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Abstract
Background Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense 
responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was 
lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte 
differentiation and immune function.

Results In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and 
assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short 
Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 
version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 
novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most 
hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of 
transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. 
gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-
cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the 
hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering 
using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that 
gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene 
expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell 
population that also gives rise to the granulocyte lineage.

Conclusion A high number of mRNA splice variants are expressed in hemocytes, and they may account for the 
plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of 
a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present 
in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte 
development and function in adult dipterans and is a valuable community resource for future studies on mosquito 
cellular immunity.
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Background
Anopheles gambiae mosquitoes are very efficient vectors 
of Plasmodium falciparum malaria, the most virulent 
form of the disease in humans, that resulted in more than 
600,000 deaths in 2021 [1]. A. gambiae mounts an effec-
tive defense response to Plasmodium berghei (murine 
malaria) that limits parasite survival and requires the 
coordinated activation of epithelial, cellular, and humoral 
immune responses. Plasmodium fertilization occurs in 
the midgut lumen, giving rise to a motile ookinete stage 
that must traverse the midgut. Ookinetes cause irrevers-
ible damage to the cells they invade [2–4] and trigger 
the release of Prostaglandin E2 (PGE2), which attracts 
hemocytes to the midgut [5, 6]. Damaged cells under-
going apoptosis activate a strong nitration response [7], 
and hemocytes patrolling the basal surface of the mid-
gut release microvesicles when they encounter a nitrated 
area [5]. The release of hemocyte-derived microvesicles is 
essential for the effective activation of the mosquito com-
plement-like system [5], which forms a protein complex 
that binds to the ookinete and lyses the parasite [4].

Based on their morphology, hemocytes are categorized 
into three subtypes: prohemocytes, oenocytoids, and 
granulocytes [8]. Prohemocytes are the smallest (5–7 μm 
in diameter); the most abundant cell type (approximately 
70–80% of the total population) and are thought to be the 
precursors to the other two cell types. Oenocytoids are 
larger (about 8–15 μm), represent approximately 15–25% 
of hemocytes, and are involved in pathogen melaniza-
tion; while granulocytes are the largest (20–25 μm) and 
the least abundant (2–3%) cell type, and play an impor-
tant role in eliminating pathogens by phagocytosis. There 
is also strong evidence that a previous infection with 
Plasmodium boosts the ability of mosquitoes to respond 
to subsequent infections and granulocytes are key effec-
tors of this enhanced response [9].

Hemocytes are key effectors of mosquito immunity 
that comprise a very low percentage of the total tissue 
of an adult female mosquito. Although previous studies 
explored the differential expression of hemocyte tran-
scripts in Anopheles stephensi, Anopheles culicifacies 
and Anopheles gambiae [10–12], a comprehensive iden-
tification and characterization of A. gambiae hemocyte-
specific mRNA transcripts is still lacking. Here we report 
a novel in-depth hemocyte transcriptome annotation 
which is built using extensive bulk sequencing of RNA 
isolated from hemocytes of A. gambiae female mosqui-
toes, with high coverage to detect transcripts present in 
low abundance. A previous molecular atlas of A. gam-
biae hemocytes using single-cell RNA-seq data analysis 
confirmed that prohemocytes give rise to granulocytes, 

which further differentiate into three final effector cells: 
dividing granulocytes, megacytes and antimicrobial gran-
ulocytes [13]. However, it was not possible to determine 
the developmental lineage of oenocytoids when the RNA 
transcripts predicted based on the canonical genome 
were used as a reference in the analysis [13]. Here, we 
determined the oenocytoid lineage by reanalyzing the 
previous single-cell RNA-seq dataset using our novel 
hemocyte transcriptome as a reference.

Results
Genome-guided alignment and analysis of Illumina and 
PacBio sequences
RNA was extracted from hemocytes of A. gam-
biae females collected by perfusion and used to build 
cDNA libraries for RNA sequencing. The libraries were 
sequenced with the Illumina platform, which provides 
an extensive depth of coverage, and with the PacBio plat-
form, which provides long reads that facilitate the cor-
rect assembly of isoforms from the same gene generated 
by differential RNA splicing. A total of 2.7  billion high-
quality raw reads were generated with Illumina sequenc-
ing, with an average size of 100  bp; while 9.5  million 
high-quality long reads were obtained with the PacBio 
sequencing platform with an average size of about 1.7Kb.

High-quality reads were mapped to the P4.14 version of 
A. gambiae PEST genome using the HISAT2 and Mini-
map2 alignment tools for short and long reads, respec-
tively. On average, 90% of the reads from each Illumina 
library and 99% of the reads from each PacBio library 
mapped to the A. gambiae genome (Table S1), and only 
the mapped reads were used for transcript assembly. In 
general, the reads obtained with both sequencing meth-
ods were distributed evenly throughout the genome 
(Fig. 1a), with only a prominent gap in chromosome 3R 
devoid of reads (see arrowhead in Fig.  1a), correspond-
ing to a region of heterochromatin that has been pre-
viously documented [14]. Some small gaps are also 
expected because, presumably, there are a substantial 
number of genes in adult females that are not expressed 
in hemocytes.

Transcript models were constructed with a hybrid 
methodology that combined Illumina and PacBio 
genome-mapped reads, using the StringTie2 transcrip-
tome assembler guided by A. gambiae PEST P4.14 gene 
annotations [15]. Transcripts exhibiting an identity of 
98% or higher to longer transcripts were subsequently 
excluded, to minimize the inclusion of partial transcripts. 
As a result, a hemocyte transcriptome was established, 
consisting of 34,939 distinct transcripts. The transcripts 
models in the hemocyte transcriptome were compared 
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with the predicted mRNAs of the current A. gambiae 
PEST P 4.14 genome annotation using the GffCompare 
utility and were further categorized according to their 
structural features. The structural classification of the 
transcripts and their relative abundance is illustrated 
in Fig.  1b. In general, 8,780 transcripts (25.12%) have 
a complete match to previously annotated transcripts 
predicted from the genome sequence (“=”), while the 
remaining 26,000 transcripts (74.41%) are potential novel 

transcripts. The majority of novel transcripts (20,008 of 
26,000; 76.95%) represent novel isoforms (“n”) of tran-
scripts from previously annotated genes (Fig. 1b). These 
novel transcripts had several structural properties that 
are common to alternatively spliced genes, such as exons 
that match to a reference transcript, but had differ-
ent lengths (alternative splice donor or acceptor usage), 
inclusion of all or some introns between multiple exons 
(intron retention), or combinations of different exons 

Fig. 1 Genome-guided alignment and analysis of Illumina and PacBio sequences. (a) Depth of coverage of Illumina (pink) and PacBio (blue) reads 
mapped to the A. gambiae genome. The arrowhead indicates a heterochromatic region in 3R with low read coverage. The average coverage depth of 
Illumina is 603.38 and PacBio is 46.17. (b) Number of transcripts from each structural class identified in the hemocyte transcriptome. (c) Distribution of 
the number of isoforms assigned per gene based on the A. gambiae P 4.14 transcript annotation (blue) and the in-depth hemocyte transcriptome (pink)
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(mutually exclusive exons). A total of 4,020 transcripts 
(11.5% of the total) were mapped to the intergenic regions 
unknown to code for transcripts (“u”), corresponding 
to novel genes discovered in this hemocyte transcrip-
tome annotation. A few transcripts (831; 2.37% of total) 
overlap (“o”) with reference exons or contain reference 
exons within their intron(s) and 514 transcripts (1.47% 
of total) were fully contained in the intron of a reference 
transcript (“i”). A small fraction (382, 1.09% of total) of 
novel transcripts had exons overlapping with the oppo-
site strand of a known reference transcript (“x”), and 234 
transcripts (0.67% of total) contained an exon that par-
tially mapped to a known intron and, thus, could be part 
of pre-mRNA (“e”). A few transcripts (159, 0.45%) were 
designated as “polymerase run-ons” because they were 
close to a known transcript but had no direct overlap 
with it, and only 11 transcripts (0.03%) were designated 
as read mapping errors (not shown in the figure).

Among the 34,939 identified hemocyte transcripts, 
84% (29,235) were assigned to 11,427 existing AGAP 
gene model IDs during StringTie2 assembly. The fact that 
many transcripts were assigned an AGAP ID suggested 
that many novel transcript variants (isoforms) per gene 
were present in the hemocyte transcriptome assembly 
that has not been identified in the latest genome anno-
tation (version P4.14). Indeed, while a maximum of 20 
transcripts per gene were annotated in the A. gambiae 
genome (version P4.14), we identified genes with up to 
98 isoforms resulting from differential mRNA splicing 
(Fig.  1C and Fig. S1). Moreover, we found more genes 
with multiple isoforms assigned to them in the hemo-
cyte transcriptome (Fig. 1c). For example, while only 42 
genes in the A. gambiae genome reference have five or 
more isoforms (five to 20 per gene), we identified 1,665 
genes with five or more isoforms (five to 98 per gene) in 
the hemocyte transcriptome assembly (Fig.  1c, Fig. S1 
and Additional file 1). Overall, 5,666 genes have a higher 
number of transcript isoforms annotated in the hemo-
cyte transcriptome than in the transcriptome predicted 
from the reference genome (Fig. 1c and Fig. S1).

Features of annotated genes with a large number of 
isoforms
We were intrigued by the abundance of genes with a large 
number of isoforms in our transcriptome. The functional 
categories of the predicted proteins encoded by genes 
with multiple isoforms were investigated to gain some 
insight into the potential functional significance of these 
hemocyte-expressed genes with many different mRNA 
variants. The five most abundant functional catego-
ries of proteins coding genes with five or more isoforms 
were protein kinases (66 genes with five to 26 isoforms), 
Zinc finger domains proteins (22 genes with five to 98 
isoforms), E3 ubiquitin ligases (20 genes with five to 13 

isoforms) and proteins with RNA Recognition Motifs 
(RRM) (12 genes with one to nine isoforms). The full list 
of all functional categories is indicated in Table S2.

Circular RNA transcripts
The Sua Illumina RNA-seq dataset (Sua Naïve and Chal-
lenge samples) was generated using total RNA (without 
poly-A selection) as a template, making it possible to 
explore the potential presence of circular RNAs (cir-
cRNA). The circRNA analysis toolset of the CIRCex-
plorer2 software, which annotates back-splicing junction 
reads with user-provided gene annotations, was used to 
analyze the Sua Illumina RNA-seq dataset, using both 
the Vectorbase P4.14 version annotated transcripts of 
the A. gambiae PEST genome and the novel hemocyte 
transcriptome annotation. However, the software failed 
to detect any fusion junctions, indicative of a lack of cir-
cRNA transcripts.

Features of noncoding and protein-coding transcripts
The protein-coding potential of all transcripts (34,939) 
was analyzed using CodAn and Transdecoder software 
and 89.8% of transcripts were predicted to be protein 
coding and 10.2% to be noncoding RNAs (ncRNAs). 
The number of ncRNAs identified (3,561) is substan-
tially higher than the 738 ncRNAs that had been previ-
ously predicted by the A. gambiae genome annotation. 
We were able to assign distinct functional attributes to 
160 ncRNAs (4.5%) using the Rfam database of ncRNA 
families. Most of these transcripts (51%) were designated 
as tRNAs (Fig.  2a), while others corresponded to ribo-
somal RNAs (rRNAs) (16%), microRNAs (9%), ribozymes 
(9%), different types of small nuclear RNAs that are part 
of the spliceosome complex (13%) and histone 3’UTR 
stem-loops (2%). A small percentage (5.5%) of ncRNA 
transcripts that appear to result from polymerase run-on, 
potential mapping error, or pre-mRNA transcripts were 
excluded from the analysis. Novel ncRNAs without any 
identifiable structural attribute (3203/3561, 90%) were 
designated as long noncoding RNAs (lncRNAs) and they 
ranged in length from 200 to 7354 nucleotides (Supple-
mentary information: Annotation table of hemocyte 
transcripts).

Functional classification of protein-coding transcripts
The functional class of the 28,697 proteins encoded by 
hemocyte transcripts was established by BLAST analy-
sis of the predicted peptide sequences against 11 data-
bases, including the annotated A. gambiae genome. The 
detailed annotation table is provided in Supplementary 
information (Annotation table of hemocyte transcripts). 
The function of 32.4% of proteins is unknown, and this 
class encompasses transcripts that exhibit negligible 
similarity to annotated proteins or bear resemblance 
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to proteins of unidentified function. Their overall high 
prevalence reflects the large number of mosquito pro-
teins whose function remains to be established. The 
other most abundant functional protein classes are signal 
transduction (12.8%), metabolism (12.1%), transcription 
machinery (11.5%), and protein synthesis and modifica-
tion (10.1%) (Fig. 2b).

Approximately 91% of the protein-coding transcripts 
(28,697 transcripts) mapped to previously annotated 
genes with a corresponding AGAP ID, and represented 
protein variants from differentially spliced mRNAs, while 
2,678 (approximately 9%) were potential novel protein-
coding transcripts that did not map annotated genes. For 
most functional classes, only 2–3% of the peptides were 

novel (Fig. 2c). However, there was a higher proportion of 
novel proteins for those with unknown function (20.4%), 
for proteins of viral origin (75%) and transposable ele-
ment proteins (73.3%) (Fig.  2c). Of the proteins related 
to transposable elements, 28.5% were reverse transcrip-
tase (Table S3); and 37.3% of the immune-related pro-
teins expressed in hemocytes contain domains involved 
in pathogen recognition or immune response such as 
immunoglobulin, ficolin and lectin domains. Most novel 
mRNAs predicted to code for secreted proteins with a 
predicted signal peptide (SigP) (62.9%) also have a stop 
codon, suggesting that they encode for full-length pep-
tides ranging in size from 101 to 183 amino acids (Fig. 
S3).

Fig. 2 Functional classification of the hemocyte mRNA transcripts. (a) Number of transcripts per functional class of noncoding RNAs identified in hemo-
cyte transcriptome. (b) Number of transcripts in the hemocyte transcriptome coding for proteins from different functional categories. (c) Percentage of 
novel intergenic (blue) and known (annotated with an AGAP ID, green) transcripts identified in the hemocyte transcriptome for each functional category. 
(unk: unknown, met: metabolism, st: signal transduction, prot syn/mod: protein synthesis/modification, tf/tm: transcription factor/transcription ma-
chinery, cyt/ext/sec: cytoskeleton/extracellular matrix and adhesion/secreted, tran/stor: transport/storage, ne/nr: nuclear export/nuclear regulation, 
prot/prot-inh: protease/protease inhibitor, imm: immunity, detox: detoxification and oxidant metabolism, te: transposable element, vir: viral product)
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Hemocyte single-cell transcriptome clustering and lineage 
analysis
An A. gambiae hemocyte cell atlas was previously estab-
lished using single-cell RNA-seq analysis of the tran-
scriptome of approximately 5,300 individual cells using 
the predicted transcripts from the annotation of the A. 
gambiae genome (P4.9 version) as reference [13]. The 
atlas identified the three known major hemocyte types: 
prohemocytes, oenocytoids, and granulocytes; includ-
ing two prohemocyte subtypes (PHem1 and PHem2) and 
three granulocyte subtypes (Gran1, Gran2, and Gran3). 
In addition, three novel granulocyte effector subpopu-
lations were defined: dividing granulocytes, antimicro-
bial granulocytes, and a new cell type which was named 
“megacytes”. These nine hemocyte subpopulations were 
revealed by graph-based clustering and had their identity 

classes established through the identification of gene sets 
(marker genes) uniquely expressed in the nine different 
clusters [13].

We re-analyzed the same data set using either the pre-
dicted transcripts based on the most recent annotation 
of the A. gambiae genome (P4.14 version) or our high-
resolution hemocyte transcriptome as a reference and 
compared the results of the clustering and lineage analy-
sis using these two different transcript references. A total 
of nine hemocyte clusters were obtained using the tran-
scripts predicted in the P 4.14 version of the A. gambiae 
genome (Fig. 3a). The similarity of these clusters with the 
previously defined hemocyte types was determined by 
calculating the Jaccard index. Based on the Jaccard simi-
larity index (Fig.  3b), all the nine previously described 
hemocyte clusters were also present with two minor 

Fig. 3 Hemocyte single-cell transcriptome analysis. (a) Uniform Manifold Approximation and Projection (UMAP) of single-cell hemocyte transcriptomes 
clustered by for Seurat analysis using the annotated transcripts based on the A. gambiae genome (P 4.14) as reference. Each cluster corresponding to a 
different hemocyte type is shown with a different color. (b) Jaccard plot showing the similarity between the new hemocyte clusters (horizontal list) and 
the hemocyte subpopulations previously reported (vertical list). (c) UMAP of single cell hemocyte transcriptomes clustered by for Seurat analysis using 
the hemocyte transcriptome as reference. Each cluster corresponding to a different hemocyte type is shown with a different color. (d) Jaccard plot show-
ing the similarity between the new hemocyte clusters (horizontal list) and the hemocyte subpopulations previously reported (vertical list)
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differences: the previously defined PHem2 and Gran1 
clusters merged into a single cluster (PHem2/Gran1) 
(Fig.  3a-b), and a new small prohemocyte cluster was 
identified. This new cluster was named PHem3 (Fig. 3a-
b) because it does not have a strong Jaccard similarity 
index with any of the PHem clusters previously reported.

Ten hemocyte clusters were defined using the high-res-
olution hemocyte transcriptome as a reference (Fig. 3c). 
Clusters with high Jaccard similarity to all hemocyte 
types previously reported were identified, which also 
included the PHem2/Gran1 and the PHem3 clusters 
(Fig.  3c-d), as well as an additional small granulocyte 
cluster that was named Gran4 (Fig.  3c-d), based on a 
modest Jaccard index similarity to Gran3 hemocytes. 
Several markers that define the clusters are novel tran-
scripts identified in the hemocyte transcriptome (two 
to six novel markers per cluster) (Fig. S2) implying their 
potential contribution to the refined cell clustering. The 
complete list of genes that define the different hemocyte 
clusters using the hemocyte transcriptome as references 
is provided in Additional file 2.

Functional differences between hemocyte subpopulations
Potential functional differences between hemocyte sub-
populations were explored by comparing the relative 
abundance of different functional protein classes encoded 
by the marker transcripts that define the hemocyte clus-
ters. The functional class of the proteins encoded by 
the marker genes was established based on the detailed 
annotation table of hemocyte transcripts (Supplementary 
information -Annotation table of hemocyte transcripts). 
The relative abundance of the different functional classes 
in each hemocyte cluster revealed some striking differ-
ences (Fig. S4). The PHem3 cluster has the highest pro-
portion (39%) of genes involved in energy metabolism, 
suggesting that these cells are metabolically more active 
than other hemocytes. Oenocytoids, in turn, have a 
higher proportion (about 16%) of marker genes involved 
in protein transport and storage, possibly related to the 
synthesis of proteins involved in melanization, such as 
prophenoloxidases; while both AM granulocytes and 
oenocytoids exhibit a higher proportion (about 9%) of 
immune-related genes than other clusters, suggesting 
that their antimicrobial response involves synthesis and 
secretion of immune effectors peptides/proteins. Finally, 
the proportion of genes involved in ROS detoxification is 
higher in the Gran2 and Gran4 clusters (10% and 11.11% 
respectively). These are genes that maintain the redox 
state of the cell and are known to regulate the prolifera-
tion of mammalian cells and the function of immune cells 
[16, 17].

The functional differences between hemocyte sub-
types were further investigated by subjecting the list of 
marker genes from each cluster to Gene Ontology (GO) 

Enrichment Analysis for biological processes, molecu-
lar function, and cellular components. The summary of 
the list of marker genes with significant enrichment in 
each cluster is provided as Additional file 3 (GO enrich-
ment analysis HC markers). We found that the markers 
for the PHem3 cluster are enriched for genes involved in 
glycolysis, while the markers of the PHem1 cluster are 
enriched for genes involved in aerobic respiration. The 
genes involved in carboxylic acid metabolism and zinc 
ion transport are predominant in the oenocytoid clus-
ter markers and the PHem2/Gran1 cluster markers are 
enriched with lysosome-related genes and genes involved 
in cytoplasmic vesicle traffic. The genes regulating mRNA 
splicing and decay are prominent in the AM granulocyte 
cluster markers and genes that are part of the endomem-
brane system and vesicle transport is dominant amongst 
the markers of the megacyte cluster. The Gran 3 cluster 
markers are enriched for genes related nucleotide metab-
olism in addition to protein glycosylation and secretion. 
Genes functioning in extracellular matrix organization 
are prominent in Gran 2 cluster markers, whereas Gran 
4 cluster is enriched for genes involved in cytoskeleton 
and glutathione metabolism. Finally, the markers of the 
dividing granulocyte cluster show enrichment of genes 
involved in active cell division.

Hemocyte lineage analysis
Prohemocytes are thought to be the precursors of other 
hemocytes [18–21], and a previous hemocyte lineage 
analysis, based on single-cell transcriptome analysis, 
defined a clear differentiation pathway in which prohe-
mocytes gave rise to the granulocyte lineage [13]. This is 
a sequential process in which the PHem1 subpopulation 
gave rise to PHem2, which are the precursors of Gran1 
hemocytes. Some of these cells differentiate into antimi-
crobial granulocytes, while others give rise to Gran2 and 
Gran3 hemocytes that further differentiate into mega-
cytes and dividing granulocytes, respectively. However, it 
was not possible to define the differentiation pathway of 
oenocytoids [13].

The lineage of the hemocyte clusters from the data 
re-analyzed using the transcripts from the annotated 
genome (version P 4.14) as reference were subjected to 
an unsupervised pseudo-temporal ordering (or trajectory 
inference analysis) based on gradual changes in the tran-
scriptomic profile of hemocytes using the Tools for Single 
Cell Analysis (TSCAN). TSCAN identified PHem3 as the 
initial point of differentiation that gives rise to PHem1 
(Fig.  4a). The lineage analysis was confirmed using an 
independent pseudo-temporal ordering method with 
the Monocle 3 software that defines the changes in gene 
expression that are part of a dynamic biological process, 
such as hemocyte differentiation, as a trajectory path and 
places each cell according to its state in the trajectory 



Page 8 of 15Saha et al. BMC Genomics           (2024) 25:80 

Fig. 4 Lineage analysis to determine hemocyte differentiation. (a) Lineage of hemocyte clusters defined using the genome (P4.14 version) annotated 
transcripts as a reference by unsupervised analysis using the TSCAN software. (b) Pseudotime plot of the same clusters analyzed with Monocle3, using 
PHem3 as root. (c) Lineage map of hemocyte clusters defined with the hemocyte transcriptome as a reference by unsupervised analysis using the TSCAN 
software. (d) Pseudotime plot of the same clusters with Monocle3, using PHem3 as root. (e) Schematic summary of the lineage of hemocyte subpopula-
tions based on the differentiation pathways determined by Moncole3 pseudotime analysis based on hemocyte transcriptome annotation as a reference
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(referred to as pseudotime). PHem3 was used as the root 
in the Monocle 3 analysis, based on the TSCAN software 
results. Both TSCAN and Monocle 3 predicted that anti-
microbial granulocytes, Gran2, and megacytes derive 
from the PHem2/Gran1 cluster, while Gran3 gives rise 
to the dividing granulocytes and the oenocytoid lineages 
(Fig. 4b). It is very unlikely that Gran3 hemocytes differ-
entiate into oenocytoids, because Gran3 hemocytes are 
cells already committed to the granulocyte lineage, and 
granulocytes are functionally and morphologically dis-
tinct from oenocytoids.

When the in-depth hemocyte transcriptome was 
used as a reference, the TSCAN software also identified 
PHem3 as the initial point of differentiation that gives 
rise to PHem1. However, the predicted lineage is different 
from that in which the genome annotation was used as a 
reference because both TSCAN and Monocle 3 predict 
that PHem1 gives rise to the granulocyte and the oeno-
cytoid lineages (Fig. 4c). The pathway of hemocyte differ-
entiation obtained with Monocle3 (Fig. 4d) predicts that 
oenocytoids derive directly from PHem1, and PHem1 
also gives rise to the PHem2/Gran1 cluster (Fig.  4d-e). 
Furthermore, the PHem2/Gran1 cells differentiate into 
four granulocyte clusters: antimicrobial granulocytes, 
megacytes, Gran2, and Gran3. Gran3, in turn, gives rise 
to dividing granulocytes, with the new small Gran4 clus-
ter as an intermediate stage of differentiation (Fig. 4d-e).

Discussion
A combination of a large number of short Illumina reads 
with long PacBio reads made it possible to achieve deep 
coverage of the mosquito hemocyte transcriptome and 
to annotate new genes and novel transcripts from many 
genes that code for multiple transcripts and isoforms 
through extensive differential splicing. It would be inter-
esting to further investigate if these novel isoforms also 
exist in other tissues of adult mosquitoes or are exclu-
sive to hemocytes. The most prominent categories of 
proteins with many multiple isoforms in hemocytes are 
protein kinases, zinc finger domain-containing proteins, 
RNA recognition motif-containing (RRM) proteins, and 
E3 ubiquitin ligases. Protein kinases are key regulators 
that bridge different signaling pathways and have diverse 
functions such as transcriptional regulation, cell prolifer-
ation, immune activation, and differentiation of immune 
cells [22–25]. Previous studies of larval hemocytes of 
insects such as wax moths, silkworms and fruit flies 
showed that protein kinases regulate hemocyte motility, 
adhesion, and phagocytosis in response to bacterial infec-
tion or LPS treatment [26–29]. The high diversity of pro-
tein kinase isoforms suggests complex and sophisticated 
regulation of signaling networks in mosquito hemocytes 
during differentiation and immune response. Zinc finger 
domain-containing proteins can bind to different nucleic 

acids such as DNA, ssRNA, dsRNA, and even DNA-RNA 
hybrids [30–32]. These proteins can recognize specific 
mRNA motifs and are known to stabilize or regulate 
the translation of several cytokine mRNAs. Zinc finger 
proteins regulate hematopoiesis and hemocyte differen-
tiation and are also involved in the immune response of 
Drosophila larval hemocytes to bacterial LPS [33, 34]. In 
other invertebrates, such as mollusks and shrimps, Zn 
finger proteins regulate hemocyte hematopoiesis and 
apoptosis [35, 36]. RRM proteins contain RNA-binding 
domains that recognize specific sequence elements (such 
as AU-rich elements) or secondary structural motifs in 
RNA and regulate mRNA splicing, export, degradation, 
and translation. In vertebrates, RRM proteins modulate 
the immune system by regulating the differentiation of 
immune cells and translation of cytokines, or by resolving 
inflammation [37–40]. RRM proteins regulate alternative 
splicing of the Down syndrome cell adhesion molecule 
(Dscam) in shrimp and crab hemocytes, in response to 
bacterial and viral infection, and increased production of 
reactive oxygen species (ROS) and apoptosis in response 
to viral infection [41–43]. In Drosophila, RRM proteins 
have been shown to regulate hemocyte proliferation, dif-
ferentiation, and immune response against bacteria [44, 
45]. Proteins with Zinc finger and RRM domains could 
be involved in the post-transcriptional regulation of sev-
eral mRNAs critical for hemocyte function. E3 ubiqui-
tin ligases catalyze the transfer of ubiquitin to cysteine 
(Cys) residues of specific protein substrates and play a 
crucial role in cellular localization, protein stability, and 
interactions with other proteins. Ubiquitination of spe-
cific proteins such as MHC molecules or receptors of 
signaling pathways is known to modulate immunity in 
mammals [46, 47]. E3 ubiquitin ligases also maintain the 
pluripotency of stem cells in mammals [48] and multiple 
studies in mollusks and shrimps indicate the role of E3 
ligase in granulocyte proliferation, inhibition of apopto-
sis and regulation of immune response against bacteria 
and autophagy [49–52].E3 ligase could perform similar 
functions in mosquito hemocytes. Hemocytes are highly 
plastic cells that can detect different pathogens like bac-
teria, viruses, and eukaryotic parasites and differentiate 
into multiple effector cells to mount pathogen-specific 
immune responses. Thus, the expression of diverse types 
of protein kinases, zinc fingers, RRMs, and E3 ligases in 
hemocytes could be crucial for hemocyte plasticity as 
they respond to infection to efficiently eliminate the dif-
ferent pathogens they encounter.

The two notable categories of hemocyte proteins 
encoded by novel genes are Reverse transcriptase (RTs) 
and putative secreted proteins. RTs are multifunctional 
enzymes with RNA/DNA dependent DNA polymerase 
activity and RNAseH activity initially identified in single-
stranded RNA (ssRNA) viruses that integrate into the 
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host genome. However, there is growing evidence in Dro-
sophila and other insects like silkworms, moths, and even 
mouse embryonic stem cells that show endogenous host 
RTs may play a major role in antiviral immunity [53–57]. 
Thus, some of the novel RTs expressed in A. gambiae 
hemocytes might also be involved in antiviral immunity. 
BLAST analysis of the hypothetical proteins predicted to 
be secreted by hemocytes with multiple databases indi-
cated that their function is unknown. In other organ-
isms, small signaling proteins, such as cytokines range 
in size from approximately 50–600 amino acids, while 
chemokines are slightly smaller (approx., 70–110 amino 
acids). Even in Drosophila, only a few peptides involved 
in immune signaling, such as Spaetzle and Unpaired, 
have been characterized. Based on their size and expres-
sion in hemocytes, some of these transcripts that contain 
a signal peptide may encode novel cytokines acting as 
ligands or activators of receptors from immune signaling 
cascades.

In addition to new protein-coding genes, 3203 new 
noncoding genes were identified that possibly function 
as long noncoding RNAs (lncRNAs). LncRNAs regulate 
gene expression at multiple levels ranging from epigen-
etic regulation by chromatin remodeling, to post-transla-
tional modification of proteins [58–60]. Recent studies in 
Drosophila show that lncRNAs regulate hemocyte differ-
entiation in larval hemocytes [61], suggesting that some 
lncRNAs expressed in mosquito hemocytes may also 
modulate gene expression and regulate the differentiation 
and function of hemocytes.

The detailed hemocyte transcriptome annotation 
strengthened and refined the previously published hemo-
cyte atlas and the pathway of hemocyte differentiation 
in adult A. gambiae females. Moreover, the gene ontol-
ogy enrichment analysis of the hemocyte marker genes 
helped to gain valuable insights into the development 
and function of the various hemocytes. Lineage analysis 
showed that PHem3, a newly defined small prohemo-
cyte cluster, is a precursor cell population that gives rise 
to prohemocytes. Studies in adult human hematopoietic 
stem cells and heart stem cells show that stem cell dif-
ferentiation is associated with drastic metabolic changes 
and glycolysis is the predominant metabolic state in stem 
cells, whereas switching to aerobic respiration promotes 
cell differentiation [62–64]. Thus, the state of energy 
metabolism may also be important for hemocyte differ-
entiation in A. gambiae adult females. The enrichment 
of marker genes involved in glycolysis in PHem3 cluster 
and aerobic respiration in PHem1 cluster suggests that 
PHem3 hemocytes are less differentiated precursors of 
PHem1 hemocytes, in agreement with the lineage anal-
ysis. The identification of hemocyte stem cells in adult 
stages is still unknown and PHem3 cells may be involved 
in maintaining and replenishing hemocyte populations. 

Determining the location, abundance, and proliferation 
potential of these potential stem cells will be important 
to establish whether is a hematopoietic organ in adult 
dipteran insects or if hemocyte stem cells proliferate as 
free cells in the hemocoel. Our lineage analysis also high-
lights that using a comprehensive set of mRNA tran-
scripts from the cells under investigation as a reference is 
essential for a robust single-cell transcriptomic analysis. 
Several novel genes identified in our in-depth hemocyte 
transcriptome were important markers of several hemo-
cyte clusters and they made it possible to assign the cor-
rect lineage to oenocytoids. Carboxylic acid metabolism 
mediates melanin synthesis and Zinc is essential for some 
enzymes involved in melanin biosynthesis [65, 66]. Thus, 
the enrichment of genes responsible for carboxylic acid 
metabolism and Zinc ion transport in the oenocytoids 
cluster may be explained by their role in melanization. 
The presence of lysosomes is a marker of hemocyte dif-
ferentiation to granulocytes in marine mollusks [67] and 
enrichment of lysosome-related genes in the PHem2/
Gran1 cluster may represent an early stage of hemocyte 
differentiation that ultimately gives rise to mature granu-
locytes. In the crayfish, alternative splicing of the Relish 
mRNA is important for antimicrobial peptide expression 
in the gut; and differential splicing of the immunoglobu-
lin-related gene Dscam is observed in response to para-
site infection in bumble bees and the defense response of 
plants against bacterial infection [68–70]. The processing 
of mRNA transcripts of certain immune genes could be 
important for the function of AM granulocytes as indi-
cated by the enrichment of genes involved in mRNA 
splicing in these cells. Because glutathione signaling is 
known to regulate cell proliferation [17], the enrichment 
of genes related to glutathione metabolism in the Gran 
4 cluster and the lineage analysis, both suggest that they 
represent an intermediate stage of granulocytes that will 
give rise to dividing granulocytes, a mitotically active 
population. The careful annotation of the hemocyte tran-
scriptome, including many novel splice variants and low 
abundance transcripts, and the detailed description of 
the predicted function of the proteins they encode are 
valuable community resources for future studies involv-
ing hemocytes and are publicly available at, https://proj-
bip-prod-publicread.s3.amazonaws.com/transcriptome/
An_gambiae_hemocytes_2022/AgHemocytes.zip.

Materials and methods
Mosquito rearing andPlasmodium bergheiinfection
The A. gambiae G3 strain was reared at 27  °C, 80% 
humidity on a 12-h light-to-dark cycle. GFP express-
ing Plasmodium berghei strain (ANKA 2.34) was used 
for mosquito infections and maintained by serial pas-
sages in 3- to 4-week old female BALB/c mice or as fro-
zen stocks. Mice with 4–6% parasitemia and two to three 

https://proj-bip-prod-publicread.s3.amazonaws.com/transcriptome/An_gambiae_hemocytes_2022/AgHemocytes.zip
https://proj-bip-prod-publicread.s3.amazonaws.com/transcriptome/An_gambiae_hemocytes_2022/AgHemocytes.zip
https://proj-bip-prod-publicread.s3.amazonaws.com/transcriptome/An_gambiae_hemocytes_2022/AgHemocytes.zip
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exflagellations per field under 400X magnification were 
used to infect the mosquitoes. The infected mosquitoes 
were either shifted to nonpermissive (28 °C) temperature 
immediately after feeding for the Naïve group or main-
tained at 21 °C for 48 h post feeding and then shifted to 
28  °C for the Prime group. For uninfected blood meal, 
3- to 4-day old mosquitoes were fed on an anesthetized 
healthy BALB/c mouse.

Hemolymph collection
Each mosquito was perfused with 10  µl hemolymph 
transfer buffer containing 95% Schneider’s media and 
5% citrate buffer (modified anticoagulant buffer). For the 
hemolymph-transfer experiment, each mosquito was 
bled with 6µL of hemolymph transfer buffer. Hemolymph 
from 30 donor mosquitoes were pooled, and centrifuged 
at 6000 rpm for 15 min at 4 °C. The supernatant was col-
lected and stored in aliquots at -80 °C. One hundred and 
fifty nanoliters of cell-free supernatant was injected into 
each mosquito.

Total RNA isolation from hemocytes
Ten microliters of hemolymph was perfused from each 
mosquito using 95% Schneider’s media and 5% citrate 
buffer (modified anticoagulant buffer) and added directly 
to a tube containing 750µL TRIzol LS reagent. Twenty 
mosquitoes were pooled in each sample to isolate RNA. 
Two hundred microliters of chloroform was added to 
each tube and vigorously shaken for 15  s. The solution 
was added to Phasemaker tubes (Invitrogen A33248, 
prespun at 1,200 g for 2 min) and centrifuged at 12,000 g 
for 15  min at 4  °C to separate the aqueous and organic 
phases. After collecting the aqueous phase, Linear acryl-
amide (20  µg/mL, Thermo Fischer Scientific AM9520) 
was added to each tube and mixed well. Five hundred 
microliters of Isopropanol was added to each tube, mixed 
by inverting the tubes, and incubated at RT for 45  min 
to precipitate the RNA. The tube was centrifuged at 
12,000 g for 15 min at 4 °C. The RNA pellet was washed 
twice with 1mL 75% ethanol and dissolved in 20µL nucle-
ase-free water post drying. The integrity of RNA was 
checked using the Agilent Tapestation 4200 instrument 
before library preparation.

Sample information
RNA was isolated from hemocytes collected from mos-
quitoes subjected to different treatments. Mosquitoes 
were either injected with dsRNA against Cactus or LacZ 
(control), and hemocytes were collected 4 days post 
injection and allowed to attach on a glass surface at 4 °C 
for 30 min (bound) and the remaining fraction (unbound) 
[71]. Mosquitoes were either primed [9] with P. berghei 
and hemocytes were collected 6 days post priming from 
control NP_Naive and NP_Prime samples. Mosquitoes 

were injected with cell-free hemolymph from naturally 
primed (HDF_Prime) or Control Naïve (HDF_Naïve) 
mosquitoes 48 h post blood meal from a healthy mouse 
and hemocytes were collected 6 days post injection. 
Mosquitoes were injected with 150 nL Sua cell superna-
tant pre-treated with or without E. coli acetone powder 
and arachidonic acid 48 h post blood meal from a healthy 
mouse and hemocytes were collected 2, 4, and 6 days 
post injection (Sua_Naive and Sua_Challenge).

Illumina sequencing
Total RNA was used to generate inverse rRNA-selected 
RNA sequencing libraries for the Sua Naïve and chal-
lenge samples. The bulk RNAseq libraries were created 
using TruSeq Stranded Total RNA LP Gold kit and the 
libraries were pooled and sequenced (paired end) using 
Illumina Novaseq 6000 instrument. For the ds LacZ and 
ds Cactus samples, Poly-A selected RNA sequencing 
libraries were created using NEBNext Ultra II Directional 
RNA Kit with Sanger Unique Dual Indexes and Kapa Hifi 
polymerase and sequenced paired end on Illumina HiSeq 
4000 instrument.

PacBio sequencing
For PacBio sequencing, Iso-Seq libraries were created 
using SMRTbell prep kit 3.0 with cDNA oligo dT selec-
tion and sequenced on the PacBio Sequel II instrument.

Transcriptome assembly and transcript identification
P4.14 Illumina and PacBio sequencing reads
Illumina sequencing reads were preprocessed using 
TrimGalore v0.6.6 to ensure sequence adapter removal 
and to filter out low-quality (Phred score < 30) or short 
(less than half the target sequencing length) reads [72]. 
High-quality reads were then aligned to the P4.14 version 
of the A. gambiae PEST genome using HISAT2 v2.2.1 
using “downstream-transcriptome-assembly” mode [73]. 
PacBio Circular Consensus Sequencing reads were also 
aligned to the A. gambiae PEST genome using Mini-
Map2 v2.17 while in “splice:hq” mode [74]. Subsequently, 
Illumina and PacBio read alignments were used jointly 
for transcript assembly using StringTie2 v2.2.1 in “mix” 
mode, while guided by existing A. gambiae PEST P4.14 
transcript annotations [15]. Next, putative truncated 
transcripts, characterized by at least 98% identity to 
nearby transcripts, were identified by using CD-HIT-EST 
and removed [75]. Lastly, single-exon transcripts without 
a reported strand were removed to avoid ambiguity.

Prediction of known and novel protein-coding transcripts 
and coding DNA sequences
Transcript type class (=, c, k, m, n, j, e, o, s, x, I, y p, r, 
u) and association with genetic locus were predicted by 
comparison of the assembled hemocyte transcripts to 
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existing A. gambiae PEST P4.14 transcripts using Gff-
Compare v0.11.6 [76]. Known transcripts were those 
denoted by exact match (=) to the reference, whereas 
novel protein-coding transcripts could be of other types. 
Protein-coding DNA sequences (CDs) and 5’ UTR and 
3’UTR were predicted first using CodAn using a probabi-
listic generalized hidden Markov model which permitted 
CDS detection of both full-length and partial/fragmented 
CDSs using parameters pretrained on invertebrate pro-
tein-coding genes and genomes [40]. Transcripts were 
also run through Transdecoder to detect further ORFs 
and 5’/3’ UTRs using homology search as ORF reten-
tion criteria (BLASTP matches to UniProtKB/Swiss-Prot 
database and HMMER matches to InterPro PFAM-A 
database). These predicted CDS, 5’ and 3’ UTR sequences 
were compiled for further functional annotation.

Functional annotation of CDS
Functional annotation of the extracted CDS was per-
formed by an in-house program that scans a vocabulary 
of approximately 400 words and their order of appear-
ance in the protein matches from BLASTp and rpsBLAST 
results against different databases (Transcriptome Shot-
gun Assembly, a subset of the Non-Redundant, Refseq-
Invertebrate, Refseq-Vertebrate, Refseq-Protozoa, An. 
Gambiae genome, UNIPROT, CDD, SMART, MEROPS 
and PFAM), including their e-value and coverage. The 
final annotated CDS and the ncRNA were exported to 
a Windows-compatible hyperlinked Excel file and are 
available for download (Supplementary information).

Noncoding RNA detection and annotation
Transcripts that were not predicted as protein coding by 
either CodAn (v1.1.0) or Transdecoder were investigated 
for potential ncRNA identification according to several 
criteria [72]. First, transcripts greater than 200nt with 
assigned Stringtie classes likely to correspond to poten-
tial ncRNAs were selected (u, i, x, as well as j, k, y, n, m, c, 
o). We removed transcripts with e, p, and s classes from 
consideration. Detection of identifiable short ncRNA 
types was performed using INFERNAL v1.1.4 with the 
Rfam database [77]. Finally, the remaining ncRNA tran-
scripts were denoted as potential long noncoding RNAs.

scRNAseq data analysis
10x Genomics single-cell sequencing data of A. gam-
biae hemocytes was downloaded (ArrayExpress acces-
sion number E-MTAB-9240) and analyzed as previously 
described [13]. CellRanger v7.0.0 was used for aligning 
sequencing reads to the A. gambiae PEST P4.14 refer-
ence genome and to generate two distinct sets of gene 
counts (feature-barcode matrices). One set was generated 
utilizing the transcript annotations from the P4.14 ref-
erence, and the other set by utilizing the new hemocyte 

transcriptome annotations. Provided cell annotations 
[78] were then used to filter for only the hemocytes 
comprising the final scRNA-Seq atlas. Seurat v4.3.0.1 
was used for subsequent preprocessing and integration 
procedures in parallel analyses of the two sets of gene 
counts. First, the raw expression data of each sample 
were subjected to log-normalization using the “Normal-
izeData” function. Subsequently, the top 2000 most vari-
able genes were independently identified for each sample 
using the “FindVariableFeatures” function and tested for 
suitability as integration anchors using the “FindIntegra-
tionAnchors” function. These anchors were then used in 
the “IntegrateData” function to integrate the samples into 
a single dataset. Following integration, the dataset was 
scaled using the “ScaleData” function, and a principal 
component analysis was conducted using the “RunPCA” 
function. A Uniform Manifold Approximation and Pro-
jection (UMAP) representation of the scaled integrated 
dataset was then constructed using the “RunUMAP” 
function, using the top 20 Principal Components. Clus-
ters were then identified using the `FindNeighbors` and 
`FindClusters` functions with a resolution parameter of 
0.4.

Trajectory inference analysis was then performed 
on the two single-cell UMAP projections (P4.14 and 
hemocyte versions) using two distinct inference meth-
odologies, Tools for Single Cell Analysis (TSCAN) and 
Monocle3 [79, 80]. TSCAN analyses were performed 
using the “quickPseudotime” function without a trajec-
tory starting point (or set of root cells) defined, which 
generated a minimum spanning tree based on distances 
between mutual nearest neighbors. Monocle3 analy-
ses were performed using the default parameters of the 
“learn_graph” and “order_cells” function with the PHem3 
cell cluster used as the set of root cells. This resulted in a 
suitable principal graph for each projection and an esti-
mation of the pseudotime ordering of the cells.

To perform functional analysis of the marker genes of 
each hemocyte cluster provided in the Additional file 2 
(Marker for each hemocyte cluster), the functional classi-
fication of each marker gene was assessed in accordance 
with the Annotation table of hemocyte transcripts pro-
vided in the Supplementary information. In addition, 
Gene Ontology Enrichment analysis for the marker genes 
for each hemocyte cluster was performed using the A. 
gambiae reference list of all genes provided on the web-
site database based on Panther Overrepresentation Test 
(Released 20,231,017) with the GO Ontology database 
DOI: https://doi.org/10.5281/zenodo.7942786 Released 
2023-01-05 as the annotation version and release date 
(https://geneontology.org/) [81–83]. The enriched “GO 
Biological process complete”, “GO Molecular func-
tion complete” and “GO Cellular component complete” 
were analyzed including Fisher’s exact test, and only the 

https://doi.org/10.5281/zenodo.7942786
https://geneontology.org/
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significant results were considered (calculated False Dis-
covery Rate, FDR P < 0.05) for interpreting the results.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-024-09986-6.
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