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Abstract 

Background  Angelica sinensis (Danggui), a renowned medicinal orchid, has gained significant recognition for its 
therapeutic effects in treating a wide range of ailments. Genome information serves as a valuable resource, enabling 
researchers to gain a deeper understanding of gene function. In recent times, the availability of chromosome-level 
genomes for A. sinensis has opened up vast opportunities for exploring gene functionality. Integrating multiomics 
data can allow researchers to unravel the intricate mechanisms underlying gene function in A. sinensis and further 
enhance our knowledge of its medicinal properties.

Results  In this study, we utilized genomic and transcriptomic data to construct a coexpression network for A. sinensis. 
To annotate genes, we aligned them with sequences from various databases, such as the NR, TAIR, trEMBL, UniProt, 
and SwissProt databases. For GO and KEGG annotations, we employed InterProScan and GhostKOALA software. 
Additionally, gene families were predicted using iTAK, HMMER, OrholoFinder, and KEGG annotation. To facilitate gene 
functional analysis in A. sinensis, we developed a comprehensive platform that integrates genomic and transcriptomic 
data with processed functional annotations. The platform includes several tools, such as BLAST, GSEA, Heatmap, 
JBrowse, and Sequence Extraction. This integrated resource and approach will enable researchers to explore the func-
tional aspects of genes in A. sinensis more effectively.

Conclusion  We developed a platform, named ASAP, to facilitate gene functional analysis in A. sinensis. ASAP (www.​
gzybi​oinfo​rmati​cs.​cn/​ASAP) offers a comprehensive collection of genome data, transcriptome resources, and analysis 
tools. This platform serves as a valuable resource for researchers conducting gene functional research in their projects, 
providing them with the necessary data and tools to enhance their studies.
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Background
Angelica sinensis is an herbal plant used in traditional 
Chinese medicine and belongs to the Apiaceae subfam-
ily [1]. Its historical use in culture and medicine traces 

back approximately 2000  years ago to the Han Dynasty 
of China, as documented in Shennong’s Classic of Mate-
ria Medica [2]. A. sinensis has been utilized not only as 
a health food and medicinal herb in Asian countries but 
also as a component of dietary supplements for women’s 
health in Europe and North America [3]. A. sinensis con-
tains a diverse array of coumarins, which serve as impor-
tant compounds for both plant growth and as sources of 
antiviral drugs [4]. Recent pharmacological studies have 
provided compelling evidence for the remarkable thera-
peutic potential of A. sinensis. Indeed, it has been found 
to possess significant antitumor and antiarrhythmic 
properties while also bolstering the immune system and 

*Correspondence:
Qiaoqiao Xiao
xqqiao2021@163.com
Jiaotong Yang
y_jiaotong@163.com
1 Resource Institute for Chinese and Ethnic Materia MedicaGuizhou 
University of Traditional Chinese Medicine, Guizhou 550025, China
2 College of Life Science, Northwest Normal University, Lanzhou, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-09971-z&domain=pdf
http://www.gzybioinformatics.cn/ASAP
http://www.gzybioinformatics.cn/ASAP


Page 2 of 10Wu et al. BMC Genomics           (2024) 25:96 

effectively neutralizing harmful free radicals through its 
potent antioxidant activity [5, 6].

As an increasing number of plant genomes are being 
described, numerous platforms and databases for study-
ing plant gene functions are being continuously released. 
Examples include RoseAP [7], GelFAP [8], TAIR [9], and 
LjaFGD [10]. Recently, the genome of A. sinensis was 
also explored at the chromosomal level [1]. Moreover, a 
plethora of transcriptome information has been obtained 
to investigate various aspects of A. sinensis, such as its 
flowering, stress resistance, and medicinal properties. For 
instance, Peng et al. [11] conducted a transcriptome anal-
ysis to explore the impact of ultraviolet B (UV-B) radia-
tion on two different variants of A. sinensis, and Li et al. 
[12] investigated the molecular mechanisms of flowering 
by comparing bolted and unbolted A. sinensis. Addition-
ally, Feng et al. [13] utilized transcriptome and metabolite 
profile analyses to identify 108 potential candidate iso-
forms associated with phthalide accumulation.

These databases and transcriptome data serve as valu-
able resources for gene functional analysis and the uti-
lization of existing data. In this study, we constructed a 
gene function analysis platform for A. sinensis based on 
the chromosome-level genome that provides a reference 
for users to carry out studies on gene function and active 
component synthesis pathways.

Materials and methods
Data resources
The genome sequences, CDSs, and protein sequences 
of A. sinensis were retrieved from the genome sequenc-
ing data obtained by Han et al. [1] and deposited in the 
cyVerse platform. The NR protein database was sourced 
from the sequence library maintained by the National 
Center for Biotechnology Information (NCBI) at https://​
ftp.​ncbi.​nlm.​nih.​gov/​blast/​db/. TrEMBL, SwissProt, 
and UniProt sequences were obtained from the UniProt 
database [14]; TAIR protein sequences were obtained 
through the download interface provided by the TAIR 
website [9]. Transcriptome data were collected from the 
NCBI Sequence Read Archive (SRA) database. KEGG 
annotation information was acquired from the KEGG 
database, and GO annotation information was obtained 
from agriGO v2 [15]. Plant EAR motif-containing pro-
tein sequences were sourced from the PlantEAR data-
base [16], carbohydrate-active enzymes (CAZy) protein 
sequences originated from the CAZy database [17], and 
transport protein (TP) sequences were derived from 
TransportDB [18].

Functional annotation
The protein sequences of A. sinensis were aligned with 
protein sequences from public databases, including the 

NR, UniProt, SwissProt, and TAIR databases, using Dia-
mond Blast [19], and the best match from these databases 
was selected as the annotation information result. KEGG 
annotations were predicted using the GhostKOALA 
website [20], and the predicted KEGG numbers were 
used to retrieve annotation information from the KEGG 
database [21]. GO annotations were assessed using Inter-
ProScan software [22] to obtain GO numbers, and the 
corresponding annotation information was downloaded 
from agriGO v2.0 [15] based on GO numbers. Pfam 
domain information was predicted using InterProScan 
software [22].

Coexpression network construction
First, we used HISAT2 software [23] to map the down-
loaded transcriptome data to the reference genome of 
A. sinensis and obtain BAM files. We subsequently used 
SAMtools [24] to sort the BAM files. Next, we used 
Stringtie software [25] to obtain the expression values 
of each transcriptome sample and construct an expres-
sion matrix. We calculated the correlation between gene 
expression for every pair of genes using the PCC algo-
rithm. After that, we ranked the gene correlations using 
the MR algorithm. Finally, we evaluated the network 
using receiver operating characteristic (ROC) curves and 
selected an appropriate threshold to construct a coex-
pression network. The formula is as follows:

In the given formulas, ’n’ represents the total number of 
samples in the RNA-seq data, while ’X’ and ’Y’ represent 
the TPM values. The term ’Rank’ refers to the order of 
the PCC values, where ’AB’ signifies the ranking of gene 
A among all the genes with gene B, and ’BA’ indicates the 
reverse ranking.

Moreover, we assessed the network’s reliability and 
established specific threshold values for both the PCC 
and MR metrics. As part of the analysis, we identified 
Gene Ontology (GO) terms related to biological process 
entries, specifically focusing on those with gene counts 
ranging from 4 to 20; these genes were designated as 
prior gene sets. Additionally, we selected genes coex-
pressed with the genes under the defined threshold to 
form other gene sets. By comparing areas under the ROC 
curve (AUCs) at various thresholds, we determined the 
PCCs and MRs that yielded the maximum AUC, repre-
senting the optimal intersection between the two types of 
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gene sets. Furthermore, we retained the three genes with 
the highest PCC values for each gene.

Protein‒protein interaction (PPI) network
To construct the PPI network for A. sinensis, we 
employed OrthoFinder software [26] to predict ortholo-
gous relationships between Arabidopsis and A. sinensis. 
Subsequently, we mapped the PPI network from Arabi-
dopsis to A. sinensis.

Gene family identification
Initially, we utilized OrthoFinder [26] to predict the 
orthologous relationships between proteins of Arabi-
dopsis and A. sinensis. Subsequently, we identified pro-
teins containing CAZy, TP, and EAR motifs based on 
these orthologous relationships. To identify and classify 
transcription factors and protein kinases in A. sinensis, 
we utilized iTAK software (Plant Transcription Factor 
& Protein Kinase Identifier and Classifier) [27], which is 
available at http://​bioin​fo.​bti.​corne​ll.​edu/​cgi-​bin/​itak/​
index.​cgi. Moreover, by using a hidden Markov model 
obtained from iUUCD 2.0 (http://​uucd.​biocu​ckoo.​
org/) [28], we identified ubiquitin families in A. sinensis. 
Annotation of KEGG pathways for the entire genome 
was accomplished using GhostKOALA [20]. Addition-
ally, functional annotation of the CYP450 genes was per-
formed based on KEGG annotations. Except for the EAR 
motif-containing proteins classified as other, all predicted 
gene families were identified using the Pfam domain.

Construction of ASAP
Construction of the platform was based on the Linux, 
Apache, MySQL, and PHP (LAMP) technical stack. By 
importing all relevant results and data analysis, including 
gene structure annotation, gene functional annotation, 
coexpression network, PPI network, and gene family 
classification, a MySQL database was created. To facili-
tate data presentation and analysis, dynamic websites 
were developed using the HTML, PHP, JavaScript, and 
CSS languages.

Toolkit for gene function analysis
Gene set enrichment analysis (GSEA) [29] was performed 
with the platform following previous methods [8, 30, 31]. 
For BLAST analysis, we utilized ViroBlast [32]. JBrowse 
software [33], which was developed by Buels et  al., was 
integrated into our platform to showcase omics informa-
tion. Additionally, we implemented a sequence extraction 
tool using a Perl script and introduced a heatmap analysis 
tool based on Highchart Javascript.

Platform contents
Gene functional annotation
First, we acquired genome information for A. sinensis 
from the cyVerse platform, encompassing a compre-
hensive dataset of 43,202 genes, 43,202 transcripts, and 
43,202 proteins. These resources were subjected to rig-
orous annotation procedures by aligning the protein 
sequences against public databases, including NR, TAIR, 
UniProt, trEMBL, and SwissProt. Consequently, we suc-
cessfully annotated 38,420, 28,941, 37,760, 36,415, and 
25,641 genes, respectively. Furthermore, we performed 
Gene Ontology (GO) annotations on 15,911 genes uti-
lizing InterProScan software [22]. To gain insight into 
functional pathways, we leveraged the GhostKOALA [20] 
online tool and mapped the KEGG annotations to 6756 
genes. Finally, we conducted functional characterization 
of the protein domains employing PfamScan software 
[34] (Fig. 1A).

Gene family classification
First, we employed iTAK software to analyze transcrip-
tion factor (TF), transcription regulator (TR), and pro-
tein kinase (PK) expression in A. sinensis. Our analysis 
yielded a total of 2048 potential TFs, 532 TRs, and 1269 
PKs. Next, we utilized a hidden Markov model (HMM) 
derived from the ubiquitin‒proteasome dataset in the 
iUUCD v2.0 database. This allowed us to predict 914 
genes responsible for expression of ubiquitin‒protea-
some components. Additionally, gene alignment against 
prominent databases such as PlantEAR, TransprotDB, 
and CAZy enabled us to identify 494 genes associated 
with the EAR motif-containing family, 640 genes associ-
ated with the transporter family, and 662 genes assigned 
to the CAZy family. Furthermore, through KEGG anno-
tation, we successfully predicted the presence of 65 
cytochrome P450 genes (Fig. 1B).

Construction of the coexpression network
To construct a reliable coexpression network, we utilized 
transcriptome data consisting of 52 samples from five 
datasets obtained from the SRA database in the NCBI. 
These RNA-seq datasets were subsequently mapped to 
the reference genome, resulting in an overall mapping 
ratio exceeding 60% (Supplementary Table  1). To iden-
tify coexpressed gene pairs and evaluate the correlation 
between them, we first examined the distribution map 
of Pearson correlation coefficient (PCC) values derived 
from the expression profiles. The majority of the gene 
pairs exhibited either no correlation or a weak correla-
tion with respect to their expression patterns (Fig.  1C). 
We further employed the MR (mature rank) approach to 
screen for gene pairs displaying strong proximity within 
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Fig. 1  An overview of the functional annotation and network construction. A Number of gene sequences and annotations. B The distribution 
of gene numbers across different gene families. C The number of gene pairs with a changing Pearson correlation coefficient (PCC). D Statistics 
on edges and nodes in the positive and negative coexpression networks, as well as the protein‒protein interaction (PPI) network. E The number 
of DEGs in various transcriptional sample groups
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each other’s network, as determined by their respective 
PCC ranking values.

The positive co-expressed genes have the same expres-
sion pattern, so they may play a role in the same or 
similar biological processes. These similar biological 
processes could be evaluated by GO annotations. The 
higher the similarity of GO annotation of co-expressed 
gene pairs, the more reliable the co-expression network 
will be. To ensure the reliability of our constructed net-
work, we incorporated a prior gene set based on Gene 
Ontology (GO) terms, specifically focusing on biological 
processes. GO terms associated with similar biological 
activities were selected, totaling 157 terms with varying 
gene counts ranging from 4 to 20. The next step involved 
determining an optimal threshold for constructing the 
coexpression network. We compared the area under the 
curve (AUC) values for different PCC values over (0.6, 
0.7, 0.8, 0.9). We found that the AUC differences between 
PCC networks were not significant. To include more 
genes, we chose PCC > 0.6 as the candidate threshold 
(Figure S1). We also compared the area under the curve 
(AUC) values for different MRs with a PCC > 0.6, taking 
into account the overlap between the positively coex-
pressed genes and the previously identified GO gene sets. 
Through this analysis, we established network thresh-
olds of PCC > 0.6 and MR < 50 for the positive coexpres-
sion network (Figure S2). Negative coexpression network 
thresholds were set at PCC < -0.5 and MR < 50. In sum-
mary, the resulting coexpression network for A. sinensis 
included approximately 774,556 coexpression gene pairs. 
This analysis revealed approximately 516,536 gene pairs 
in the positive coexpression network and 258,030 gene 
pairs in the negative coexpression network.

Protein–protein interaction network
Through orthologous gene alignment with Arabidop-
sis PPIs sourced from TAIR (https://​www.​arabi​dopsis.​
org/), BAR (http://​bar.​utoro​nto.​ca/​welco​me.​htm), and 
BioGRID (http://​thebi​ogrid.​org/), we identified a com-
prehensive set of interacting proteins for A. sinensis. This 
dataset comprises 27,094 protein pairs encompassing 
6675 genes (Fig. 1D).

Network display with DEGs
To integrate gene coexpression and protein‒protein 
interaction (PPI) network information with gene expres-
sion data, we performed differential expression analysis 
on the transcriptome data, resulting in identification of 
differentially expressed genes (DEGs) across five sets of 
data. Through this process, we obtained a total of 20 dis-
tinct groups of DEGs. To visualize integration of these 
networks and DEGs, we created a joint display node. 
Within our network, upregulated DEGs are highlighted 

in red, and downregulated DEGs are indicated in blue. 
This color-coded representation allows for a clear dis-
tinction between the different expression patterns exhib-
ited by the DEGs in the context of the network (Fig. 1E).

Platform construction
A comprehensive platform called ASAP was devel-
oped to facilitate gene functional analysis in A. sinen-
sis. ASAP consists of eight sections, Home, Network, 
Search,  Pathway, Tools, Gene Family, Download, and 
Help, each designed to enhance usability and provide 
valuable insights for researchers (Fig.  2). The Network 
section offers access to both PPI and coexpression net-
works, enabling a deeper understanding of the intricate 
molecular interactions within A. sinensis. Our platform 
includes a pathway section, which primarily consists of 
gene annotations from the KEGG database predicted by 
the KOALA software. Users can access the coding genes 
of all key enzymes in a pathway by clicking on the corre-
sponding pathway. The gene family section encompasses 
various protein families, including CYP450, TF, TR, PK, 
TP, ubiquitin, GAZy, and EAR motif-containing proteins. 
ASAP empowers researchers with a suite of tools for effi-
cient gene functional analysis. The Search tool enables 
users to obtain genes of interest by utilizing keywords or 
precise gene, transcript, or protein accession numbers. 
The BLAST tool facilitates the screening of nucleic acid 
or protein sequences, identifying similarities within our 
platform. Gene Set Enrichment Analysis (GSEA) pro-
vides an inclusive approach to gene set enrichment analy-
sis. The Extract Sequence tool allows for quick retrieval 
of gene sequences based on accession numbers and loca-
tions. Furthermore, the heatmap analysis tool visually 
presents gene expression data, facilitating interpretation 
of candidate gene lists. Integration of JBrowse provides 
an intuitive visualization of genomic and transcriptomic 
features, enhancing overall data exploration. The Down-
load section provides convenient access to relevant infor-
mation, ensuring easy retrieval of necessary resources. 
The help section offers a comprehensive user manual, 
guiding researchers through the platform’s functionali-
ties and optimizing their usage of ASAP. Through ASAP, 
researchers can perform gene functional analysis with a 
professional and cohesive framework, facilitating their 
studies in A. sinensis.

Case study

1.	 Functional analysis of phospho-2-dehydro-3-deoxy-
heptonate aldolase

https://www.arabidopsis.org/
https://www.arabidopsis.org/
http://bar.utoronto.ca/welcome.htm
http://thebiogrid.org/
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The AS05G01886 gene in A. sinensis was identified as 
a member of the phospho-2-dehydro-3-deoxyheptonate 
aldolase family (Fig.  3A) and is located on chromo-
some 5 from 70617343 to 70624460 bp with a transcript 
sequence (Fig. 3B). Network links were also constructed 
(Fig.  3C). The Class-II DAHP synthetase family domain 
is located at 45 to 145 bp of the protein-coding sequence 
(Fig. 3D) and was identified as PF01474. GO and KEGG 
annotation suggested that enzyme may have a 3-deoxy-
7-phosphoheptulonate synthase activity and participate 
in the biosynthesis of secondary metabolites (Fig. 3E, F).

Previous studies have identified a key factor, phos-
pho-2-dehydro-3-deoxyheptonate aldolase, that may be 
involved in accumulation of phthalides in A. sinensis [13]. 
Through expression profiling analysis, we found that the 
expression level of this gene was greater in unbolted sam-
ples than in bolted samples (Fig. 3G). The display of reads 
mapping using JBrowse also revealed higher expression 
in unbolted samples than in bolted samples (Fig.  4A). 
Furthermore, accumulation of phthalides significantly 
decreases after bolting [13]. Expression of this gene 
showed a trend similar to that of synthesis and accumula-
tion of active compounds. Therefore, the analysis results 
suggest that this factor may be involved in accumulation 
of phthalides.

2.	 Coexpression network analysis of the AsMYB3 gene

Previous studies have suggested that MYB3 in Arabi-
dopsis regulates synthesis of anthocyanin compounds 
[35, 36]. We used the Blast function to compare MYB3 
in Arabidopsis with the protein sequence in the platform. 
Simultaneously, we filtered the results based on homol-
ogy, obtained a gene with the identifier AS05G01648 
and named this gene AsMYB3. There was a positive cor-
relation with 21 genes and a negative correlation with 6 
genes (Table S2, Fig.  4B). The key enzymes involved in 
the flavonoid synthesis process, namely, flavonol syn-
thase 1 and flavanone 3-hydroxylase, also exhibited posi-
tive coexpression relationships with these genes. KEGG 
enrichment analysis revealed significant enrichment of 
pathways related to flavonoids and anthocyanins (Fig. 4C, 
Table S3). Therefore, AsMYB3 may regulate involve-
ment of these two enzymes in regulating anthocyanin 
production.

3.	 Structure and functional analysis of the AsFT gene

The plant FT gene (FLOWERING LOCUS T) is a key 
regulatory gene that plays an important role in the flow-
ering process of plants [37]. The function of the FT gene 
is to regulate flowering time by interacting with other 

Fig. 2  Organizational chart of the ASAP
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regulatory genes. FT can form complexes with genes 
such as CO (CONSTANS) and SOC1 (SUPPRESSOR OF 
OVEREXPRESSION OF CONSTANS 1), participating 
in initiation of flowering [37]. The AS07G00159 gene in 
A. sinensis was identified as a member of the flowering 
locus T (FT), located on chromosome 7 from 5234110 
to 5236496 bp. Its transcript and protein sequences were 
also provided. Furthermore, the phosphatidylethanola-
mine-binding protein domain was found to be located at 
52 to 161 bp in the sequence PF01161 (Figure S3).

The expression profile of this gene was significantly 
greater in bolted plants but not in unbolted plants in 
SRP232992 samples (Figure S3). In addition, AsFT was 
significantly highly expressed in the bolted samples of 
mingui4 and mingui2, while it was not expressed in the 
unbolted samples of SRP435493 (Figure S3), indicating 
that AsFT plays a positive regulatory role in controlling 
bolting. Furthermore, we conducted a coexpression anal-
ysis of AsFT with its expression profiles. Network analysis 
revealed 40 genes that were positively coexpressed with 
AsFT (Fig. 4D, Table S4). Among the genes that are posi-
tively coexpressed with AsFT, the AGL8 gene has been 
shown to positively regulate flowering in many species 
[38, 39]. Additionally, many genes in the coexpression 
network were significantly upregulated in the early-
flowering genotypes of mingui2 and mingui4 (Fig.  4E, 
F). Therefore, our analysis suggested that the AsFT gene 
plays an important role in regulating flowering, and this 
finding is supported by relevant studies [37].

The analysis of the examples above indicates that the 
platform has a certain degree of reliability and usabil-
ity, offering researchers valuable assistance in exploring 
functional genes related to A. sinensis.

Discussion
We developed a functional gene analysis platform for 
A. sinensis, aiming to provide a comprehensive resource 
and toolkit to help researchers gain deeper insights into 
functional genes and related biological processes. The 
coexpression network is one of the core features of our 
platform. By integrating a large amount of gene expres-
sion data, we constructed a coexpression network for 
A. sinensis that included genes related to A. sinensis and 
their interaction relationships. This network can assist 
users in discovering potential functional gene modules 

Fig. 3  Gene detail page 
of the phospho-2-dehydro-3-deoxyheptonate aldolase coding gene. 
A Gene functional annotation. B Location and transcript sequences. C 
Network of genes encoding phospho-2-dehydro-3-deoxyheptonate 
aldolase. D Protein structure and sequence. E Classification of gene 
families. F KEGG annotation. G GO annotation. H Expression levels 
in different samples
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and regulatory pathways, thereby enhancing understand-
ing of A. sinensis biological characteristics.

Our platform also provides various analysis tools for 
further elucidating gene functions within the coexpres-
sion network. These tools include gene set enrichment 
analysis, regulatory network analysis, and gene expres-
sion pattern analysis. Users can utilize these tools accord-
ing to their research needs to explore the biological 
significance within the coexpression network. To help 
users access the platform effectively, we offer detailed 
examples of how to analyze functional genes in ASAP. 
We showcased how to filter out key genes from the coex-
pression network, perform gene enrichment analysis, and 
interpret regulatory networks. These examples not only 
highlight the platform’s capabilities but also provide prac-
tical guidance for users in conducting their own analyses.

While our ASAP offers valuable features and tools, we 
are aware of potential limitations and areas for improve-
ment. The platform currently relies on existing gene 
expression datasets, and the quality and coverage of the 
data are challenging. In the future, we plan to expand 
the scale and diversity of the dataset to provide more 
comprehensive and accurate analysis results. The analy-
sis tools and functionalities of the platform also require 
further refinement and expansion. We will continue to 
improve the existing tools and introduce new analysis 
methods and algorithms to meet the evolving research 
needs of users. Our future plans involve continuous 
improvement and updates to ensure that the platform 
will remain in sync with the latest research advance-
ments. We will continue to update new discoveries and 
technological advancements in the field of A. sinensis and 
incorporate them into the platform’s features and analysis 
tools.

In summary, ASAP offers researchers a powerful tool 
for investigating functional genes and related biological 
processes of A. sinensis. By integrating coexpression net-
works and various analysis tools and providing detailed 
usage examples, we are committed to advancing A. sin-
ensis research and providing valuable resources for scien-
tists in related fields.

Fig. 4  Case study for ASAP. A JBrowse was used to visualize 
expression of the gene encoding phospho-2-dehydro-3-deoxyh
eptonate aldolase. B Coexpressed genes of AsMYB3 in both the 
positive and negative directions. C Results of KEGG enrichment 
analysis for genes positively coexpressed with AsMYB3. D 
Positive coexpression network of the AsFT gene. E Comparison 
of coexpression networks of AsFT genes between early bolting 
plants of MinguiNO.2 and normal plants of MinguiNO.2 (LEM2_vs_
LNM2). F Comparison of the coexpression networks of AsTF genes 
between early bolting plants of MinguiNO.4 and normal plants 
of MinguiNO.4 (LEM4_vs_LNM4)



Page 9 of 10Wu et al. BMC Genomics           (2024) 25:96 	

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​024-​09971-z.

Additional file 1: Table S1. Summary of RNA-seq datasets collected in 
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