
inhibition of SNP 2097359, which exhibited an increas-
ing trend (reaching 0.51) within the light intensity range 
of 2–6, followed by a decrease. Additionally, there was 
promotion observed on SNP 4993953 and SNP 4851971, 
which initially increased and then decreased, with maxi-
mum values of 0.47 and 0.27, respectively.

In Fig. 4C, the genetic regulatory network of qN con-
sists of 1250 links, which represents 1.75% of all possible 
relationships. Among these links, 770 indicate facilitation, 
accounting for 61.6% of the total, while 480 links exhibit 
inhibition, accounting for 38.4% of all existing relation-
ships. Among them, SNP 1461140, SNP 4782328, and 
SNP 4505330 serve as hub nodes in the network. In 
this study, we conducted an analysis to investigate the 
genetic control of SNP 1461140 on the phenotypic trait 
qN. From the analysis of Fig. 7G, it is evident that envi-
ronmental perturbations exhibit a mild promoting effect 
on the variation in the qN phenotype value under gradi-
ent light intensity. Notably, the samples with genotype 
GA demonstrate a stronger influence of environmental 
perturbations compared to the samples with genotype 
GG. The overall genetic effect curve exhibited an initial 
increase followed by a decrease, whereas the independ-
ent genetic effect curve generally showed an upward 
trend, with a slight decline observed between light inten-
sities 4–6 (Fig. 7H). In the light intensity range from 2 to 
6, the overall genetic effect surpassed the independent 
genetic effect, primarily due to the promotion effect of 
SNPs 2776614, 4667554, and 4594627 on the genetic con-
trol of phenotypic response to light intensity at this locus. 
Although SNP 1461140 plays a pivotal role in the genetic 
regulatory network of qP, its genetic control of the phe-
notype primarily arises from the promotion effect exerted 
by other SNPs. However, when the light intensity reached 

7, the overall genetic effects became inferior to the inde-
pendent genetic effects, mainly due to the suppression 
exerted by SNP 2145968 and SNP 4675672. We observed 
that although SNP 1461140 is not located within known 
genes, it is influenced by several loci within genes, includ-
ing SNP 2776614 (Potri.010G001600), SNP 4594627 
(Potri.018G060900), SNP 2145968 (Potri.006G199000), 
and SNP 4675672 (Potri.018G112200). The influence 
of these SNPs on SNP 1461140 may explain its signifi-
cance as a central node in the network structure of qN. 
Additionally, we observed that the genetic effects of 63 
other SNPs were transitively promoted, while the genetic 
effects of 22 SNPs were inhibited in the network (Fig. 7I). 
Notably, the promotion effect on SNP 212941 increased 
to 0.33 with the progressive rise in light intensity, which 
was considerably higher compared to other SNPs.

Analysis of the pleiotropic effects of QTLs on multiple 
phenotypes
Based on the comparative analysis results presented in 
Fig. 5, it can be observed that certain loci within the high-
dimensional photosynthetic phenotype system exhibit 
simultaneous regulation of multiple photosynthetic phe-
notypes in response to changes in gradient light intensity. 
This phenomenon indicates the presence of pleiotropic 
control, where gene regulation influences the expres-
sion of multiple phenotypic traits. We selected a specific 
locus, SNP 2309065, situated on chromosome 7, which 
exhibits an impact on the response of both qP and qN 
values to changes in light intensity. The objective of our 
analysis was to investigate the genetic control exerted 
by this locus on the two photosynthetic phenotypes. As 
depicted in Fig. 8A and C, it is evident that the overall qP 
curves, under the influence of SNP 2309065 genotypes, 
exhibit a higher magnitude compared to the independ-
ent dynamic curves. This observation suggests that the 
perturbation of the light environment positively influ-
ences the phenotype qP, with a more pronounced effect 
observed in samples with the CG genotype. Regarding 
the photosynthetic phenotype qN, the CG sample exhib-
ited lower phenotypic values than the CC sample, but 
their values tended to converge under high light condi-
tions. Specifically, the overall dynamic curve of the CC 
samples closely aligned with the independent curve, 
while the independent growth curve of the CG samples 
significantly surpassed the overall dynamic curve when 
exposed to high-intensity light perturbation. Notably, the 
magnitude of the perturbation term was positively cor-
related with the light intensity. Furthermore, as antici-
pated, the impact of light intensity perturbation on the 
overall photochemical quenching exhibited a progres-
sive increase with rising light levels. In contrast, the pro-
portion of the effect on nonphotochemical quenching 
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gradually diminished. Among them, the proportion of 
light environment disturbance in qP was found to be 
higher in the CC genotype than in the CG genotype, 
accounting for 22.34% versus 12.11% under low light con-
ditions and 69.45% versus 43.07% under high light condi-
tions. In contrast, the proportion of the disturbance term 
in phenotypic qN was lower, at 1.58% versus 19.74%. 
These results indicate that Populus simonii individuals 
with the CC genotype at SNP 2309065 exhibit greater 
potential for photosynthetic activity. On the other hand, 
individuals with the CG genotype demonstrate a stronger 
ability to implement self-photoprotection through the 
dissipation of excess excitability via heat dissipation.

In the network structure (Fig. 8B and D), the independ-
ent genetic effects of SNP 2309065 on the regulation of 

qP and qN responses to light were found to be smaller 
than the overall genetic effects. However, as the light 
intensity increased, the independent effects on regulat-
ing qP gradually decreased, and the disparity between 
the independent effects and the overall effects increased. 
Under high light intensity, SNPs 4363461, 4745041, SNP 
1027933, and 3825266 exhibit a shared positive promo-
tion effect on the genetic regulation of the qP pheno-
type. However, the genetic control of the locus on the 
phenotype is reversely inhibited by SNP 3825266. In the 
qN network, the independent effect gradually increased, 
causing the overall effect curve to converge with the 
increase in light intensity despite the presence of regu-
latory effects at other sites. The promoting effects of 
SNP 2445348 (Potri.008G032901), SNP 4803797, SNP 

Fig. 8 Genetic analysis of the significant SNP 2309065 regulating qP and qN. A Genotypic dynamic curves of qP. The picture in the upper right 
shows the proportion of the environmental disturbance term to the phenotype. B Genetic effect curve and decomposition in the qP network. C 
Genotypic dynamic curves of qN. The picture in the upper left shows the proportion of the environmental disturbance term to the phenotype. D 
Genetic effect curve and decomposition in the qN network
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3651672, and SNP 1461140, as well as the inhibiting 
effects of SNP 1956825 (Potri.006G097600) and SNP 
3278883 (Potri.012G044701), offset each other.

Based on the quantile analysis of growth param-
eters of the phenotypic curves under different geno-
types (Fig.  9), SNP 2,309,065 exhibited genetic control 
over the five growth parameters of qP and qN. How-
ever, distinctions were primarily observed in the regu-
lation of autogenic regulation parameters’ distribution. 
In the regulation of phenotypic qP, the median of the 
asymptotic value (K) in the curves with increasing 
light intensity was smaller for the CG genotype than 
for the CC genotype (p-value = 0.007). For qN, genetic 
control is predominantly observed in the asymptotic 
value K (p-value = 1.584 ×  10−5) and the parameter b 
(p-value = 0.002), which determines the position of the 
inflection point of the function. Notably, the genotype 
CG exhibits a larger K value, while the b value is smaller. 
The mean values of parameter a, which is associated with 
the relative growth rate of trees across different geno-
types, exhibited minimal variation. However, the samples 
from genotype CG showed a highly concentrated distri-
bution, whereas genotype CC samples were concentrated 
toward the higher end of the mean value.

The average values of the disturbance rate and distur-
bance scale coefficient in the environmental disturbance 
term, which are of particular interest, are comparable 
between the two genotypes. However, it is worth noting 
that the parameter distribution of the CC genotype is 
more dispersed for qP. This finding suggests that Popu-
lus simonii with the CC genotype at SNP 2309065 may 
exhibit a higher degree of responsiveness to environ-
mental fluctuations. In terms of the parameters of phe-
notype qN, there is a more pronounced difference in the 

parameter distribution between the two genotypes. Spe-
cifically, the parameter c shows greater variability and 
tends to have larger values in the CC genotype samples 
(p-value = 1.793 ×  10−5). Conversely, the parameter d 
exhibits higher variability and tends to have smaller val-
ues in the CC genotype samples (p-value = 1.783 ×  10−4). 
The results of the parameter analysis indicated that Popu-
lus simonii with the CG genotype at SNP 2309065 exhib-
ited greater stability in response to changes in the light 
environment.

Discussion
Photosystem II (PSII) is a pigment-protein complex 
that facilitates the conversion of light energy into 
chemical energy, resulting in the liberation of dioxy-
gen [23]. It functions as the exclusive enzyme responsi-
ble for light-induced water oxidation, a crucial process 
essential for the maintenance of life on our planet 
through photosynthesis [24–27]. Alterations in numer-
ous photosynthetic processes, encompassing both light 
and dark reactions, exert feedback effects on photosys-
tem II (PSII). These effects can be discerned through 
chlorophyll fluorescence, primarily originating from 
chlorophyll a within the PSII complex [28–31]. The 
phenotypes studied in this paper, namely, ETR (elec-
tron transport rate), qP (photochemical quenching), 
and qN (nonphotochemical quenching), are essential 
parameters in characterizing chlorophyll fluorescence 
kinetics. These parameters provide insights into the 
electron transfer process within PSII, photosynthetic 
activity, and photoprotection ability, respectively. In 
the process of plant growth and development, light 
intensity serves as a crucial environmental factor. The 
measured parameter values obtained under gradient 

Fig. 9 Box plots of the parameters of SNP 2309065 regulating qP and qN. A Genotype differences in HDEE parameters of qP. B Genotype 
differences in HDEE parameters of qN. The p‑values for the medians from the Mann‑Whitney U test are provided in the figures
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light intensity conditions represent quantitative traits 
of plants and collectively form a high-dimensional pho-
tosynthetic phenotypic system. The response and adap-
tation of the plant photosynthetic system to changes in 
the light environment are controlled by genes involved 
in the photosynthetic pathway [32].

In this study, we integrated classical growth equa-
tions with environmental regulators to comprehensively 
characterize phenotypic changes. By employing high-
dimensional equations, we can effectively dissect the 
photosynthetic phenotype into an autoregulatory com-
ponent and an environmental disturbance component, 
thereby enabling a detailed analysis of the environmental 
response in photosynthetic traits. The findings from our 
study unveiled that despite the distinct patterns observed 
in the changes in ETR and qP phenotypic values with 
increasing light intensity, the proportion of environ-
mental disturbance terms in both phenotypes exhibited 
an upward trend, indicating a growing impact of the 
light environment, particularly under high-light condi-
tions. Conversely, for the qN phenotype, the influence of 
the light environment’s disturbance diminished as light 
intensity increased, suggesting that the greater dissipa-
tion of energy by plants through nonphotochemical pro-
cesses resulted in a reduced influence of light intensity on 
this particular phenotype.

Photosynthesis, as a crucial life process, has been 
extensively studied to explore the genes involved in vari-
ous plant pathways related to photosynthesis, with the 
goal of determining the genetic mechanisms of these 
plants. For instance, using composite interval mapping, 
QTLs for two photosynthetic stages in Brassica napus 
have been identified to explain the variation in photo-
synthetic phenotypes [33]. Hervé et  al. identified QTLs 
for several physiological traits in sunflowers, providing 
the first description of genomic regions associated with 
sunflower yield [34]. And several putative QTLs related 
to rice photosynthesis and associated physiological traits 
have been detected [35, 36]. Under greenhouse condi-
tions or different stress conditions, drought-tolerant 
wheat QTL [37], saline-tolerant rice QTL [38], and salt-
tolerant barley QTL [39] related to photosynthetic traits 
have been identified. In Populus simonii, Deoxyribonu-
cleic Acid (DNA) methylation has been identified to play 
a crucial role in leaf development and the regulation of 
photosynthesis [40]. However, to our knowledge, a com-
prehensive understanding of the genetic basis underly-
ing the expression of complex traits during development 
requires detailed descriptions not only of their potential 
individual genes but also of their interactions as a whole. 
Although existing correlation analyses have achieved 
the construction of co-expression networks [41], our 
analytical approach in this study establishes a directed, 

weighted, and fully informative network, uncovering pre-
viously uncharacterized molecular mechanisms.

At the genome-wide level, we described the genetic 
variation and environmental response of chlorophyll 
fluorescence kinetic parameters by integrating mapping 
theory and multidisciplinary elements. We established a 
conceptual model framework by incorporating environ-
mental considerations into the theoretical framework of 
functional mapping. Through comparative analysis with 
traditional equations, we identified significant QTLs 
associated with three important phenotypes. Moreover, 
through the construction of genetic networks using a dif-
ferential equation model based on genetic effect values, 
we provided valuable insights into the genetic structure 
of photosynthetic phenotypic systems regulated by the 
detected QTLs responsible for photosynthetic pheno-
types. The hub nodes within the network play a cru-
cial role in shaping the genetic architecture of overall 
phenotype regulation, and some of them can annotate 
the important functions of the genes in which they are 
located. Using the genetic regulatory network of ETR as 
a case study, out of the 10 identified hub nodes, six nodes 
are linked to known functions. SNP 2691420 belongs to 
the gene Potri.009G023800 and is involved in protein 
dimerization activity (GO:0046983). SNP 3719550 cor-
responds to the gene Potri.014G118100 and is associated 
with zinc ion binding (GO:0008270) and nucleic acid 
binding (GO:0003676). SNP 4317096 is related to a lysine 
methyltransferase gene (PF10294) on Potri.017G017000. 
SNP 4519045 is situated within the gene 
Potri.018G018800 and is linked to 3-hydroxyisobutyryl-
CoA hydrolase activity (GO:0003860). SNP 4536279 is 
located in the Potri.018G036600 gene and exhibits multi-
ple functions, including DNA-directed DNA polymerase 
activity (GO:0003887), DNA replication (GO:0006260), 
DNA-dependent DNA replication (GO:0006261), nucleic 
acid binding (GO:0003676), DNA binding (GO:0003677), 
and ATP binding (GO:0005524). Last, SNP 4855429 
belongs to the gene Potri.019G098500, which is associ-
ated with ADP binding (GO:0043531), signal transduc-
tion (GO:0007165), and protein binding (GO:0005515). 
This observation underscores the crucial role of network 
hubs in governing the dynamic alterations observed in 
photosynthetic phenotypes. The GO analysis of the gene 
functions associated with the identified QTLs serves as a 
valuable basis for interpreting and validating the model 
results while also providing a novel perspective for 
exploring the potential regulation of photosynthesis.

In addition to the hub nodes within the networks, 
the network structure plays a crucial role in provid-
ing a comprehensive mechanism for understanding the 
interactions among genes and their collective regula-
tion of complex phenotypes. This mechanism can be 
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effectively visualized by decomposing the genetic effect 
curves, which exhibit variations in response to changes 
in light intensity. The statistical analysis of link distri-
bution within the network, coupled with the identi-
fication and analysis of epistatic relationships among 
nodes, elucidated the control mechanisms of significant 
QTLs and their interactions, highlighting their influ-
ence on the plasticity of photosynthetic phenotypes 
across varying light intensities. We observed that the 
independent genetic effects of the majority of nodes in 
the network were smaller or comparable to the overall 
genetic effect, as illustrated by the genetic effect curves 
of SNP 2309065 depicted in Fig. 8B and D. However, it 
is important to highlight that certain noncentral nodes 
displayed prominent independent genetic effects but 
exhibited lower overall regulatory effects, owing to the 
inhibition exerted by other SNPs. For instance, in the 
effect decomposition curves of the 6 SNPs shown in S 
Fig.  6, these nodes are annotated within gene regions 
such as Potri.001G012900 and Potri.004G182100, 
which could potentially play a crucial regulatory role in 
the response of photosynthetic phenotypes to changes 
in the light environment if not constrained by inhibi-
tory effects from other sites (see Additional file  1). 
Further exploration of the intricate interplay among 
significant sites in the networks and the experimental 
suppression of these inhibitory SNPs could potentially 
enhance the response mechanism of plant photosyn-
thesis to light environments.

Gene pleiotropy, characterized by the influence of a 
single gene on multiple phenotypic traits, enables us to 
investigate the interrelationships among biological pro-
cesses and the common genetic elements that underlie 
the formation and functioning of diverse traits [42]. An 
additional significant advantage of the analysis of genetic 
variation in photosynthetic phenotypes presented in 
this study is its ability to identify QTLs that govern mul-
tiple phenotypes. For instance, as illustrated in Fig.  8, 
SNP 2309065 exhibits regulatory effects on the dynamic 
changes in both qP and qP, two photosynthetic pheno-
types. Notably, Populus simonii individuals carrying the 
CC genotype at this locus demonstrate a higher photo-
synthetic potential under high-intensity light conditions 
rather than a reduced energy loss through heat dissipa-
tion. These findings have important implications for 
improving breeding strategies and developing targeted 
interventions to enhance various photosynthetic traits. 
Furthermore, by identifying genes exhibiting pleiotropy, 
we can uncover the relationships and connections among 
different photosynthetic phenotypes, thereby shedding 
light on the underlying biological pathways and net-
works governing these diverse phenotypic traits. This 
knowledge contributes to a deeper understanding of the 

integrated regulatory mechanisms orchestrating various 
aspects of photosynthesis.

We employed high-dimensional equations incorporat-
ing environmental factors to investigate photosynthetic 
phenotypes, identified significant QTLs governing the 
regulation of photosynthetic parameters in response to 
varying light intensities, and developed a comprehen-
sive model framework incorporating genetic regulatory 
networks. This integrated approach allowed us to gain 
insights into the genetic architecture underlying pheno-
typic variation and plasticity in photosynthesis. In the 
enhancement of agroforestry, the genetic variation of 
photosynthetic phenotypes can yield vital information 
for crop breeding [43]. The selection of varieties exhib-
iting strong adaptability to light environments holds the 
potential to enhance crop yield and stress resistance [37–
39]. Additionally, this approach may contribute to the 
improvement of energy efficiency [44] and the explora-
tion of novel bioenergy sources [1]. Simultaneously, com-
prehending the genetic adaptation of plants in diverse 
light environments aids in understanding their adaptive 
capacity to climate change. This understanding is pivotal 
for predicting the responses of plant communities and 
ecosystems to future climate changes, as well as for the 
management and conservation of ecosystems.

However, our model still has several limitations that 
can be addressed and improved upon in future research. 
First, as a conceptual model approach, we constructed 
potential sets of key QTLs using functional mapping 
based on classical equations to ensure computational effi-
ciency. However, it is important to note that there may 
exist crucial loci in the whole genome that could be iden-
tified using HDEE-based mapping methods but may not 
be included in the set of results obtained from classical 
model mapping. Further investigations are required to 
verify this possibility in subsequent explorations. Sec-
ond, it should be noted that the high-dimensional equa-
tion discussed in this study is in fact three-dimensional. 
The photosynthetic system encompasses other important 
parameters, such as the actual photoelectron yield of PSII 
and the instantaneous chlorophyll fluorescence intensity. 
To fully capture the comprehensive genetic mechanism 
underlying the function, dynamics, and evolution of the 
photosynthetic system under varying light intensities, a 
range of photosynthetic phenotypes need to be sampled. 
However, without the application of advanced spatial sta-
tistical methods, it becomes impractical to jointly model 
multiple phenotypes. Therefore, future research could 
benefit from the incorporation of sophisticated spatial 
statistical approaches to enhance the understanding of 
the complex interactions among various photosynthetic 
traits. In addition, several crucial environmental factors, 
including carbon dioxide concentration, temperature, 
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and humidity, exert regulatory effects on the photosyn-
thetic phenotype [8–10, 45]. However, since the pheno-
types of the materials in this study were measured in a 
laboratory environment, factors influencing photosyn-
thetic characteristics, apart from changes in light inten-
sity, were not addressed in present study. Third, the 
identification of QTLs that govern multiple photosyn-
thetic phenotypes suggests the existence of pleiotropic 
gene expression. As a single QTL can simultaneously 
influence multiple photosynthetic traits, there may be 
intricate interactions among various parameters within 
the photosynthetic system. For instance, Farooq et  al. 
demonstrated that photosynthesis-related phenotypes, 
such as chlorophyll fluorescence kinetic parameters, 
exhibit a gradual dynamic equilibrium within photosys-
tem II, wherein they coordinate and interact dynami-
cally to optimize efficiency and mitigate photodamage 
[46]. This highlights the interconnectedness and coor-
dinated regulation of multiple traits within the photo-
synthetic machinery. While these areas warrant further 
investigation, our model facilitates the analysis of the 
genetic architecture underlying the relationship between 
photosynthetic phenotypes and genotypes, holding bio-
logical significance and offering promising prospects for 
enhancing photosynthetic efficiency and guiding forestry 
production.

Conclusions
In this article, we established high-dimensional equations 
incorporating environmental regulators to decompose 
the overall photosynthetic phenotype into autoregula-
tory and environmental disturbance components. We 
analyzed the proportion of light-induced disturbance in 
shaping the photosynthetic phenotype. The influence of 
light disturbance on the expression of ETR and qP phe-
notypes increased gradually with light intensity, showing 
a positive correlation with plant photosynthetic activ-
ity. Conversely, the proportion of environmental distur-
bance in the qN phenotype decreased with increasing 
light intensity, indicating an increased share of energy 
dissipated through heat as light intensity increased and 
a weakened effect of light on phenotypic regulation. The 
construction of the HDEE effectively elucidates the con-
tribution of the light environment in shaping the photo-
synthetic phenotype under gradient light intensity.

We identified potential key QTL sets throughout the 
entire genome and subsequently localized QTLs that 
regulate the photosynthetic phenotype system, provid-
ing functional annotations. By analyzing the dynamic 
changes in genetic effects, we constructed an internal 
interaction network among QTLs, where competition 
or cooperation modes influenced the external regula-
tion of genes on the photosynthetic phenotype. Notably, 

hub nodes exhibited greater importance in the network 
structure. Furthermore, our model framework success-
fully detected the expression of multiple photosynthetic 
phenotypes regulated by QTLs. The significant genotype 
differences observed in photosynthetic energy conver-
sion and metabolic physiological processes hold guiding 
significance for the genetic breeding of trees aimed at 
improving photosynthetic efficiency.

Materials and methods
Plant materials
The experimental materials were collected between 
December 2015 and January 2016 from the natural distri-
bution range of Populus simonii, spanning six provinces, 
autonomous regions, or municipalities directly under the 
Central Government in northern China, which includes 
Northwest China and North China. When selecting 
seeds from different individuals within each provenance, 
the spacing between individuals were maintained at a 
minimum of 50  cm. The sampled branches were stored 
in low-temperature stratified sand in a clonal arboretum 
of Guanxian County, Liaocheng City, Shandong Prov-
ince (36°29′89″N, 115°27′34″E) for cutting propagation 
in the second year. One-year-old cutting seedlings with 
consistent growth were selected the following year and 
transplanted into 14 cm diameter and 12 cm height pots 
filled with a mixture of garden soil and matrix soil at a 
ratio of 1:3. The transplanted seedlings were then cul-
tured under greenhouse conditions [47].

One week after planting, photosynthesis-related phe-
notypes of 120 Populus simonii were measured using 
chlorophyll fluorometers (PAM-2100). After a sufficient 
15-minute dark adaptation of the leaves, 13 segments 
of excitation light with gradually increasing intensity 
were selected to illuminate the leaves, and the pheno-
type of chlorophyll fluorescence activated after each 
excitation light exposure was measured. A total of 12 
phenotypic parameters, including light intensity, elec-
tron transport rate (ETR), photochemical quenching 
(qP), and s (qN), were measured. The temperature was 
consistently maintained at 24  °C with a standard devia-
tion of 1  °C throughout the experiment. Humidity was 
kept within the range of 20–40% during measurements. 
In this study, ETR, qP and qN phenotypes of 98 samples 
were selected for analysis under 11 sets of light intensi-
ties, in which the variation range of light intensity was 
7.243µmol · m−2

· s−1
− 2701.536µmol · m−2

· s−1  , 
and logarithmic treatment was adopted as the independ-
ent variable in this study.

The SNP data utilized in this study were obtained from 
the resequencing of immature leaves collected from 
Populus simonii populations, and the genomic DNA of 
the corresponding populations was extracted using the 
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improved Cetyltrimethylammonium Bromide (CTAB) 
method. Population genome resequencing (> 15×) was 
conducted using the Illumina GA II sequencing plat-
form. The raw data underwent quality control, and the 
filtered data were aligned to the P. trichocarpa reference 
genome (v3.0, https:// phyto zome- next. jgi. doe. gov/ info/ 
Ptric hocar pa_ v3_0) using Burrows‒Wheeler alignment 
software (v0.7.5a-r405) with default parameters. The 
low-quality reads (sequencing quality score less than 
Q20) were filtered using Sequence Alignment/Map tools 
(SAMtools, v1.14) software. SNP identification was then 
performed using Genome Analysis Toolkit 4.0 (GATK4) 
with the following specific parameters: Variant Qual-
ity by Depth (QD) < 5.0 || Mapping Quality (MQ) < 40.0 
|| Fisher Strand Bias (FS) > 60.0 || Strand Odds Ratio 
(SOR) > 3.0 || Mapping Quality Rank Sum (MQRankSum) 
< -12.5 || Read Position Rank Sum (ReadPosRankSum) < 
-8.0. Finally, Variant Call Format tools (vcftools, v0.1.17) 
software was used to extract genome-wide SNPs, ensur-
ing that the SNPs had two alleles and that the maximum 
missing rate per site was 20%. Additionally, the minimum 
minor allele frequency (MAF) was set to > 0.05. A total of 
4,996,309 high-quality SNP sites were selected for subse-
quent analysis.

Construction of the light intensity response function
The change in biological growth adheres to the funda-
mental principles of physics and development. How-
ever, the manifestation of specific traits is intricate and 
influenced by genetic factors, environmental regulatory 
factors, as well as endogenous and exogenous interac-
tive factors [48]. In this study, we aimed to construct the 
genetic regulation mechanisms of three photosynthetic 
phenotypes, namely, ETR, qP, and qN, under compre-
hensive environmental disturbance using a systems the-
ory approach. The variation in each phenotype can be 
decomposed into autogenic regulation terms φi(l) and 
environmental disturbance terms ωi(l) , and the pertur-
bation parameters ǫij of different populations of samples 
were introduced to represent the phenotype disturbance 
terms. The phenotypic response function to light inten-
sity can be summarized as high-dimensional equations 
with environmental regulators (HDEE) in the following 
form:

Here, the variable l represents light intensity, which 
serves as the primary independent variable under the 
experimental conditions of this study. Therefore, both 
the autogenic regulation term and the environmental 
disturbance term can be expressed as functions of light 

(2)yi = φi(l)+ ωi(l)+ ǫij

intensity. The function φi(l) represents the optimal fitting 
function of phenotype i, which is constructed based on 
the classical growth equation with logistic features, com-
prising of exponential growth, linear growth and asymp-
totic growth [49]. It can be mathematically expressed as 
Eq.  (3), where the parameters K all represent the upper 
asymptotic values of autogenic regulation terms. In 
the Gompertz, Logistic, Mitscherlich, and Bertalanffy 
equations, a is a parameter related to the initial value, b 
denotes the inherent growth rate. In the Richards equa-
tion, a determines the size of the growth factor when 
l = 0, b is related to the growth rate, and m determines 
the shape of the curve and the position of the inflection 
point. In the Korf equation, a is related to the relative 
change rate of autogenic regulation terms, b determines 
the position of the turning point. In the Weibull equation, 
a is the scale parameter, b is the shape parameter, and the 
equation has an inflection point when b > 0. The function 
ωi(l) is a disturbance function designed to evaluate the 
impact of the light environment according to an allomet-
ric scaling law. It is mathematically described by Eq. (4), 
where ci represents the disturbance rate and di represents 
the disturbance scale coefficient [50]. The term ǫij repre-
sents the disturbance term of the population structure 
for the jth population corresponding to phenotype i of 
the natural samples. It accounts for the variation in phe-
notype among different populations and serves to correct 
for such differences.

Modeling framework of QTL mapping
Let n denote the number of samples in the mapping popula-
tion of Populus simonii, and all samples were genotyped by 
genome-wide SNPs and phenotyped across a range of light 
intensities, denoted as L. Using yik = (yik(1), . . . , yik(L) , 
where i represents ETR, qP, or qN, and k represents the 
Populus simonii sample (k = 1, 2,…, n), represents the photo-
synthetic phenotypic values measured at light intensity 1,…, 
L. Under the assumption that the phenotypes approximately 
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follow normal distributions, the mixture likelihood model 
for phenotypic trait i at a given QTL is expressed as:

where fig
(

yik
)

 is the probability density function of the 
L-dimensional normal distribution of trait i with geno-
type g ( g = 1, …, G). ng is the number of samples car-
rying genotype g , satisfying 

∑G
g=1 ng = n . The mixed 

likelihood model is determined by the mean vector µg 
and the covariance matrix Σ. µg represents the average 
phenotype of all samples with genotype g at the speci-
fied QTL of phenotype i under L light intensities, as fit-
ted by Eq. (2). The covariance matrix for each phenotype 
can be established using the first-order autoregressive 
(AR(1)) model [51], taking into account the phenotypic 
standard deviation under the initial light intensity. The 
model assumes that the residual variance and covari-
ance remain stationary across different light intensities, 
thus, two reduced parameters are employed to model 
the residual covariance matrix for specific light intensi-
ties. The parameters Θ, which consist of the mean and 
covariance matrix in the model, are estimated using the 
maximum likelihood method. The estimation process is 
conducted through the expectation maximization (EM) 
[52] algorithm combined with the Nelder‒Mead sim-
plex optimization method [53]. The EM algorithm is an 
iterative optimization method used to address parameter 
estimation problems in statistical models involving latent 
variables. The Nelder-Mead algorithm is an iterative 
optimization algorithm for unconstrained optimization 
problems, employed for parameter tuning and estima-
tion in computations. If a QTL significantly regulates and 
influences the dynamic response of the phenotype to 
light intensity, the genotypic parameter vector �g should 
reject the following null hypothesis and accept the alter-
native hypothesis:

The statistic under the null hypothesis is L0 = L
(

yi;�
)

 , 
the statistic under the alternative hypothesis is 
L1 = L(yi;Θg ) , and the difference in degrees of freedom 
between L1 and L0 corresponds to the difference in the 
number of parameters between the two hypotheses. The 
likelihood ratio test statistic is constructed as follows:

(5)L
(

yi
)

=

∏G

g=1

∏ng

k=1
fig
(

yik
)

(6)
H0 : � ≡ �g versus H1 : �g �= �, for g = 1, · · · ,G

(7)LR = −2(logL0 − logL1)

The p-value (a metric used in statistical hypothesis test-
ing to assess the consistency of the observed data with 
the null hypothesis) for different QTL loci can be cal-
culated using the chi-square distribution, providing the 
basis for testing whether there are differences in trait 
development among genotypes. Under the assumption of 
non-normal distribution of phenotypes, the multivariate 
t-distribution mapping framework is a rational approach 
for QTL mapping [54], characterized by robust and pow-
erful features, avoiding false positive issues caused by 
deviations from normality.

Genetic network construction
Suppose Pi significant QTLs are detected, which regu-
late the dynamic response of photosynthetic pheno-
types to light intensity. Based on the similar genetic 
effects of these sites on phenotypes, there may be 
interactions among them that shape the response of 
photosynthetic phenotypes to changes in light inten-
sity, ultimately facilitating improved plant adaptation. 
According to evolutionary game theory [55], any strat-
egy employed by an individual to maximize its gains is 
influenced by the strategies of other individuals, leading 
to dynamic decision-making and an ongoing evolution-
ary process. This is a mathematical model that applies 
the concepts of game theory to study the evolutionary 
behavior of individuals (individual SNPs) within a pop-
ulation. It integrates ideas from evolutionary biology 
and game theory, aiming to understand how individual 
SNPs across the entire genome select strategies through 
genetic and adaptive learning to gain an advantage in 
competition. Based on the differential equation model, 
the genetic effect of each QTL on the phenotype was 
decomposed into its direct effect and the indirect effects 
mediated by other QTLs through various pathways. Let 
gip = (gip(1), · · · , gip(L)) denote the vectors representing 
the overall genetic effects on trait i of QTL p. The model 
is expressed as follows:

where the rate of change of the genetic effect of QTL p 
on trait i in response to light intensity is decomposed 
into two components: the independent expression com-
ponent, Fip(·) , specified by parameters �ip , and the 
dependent expression component, Fp←p′(·) , specified 
by parameters �ip←ip′ . According to the equation men-
tioned above, for any QTL p as a response, there are ( Pi – 
1) predictors, leading to high complexity that contradicts 
the sparse network theory. This complexity is not condu-
cive to the stability of the network structure [53, 55, 56]. 

(8)dgip

dl
= Fip

(

gip;�ip

)

+

∑Pi

p′=1,p′ �=p
Fip←ip′

(

gip′ ;�ip←ip′
)

, p = 1, · · · ,Pi
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Thus, we employed variable selection based on adaptive 
least absolute shrinkage and selection operator (LASSO) 
to identify dip(dip ≪ Pi) nonzero predictors, which rep-
resent the most significant QTLs interacting with QTL p. 
We computed the reciprocal set of absolute values of the 
coefficients for the optimal ridge regression model, pro-
viding individual penalization weights to the coefficients 
of each variable in the realization of the model [57–59]. 
The application of adaptive weights with oracle proper-
ties ensures robust variable selection results [60, 61]. By 
replacing Pi by dip , Eq. (8) is simplified as:

Based on the least squares method, we utilize the non-
parametric Legendre Orthogonal Polynomial (LOP) to 
obtain optimal coefficients for LOP, achieving a smooth 
estimation of genetic effects and solve the model using 
the least square method and the fourth-order Runge‒
Kutta algorithm (an iterative method for numerically 
solving ordinary differential equations), which constructs 
weighted, directed, and signed networks.
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