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Abstract 

Background Polycystic ovary syndrome (PCOS) is a complex multifactorial disorder with a substantial genetic 
component. However, the clinical manifestations of PCOS are heterogeneous with notable differences between lean 
and obese women, implying a different pathophysiology manifesting in differential body mass index (BMI). We 
performed a meta-analysis of genome-wide association study (GWAS) data from six well-characterised cohorts, using 
a case–control study design stratified by BMI, aiming to identify genetic variants associated with lean and overweight/
obese PCOS subtypes.

Results The study comprised 254,588 women (5,937 cases and 248,651 controls) from individual studies performed 
in Australia, Estonia, Finland, the Netherlands and United States of America, and separated according to three BMI 
stratifications (lean, overweight and obese). Genome-wide association analyses were performed for each stratification 
within each cohort, with the data for each BMI group meta-analysed using METAL software. Almost half of the total 
study population (47%, n = 119,584) were of lean BMI (≤ 25 kg/m2). Two genome-wide significant loci were identified 
for lean PCOS, led by rs12000707 within DENND1A (P = 1.55 ×  10–12) and rs2228260 within XBP1 (P = 3.68 ×  10–8). One 
additional locus, LINC02905, was highlighted as significantly associated with lean PCOS through gene-based analyses 
(P = 1.76 ×  10–6). There were no significant loci observed for the overweight or obese sub-strata when analysed sepa-
rately, however, when these strata were combined, an association signal led by rs569675099 within DENND1A reached 
genome-wide significance (P = 3.22 ×  10–9) and a gene-based association was identified with ERBB4 (P = 1.59 ×  10–6). 
Nineteen of 28 signals identified in previous GWAS, were replicated with consistent allelic effect in the lean stratum. 
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There were less replicated signals in the overweight and obese groups, and only 4 SNPs were replicated in each 
of the three BMI strata.

Conclusions Genetic variation at the XBP1, LINC02905 and ERBB4 loci were associated with PCOS within unique 
BMI strata, while DENND1A demonstrated associations across multiple strata, providing evidence of both distinct 
and shared genetic features between lean and overweight/obese PCOS-affected women. This study demonstrated 
that PCOS-affected women with contrasting body weight are not only phenotypically distinct but also show varia-
tion in genetic architecture; lean PCOS women typically display elevated gonadotrophin ratios, lower insulin resist-
ance, higher androgen levels, including adrenal androgens, and more favourable lipid profiles. Overall, these findings 
add to the growing body of evidence supporting a genetic basis for PCOS as well as differences in genetic patterns 
relevant to PCOS BMI-subtype.
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Background
Polycystic ovary syndrome (PCOS) is a common female 
endocrinopathy, affecting around 5–15% of women, 
though its aetiology remains to be fully explained [1]. 
Cardinal features include hyperandrogenism, oligoamen-
orrhoea, and often obesity and hyperinsulinaemia [1, 
2]. Familial inheritance suggests a genetic basis and 
genome-wide association studies (GWAS) have identified 
numerous genetic loci significantly associated with this 
condition [3–7]. However, the relatively modest number 
of polymorphisms with robust association data identified 
to date do not appear to entirely explain the disease aeti-
ology [4]. Most affected women are overweight or obese, 
with only 16–30% in the lean to normal BMI range [8–
10]. Indeed, the clinical manifestations of PCOS are nota-
bly different between lean and obese women, potentially 
implying a different pathophysiology associated with dif-
ferential body mass index (BMI) [11]. It seems possible 
that a difference in aetiology is attributable to distinct 
combinations of genotypes. Improved understanding of 
the genetic architecture of PCOS subtypes may assist in 
predicting comorbidity risk, facilitating earlier interven-
tion and tailored patient management. Indeed, principal 

component analysis has demonstrated clusters of risk 
factors explaining the variance in PCOS – involving 
women with i) high BMI, insulin resistance, low high-
density lipoprotein and low sex hormone binding globu-
lin, ii) hypertension, elevated low-density lipoprotein 
and hypertriglyceridemia and iii) a lean PCOS pheno-
type with elevated luteinizing hormone: follicle stimulat-
ing hormone ratio and total testosterone [11]. The lean 
PCOS phenotype therefore appears to be distinct, poten-
tially necessitating different treatment paradigms, par-
ticularly with respect to traditional lifestyle and weight 
loss recommendations.

In this meta-analysis of PCOS case–control GWAS 
data we aimed to analyse genotype differences in women 
with the syndrome based on BMI stratification thus pro-
viding insight into the hypothesis that lean and over-
weight/obese PCOS phenotypes are genetically distinct.

Results
Characteristics of the cohorts
A total of 254,588 women were included in the meta-
analysis, comprising 5,937 PCOS cases and 248,651 

Table 1 Details of the cohorts included in the BMI stratified PCOS meta-analysis

a Lean = BMI ≤ 25 kg/m2, Overweight = 25 < BMI < 30 kg/m2, Obese = BMI ≥ 30 kg/m2

b Cases provided by the Rotterdam PCOS Cohort and controls provided by Lifelines Cohort Study

Group Leana Overweight Obese Totals

Case Control Case Control Case Control

WA PCOS 82 1,287 50 796 139 409 2,763

Estonian Biobank 2147 59,319 776 31,579 742 22,980 117,543

FinnGen 171 47,533 164 38,656 308 31,605 118,437

Cedars Sinai 101 138 66 69 192 60 626

Dutch cohortb 352 4,643 139 2,130 143 912 8,319

BioVU 66 3,745 73 1,388 226 1,402 6,900

Totals 2,919 116,665 1,268 74,618 1,750 57,368 254,588
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controls stratified into BMI subgroups i) BMI ≤ 25  kg/
m2 (lean), ii) BMI 25 to 30  kg/m2 (overweight), and iii) 
BMI ≥ 30  kg/m2 (obese) (Table  1). Almost half of the 
combined study subjects (47%, n = 119,584) were of lean 
BMI. The majority of the cases and controls were from 
Estonian or Finnish datasets, with the remainder com-
prising American, Australian and Dutch Caucasian sub-
jects (Table 1).

Meta‑analysis
QQ plots for both the SNP and gene-based analyses com-
pleted are presented in Supplementary Fig. 1.

Single‑variant based meta‑analysis
For the purposes of this study, genetic loci are defined as 
regions of the genome containing association signals for 
PCOS. This study identified two genome-wide significant 
genetic loci (P < 5 ×  10–8) for lean PCOS (n = 2,919 cases 
and 166,655 controls) on chromosome 9 in DENND1A 
(led by rs12000707; P = 1.55 ×  10–12) and on chromosome 
22 in XBP1 (led by rs2228260; P = 3.68 ×  108) (Supple-
mentary Fig. 2 and Supplementary Fig. 3). There were no 
genome-wide significant loci identified for the overweight 
or obese sub-strata when analysed separately. When the 
overweight and obese groups were combined (i.e., non-
lean subjects), one genome-wide significant locus was 
identified on chromosome 9, also in DENND1A (led by 
rs569675099; P = 3.22 ×  10–9) (Supplementary Fig.  3 and 
Supplementary Fig.  4). This variant is in moderate link-
age disequilibrium (LD)  (r2 = 0.51) with rs12000707 
(P = 3.72 ×  10–8), which was the lead variant in the lean 

strata meta-analysis. The variant rs569675099 did not 
meet GW significance in the lean group (P = 1.03 ×  10–5) 
though has previously been identified as associated with 
PCOS in women of European and Han Chinese ancestry 
[3, 6]. Co-localisation analysis [12] of the GWAS meta-
analysis results for the DENND1A locus in the lean and 
non-lean groups generated a 95.5% posterior probability 
of co-localised association signals in the two datasets, 
indicating the presence of a shared causal variant.

The lead variant in the lean PCOS meta-analysis, 
rs12000707 (Fig. 1; Supplementary Table 1), is a non-cod-
ing intronic variant that has not previously been high-
lighted by GWAS but does have GTEx data supporting 
a role as an expression quantitative trait locus (eQTL) in 
subcutaneous adipose tissue (DENND1A; P = 7.0 ×  10–6) 
[13]. This locus contained a total of 124 genome-wide 
significant variants in the results for the lean PCOS 
meta-analysis. The lead single nucleotide polymorphism 
(SNP), rs12000707 is in complete LD with rs9696009 
 (r2 = 1), previously reported in a GWAS of PCOS con-
ducted in European populations [4]. Data for this locus 
from FUMA [14] analysis illustrates the large size of the 
region and number of variants at this site in LD (Supple-
mentary Fig. 5). Based on this data alone it is not possible 
to determine which variant(s) are the functional drivers 
within this LD block. The SNP rs12000707 also demon-
strated nominally significant associations in the over-
weight and obese groups (Supplementary Table 1), with 
meta-analysis of the 3 BMI strata suggesting that there 
is no significant heterogeneity between the groups (het 
P = 0.56).

Fig. 1 Regional association plots of genome-wide significant loci identified in the lean PCOS meta-analysis. A 9q33.3 (DENND1A) and B 22q12.1 
(XBP1). Genetic variants are depicted by position (x-axis) together with their meta-analysis P-value (-log10; y-axis). Variants are colour coded 
according to their LD  (r2) with the lead variant. Mb = million bases
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The other signal highlighted in the meta-analysis of 
lean PCOS, on chromosome 22, led by rs2228260, a syn-
onymous SNP in XBP1 (Fig.  1; Supplementary Table  1), 
contained a total of 11 genome-wide significant variants 
Examination of the LD between these variants suggested 
that they were all likely representative of the same signal 
(all  r2 = 1). This association signal is part of a large LD 
block spanning multiple genes including TTC28, CHEK2, 
HSCB, CCDC117, XBP1, ZNRF3 and EMID1. Any one 
of these genes could be driving the association signal, 
however publicly available eQTL data from GTEx shows 
that rs2228260 is an eQTL for CHEK2 (adrenal gland; 
P = 8.3 ×  10–7) [13]. This particular variant has not been 
identified in any previous GWAS. XBP1 has documented 
involvement in glucose and lipid metabolism, providing 
a potential biological link with PCOS, where metabolic 
disturbances including dyslipidaemia and insulin resist-
ance are noted [11]. However, other genes within this LD 
block, including both CHEK2 and ZNRF3, have previ-
ously been implicated in PCOS by data from the Finnish 
and Estonian cohorts analysed in isolation, populations 
included in this meta-analysis [15]. Tyrmi et  al., high-
lighted two putative  independent causal variants in the 
checkpoint kinase 2 (CHEK2) gene, which they proposed 
were the basis of the association [15]. The lead variant for 
the CHEK2 locus identified in that study for the Estonian 
cohort, rs182075939, is not in strong linkage disequi-
librium with rs2228260  (r2 ≤ 0.2) [16]. Considering this, 
we performed a conditional analysis for this locus in the 
lean PCOS meta-analysis using the COJO function of the 
GCTA package [17]. After conditioning on the CHEK2 
variant rs182075939, the association between rs2228260 
and lean PCOS was no longer genome-wide significant 
(Pcond = 1.9 ×  10–5), and there was a reduction in effect size 
(conditioned beta = 0.22, reduced from 0.28). Hence it 
is not possible to establish rs2228260 as an independent 
association signal. The lead variant for the Finnish cohort, 
rs145598156 [15], located closest to ZNRF3, and rs2228260 
are in linkage equilibrium in Europeans  (r2 = 0.0) [16]. 
However, it should be noted that rs145598156 is very rare 
in non-Finnish Europeans (MAF = 0.003), making accurate 
estimation of LD difficult. The remaining genes within this 
LD block have no established biological link with PCOS. 
The variant rs145598156 was not analysed in this study 
due to its very low frequency.

The significant associations identified in the lean PCOS 
meta-analysis were examined within each of the contrib-
uting cohorts (Supplementary Table  2). The Estonian 
Biobank demonstrated the strongest associations of the 
six cohorts for the two lead variants, which is not sur-
prising considering that this cohort contributed the larg-
est number of lean PCOS cases to the study, while the 
Western Australian PCOS research group (WA PCOS) 

cohort demonstrated the greatest effect size for these two 
variants.

Genome-wide suggestive associations may represent 
true associations that have failed to reach the stringent 
genome-wide significance threshold for various reasons 
including statistical power, and which could be validated 
through further replication. Genetic variants meeting the 
criterion for genome-wide suggestive association with 
lean PCOS (P < 5 ×  10–6) are presented in Supplementary 
Table  1. A number of these signals have previously been 
identified in GWAS of PCOS affected women of both 
European and Chinese ancestry, specifically variants in 
YAP1, KRR1, IRF1 and BLK [4–7]. However, there has 
been no previous research published specifically identi-
fying these loci in lean PCOS affected subjects. Further-
more, from the analysis of the combined overweight/obese 
cohorts, (Supplementary Table  3), genome wide sugges-
tive signals were identified for three previously reported 
PCOS loci. rs11031006 within FSHB was identified as 
genome-wide suggestive (P = 1.42 ×  10–7), which has been 
previously reported as a risk variant for PCOS [5, 6, 18]. 
The other signals in known PCOS loci include rs11453664 
on chromosome 2 within ERBB4 (P = 7.85 ×  10–7) and 
rs3729853 in GATA4 on chromosome 8 (P = 2.4 ×  10–6). 
These specific SNPs have not previously been reported 
as risk variants for PCOS, though the signal reported in 
GATA4, rs3729853, is in modest LD with the previously 
published significant SNP rs804279  (r2 = 0.36) [4, 16]. 
Two lead variants were shared by the lean and combined 
overweight/obese PCOS strata, and with consistent allelic 
effects observed, when examining results that were of at 
least suggestive association (P < 5 ×  10–6; Fig. 2). These two 
variants were located in the DENND1A (rs12000707) and 
GATA4 (rs3729853) loci. However, the other lead vari-
ants that were of at least suggestive association for the lean 
PCOS stratum and the combined overweight/obese PCOS 
strata were observed to be uniquely represented in only 
one stratum or the other (Fig. 2A), suggesting a potential 
difference in the genetic architecture of lean versus over-
weight/obese PCOS; the observed effect size of the risk 
alleles for those lead variants also followed a similar pat-
tern of segregation (Fig. 2B).

Gene‑based association testing
Gene-based association tests are commonly used fol-
lowing single-variant GWAS analysis to model the sum 
of the effects of all variants within a gene to determine 
if, despite individual variants not achieving signifi-
cance, there is statistical evidence of a composite asso-
ciation signal. Gene-based association testing identified 
two significant associations in the lean PCOS group 
at the multiple testing corrected (Bonferroni) signifi-
cance threshold (P < 1.96 ×  10–6) (Supplementary Fig.  6). 
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The leading signal was again DENND1A on chromo-
some 9 (P = 4.04 ×  10–10) followed by LINC02905 (also 
known as C8orf49) (P = 1.76 ×  10–6), a long intergenic 
non-protein coding RNA gene located between GATA4 
and NEIL2 on chromosome 8. The GATA4/NEIL2 locus 
has been identified as associated with PCOS in previous 
GWAS in European populations, with heterogeneous 
effects depending on diagnostic criteria applied [4]. The 
GATA4/NEIL2 locus also has previous links with ovula-
tory dysfunction and polycystic ovary morphology [4]. 
Accordingly, LINC02905 may be part of a PCOS-suscep-
tibility gene cluster on chromosome 8.

There were no significant gene-based association sig-
nals identified for the overweight or obese groups when 
examined separately, though when combined, one signifi-
cant signal was identified on chromosome 2 for ERBB4 
(P = 1.59 ×  10–6; Supplementary Fig.  7). This gene has 
previously been identified in GWAS as associated with 
PCOS, in women of both European and Chinese ancestry 
[4, 19, 20].

Replication of established PCOS loci
All loci associated with PCOS identified in the previously 
published PCOS GWAS [3–7] were investigated within 

each of the three BMI strata (Supplementary Table  4). 
Each locus was examined and observation of P < 0.05 in 
any strata of this meta-analysis was considered nominally 
significant in terms of replication. For any known loci 
demonstrating nominal association within the cohort, 
the beta value or odds ratio was checked for consistent 
allelic direction of effect with that previously reported. 
All SNPs known to be associated with PCOS through 
GWAS were analysed in this study with differing levels of 
significance across the three BMI strata.

Nineteen of these 28 signals were replicated in the lean 
cohort, demonstrating consistent allelic effect. There 
were fewer signals replicated in the overweight and 
obese groups, with 9 and 7 signals respectively with con-
sistent allelic effect. Only four SNPs, rs9696009 within 
DENND1A, rs2178575 within ERBB4, rs11031005 within 
ARL14EP/FSHB and rs1795379 within KRR1 were repli-
cated in all three BMI strata. The signal within DENND1A 
was most significant in the lean group. The other previ-
ously identified SNP in DENND1A, rs2479106, did not 
meet criteria for replication in any BMI tier. The signal 
within KRR1 was also most significant in the lean group. 
The signals in ERBB4 and ARL14EP/FSHB showed simi-
lar significance across all BMI strata.

Fig. 2 Graph of lead variants in the meta-analyses showing at least suggestive association from each locus. A P-values are shown 
from the meta-analyses of the lean PCOS strata (x-axis) or the combined overweight/obese PCOS strata (y-axis). Blue symbols show lead 
variants with at least suggestive association (P < 5 ×  10–6) in the lean PCOS strata, red symbols show variants with at least suggestive association 
in the combined overweight/obese PCOS strata and green variants are those with at least suggestive association in both lean PCOS and combined 
overweight/obese PCOS strata. Lead variants that did not achieve suggestive association fall in the grey region. Dashed lines show the threshold 
for genome-wide suggestive association (P < 5 ×  10–6). B Plot of the effect size (beta ± SE) for the risk allele of lead variants showing at least 
suggestive association in the lean PCOS strata (blue symbols), combined overweight/obese PCOS strata (red) and variants that show at least 
suggestive association in both the lean PCOS and combined overweight/obese PCOS strata (green). Dashed line shows the diagonal



Page 6 of 15Burns et al. BMC Genomics          (2024) 25:208 

Discussion
This study aimed to identify differences in genetic archi-
tecture between lean, overweight and obese PCOS 
affected patients in order to provide further insight into 
potential differences in aetiology between these diverse 
phenotypes. Single-variant based analysis found evidence 
of two genome-wide significant genetic associations with 
the lean phenotype, and one significant association when 
the overweight and obese groups were combined. Gene-
based testing confirmed two genes associated with the 
lean PCOS group, and one gene associated with the over-
weight and obese groups combined. Additional variants 
that demonstrated genome-wide suggestive association 
were observed in the strata, with lead variants for the 
lean and combined overweight/obese PCOS strata typi-
cally demonstrating greater effects in only one stratum 
(Figs. 2A, B), therefore, these data may suggest a differ-
ence in the genetic architecture underlying lean versus 
overweight/obese PCOS.

The strongest association signal in the lean analy-
sis, led by rs12000707 on chromosome 9, is located 
in DENND1A, which has robust evidence for genetic 
involvement in PCOS [4]. This gene encodes the protein 
DENN/MADD domain containing 1A, which plays a role 
in endocytosis and receptor turnover and has been iden-
tified as associated with PCOS in a number of previous 
GWAS involving women of European and Han Chinese 
ancestry [3, 4]. Replication studies have further supported 
these findings, with certain SNPs identified as associ-
ated with increased PCOS risk, highlighting it as one of 
the most well recognised genes implicated in PCOS [3, 
4, 20]. Variants within DENND1A have also been associ-
ated with hyperandrogenism and ovulatory dysfunction 
[4, 21]. Functional studies have shown the involvement 
of DENND1A in the pathophysiology of PCOS pheno-
types, with laboratory studies demonstrating that ovar-
ian thecal cells in PCOS affected women secrete higher 
androgen amounts than those from non-affected women, 
potentially related to upregulation of enzymatic activity 
in steroid pathways [22]. A DENND1A isoform, termed 
DENND1A.V2, has been implicated in the increased 
expression of genes CYP17A1 and CYP11A1, which both 
play a role in the formation of key enzymes involved in 
androgen steroidogenesis [23]. This is thought to play a 
role in PCOS thecal cell androgen production, a feature 
of PCOS [23]. Furthermore, forced expression of this 
DENND1A.V2 isoform in normal human theca cells 
has been shown to increase androgen and progesterone 
production, thus converting the normal theca cell into a 
PCOS phenotype [23]. Conversely, a knockdown model 
whereby DENND1A.V2 expression was silenced in PCOS 
theca cells demonstrated a reduction in steroidogenesis 
[23]. A model creating transgenic hDENND1A.V2 mice 

lines has further demonstrated these concepts; elevation 
of both ovarian and adrenal Cyp17a1 mRNA levels as 
well as transgenic ovarian thecal cell steroid production 
was observed in those mice expressing hDENND1A.V2 
transcripts demonstrating impacts on both ovarian and 
adrenal steroidogenesis [24].

Rare variants within DENND1A, identified through 
whole genome sequencing techniques, have also been 
found to be associated with certain quantitative traits 
within PCOS-affected women, specifically higher lutein-
ising hormone (LH): follicle stimulating hormone (FSH) 
ratios [25]. Clustering analysis, demonstrating ‘reproduc-
tive’ and ‘metabolic’ PCOS subgroups, has demonstrated 
carriers of rare variants in DENND1A were more likely to 
have a reproductive subtype, characterised by lower BMI 
and insulin levels and higher LH and sex hormone bind-
ing globulin levels [26]. The finding of a strong associa-
tion and large effect size for rs12000707 in the lean PCOS 
strata with DENND1A warrants further investigation. 
This builds on recent findings of specific DENND1A vari-
ants being more prevalent within a reproductive PCOS 
phenotype, with lower BMI [26]. Further studies are nec-
essary to replicate these signals and explore the biology 
of this gene in PCOS subtypes.

The other genome-wide significant signal in the lean 
study, led by rs2228260, was located on chromosome 22, 
within XBP1. This signal is composed of a large block of 
genetic variants in strong LD spanning multiple genes, 
any one of which could be the effector gene. The SNP 
identified at this locus is a synonymous coding vari-
ant i.e., a codon change that does not alter the encoded 
amino acid [27]. Synonymous coding variants are not 
generally regarded as the most likely effectors for tran-
scriptional regulation or altered protein function, but 
nevertheless, can have effects on protein expression and 
function. Previously considered ‘silent’ variants, it is now 
appreciated that these variants can affect mRNA stability 
and structure, protein folding, conformation and func-
tion [28, 29]. Alternatively, this variant may simply be 
tagging a functional variant that is yet to be identified.

The product of the X-box binding protein 1 (XBP1) 
gene is a transcription factor involved in the ‘Unfolded 
Protein Response’ (UPR), a series of finely tuned 
homoeostatic mechanisms triggered by stress within 
the endoplasmic reticulum (ER) [30]. Dysfunctional ER 
response has been highlighted as a contributor to the 
pathogenesis of metabolic disease such as type 2 dia-
betes, obesity and atherosclerotic cardiovascular dis-
ease [30]. Components of the UPR are also known to 
be involved in the upregulation of metabolic processes, 
including gluconeogenesis and lipid synthesis, which 
can be perturbed in PCOS [30]. The protein product of 
XBP1 may alter adipocyte, hepatocyte and pancreatic 
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cell signalling pathways to regulate glucose homeosta-
sis and improve insulin sensitivity [30–32]. Deficiency 
of XBP1 in pancreatic alpha and beta cells has been 
implicated in impaired insulin secretion and signalling 
[32]. Increased UPR gene expression has also been seen 
in granulosa cells in PCOS-affected women and these 
processes, involving ER stress and associated adapta-
tional mechanisms, have been highlighted as regulators 
of ovarian physiological and pathophysiological out-
comes [33].

XBP1 levels have been reported as higher in women 
with PCOS [34]. A recent study examining XBP1 levels in 
three study groups of women: obese PCOS patients, non-
obese PCOS patients and normal weight controls, found 
significantly higher levels in PCOS patients. Comparison 
between obese and non-obese PCOS affected women 
found higher levels in the former group and a significant 
positive correlation was seen between XBP1 levels and 
BMI, waist circumference, fasting plasma glucose and 
triglyceride levels [34]. In this context, links with obese 
PCOS and metabolic characteristics mean that the bio-
logical effects of XBP1 in the lean phenotype are not 
immediately obvious and merit further research. Overall, 
XBP1 appears to be involved in several processes that are 
perturbed in PCOS patients including oocyte maturation 
and aberrant glucose and lipid metabolism. Involvement 
in the lean phenotype appears to be a novel observation 
based on the literature to date and warrants further study.

Whilst our top lean PCOS SNP on chromosome 22, 
rs2228260, is located within XBP1, other genes in the 
region may also be of relevance to this association sig-
nal. CHEK2, or Checkpoint Kinase 2, is one of 7 other 
genes at this locus harbouring variants in strong LD with 
rs2228260, and has been associated with PCOS in Finn-
ish and Estonian cohorts [15]. Indeed, rs2228260 has 
been reported as an eQTL for CHEK2 in adrenal gland 
tissue [13]. Furthermore, existing research reporting 
an association between this gene and PCOS found that 
it remained significant in the Finnish population after 
including BMI as a covariate [15]. Given the notable pro-
portion of subjects from these cohorts included in this 
meta-analysis, it is perhaps unsurprising that this signal 
is present. It should be noted however that the lead SNP 
identified in this study differs from that reported in the 
previous Finnish/Estonian research (rs182075939), the 
SNPs are not in particularly strong LD  (r2 < 0.2) [16] and 
conditioning on rs182075939 did not completely remove 
the association for the lead SNP identified in this study 
(although it was no longer genome-wide significant). A 
recent GWAS found several variants within CHEK2 to 
be associated with age at natural menopause (ANM) [35]. 
There is some evidence of LD between rs5762852 found 
in that study and our lead PCOS SNP rs2228260  (r2 < 0.2, 

D’ = 1), potentially suggesting shared biology between 
PCOS and ANM. CHEK2 is involved in a number of 
reproductive physiological processes concerning oocyte 
numbers, follicle atresia, later age at menopause and anti-
mullerian hormone (AMH) levels, providing plausible 
biological links to PCOS [35, 36]. It is possible that there 
is more than one gene in this chromosomal region driv-
ing the associations seen in this and previous studies.

Among the genome-wide suggestive lean PCOS loci, 
YAP1, KRR1, IRF1 and BLK are of particular interest. The 
identification of variants meeting criteria for genome-
wide suggestive association with lean PCOS within genes 
that have previous links to PCOS is encouraging and sup-
ports the validity of results. These signals have associa-
tion with PCOS itself as well as traits involved including 
ovulatory dysfunction and insulin signalling [4, 37]. Poly-
cystic ovary morphology is also associated with some of 
these signals, specifically with YAP1 [4]. Interestingly, the 
two variants in YAP1 previously identified as associated 
with PCOS, rs1894116 and rs11225154 [4, 7] both dem-
onstrated genome-wide suggestive associations in the 
lean PCOS group but did not reach even nominal signifi-
cance in the overweight or obese groups. This could sug-
gest that the associations previously reported between 
this locus and PCOS may be driven primarily by lean 
PCOS patients. YAP1 (Yes-associated protein 1) has been 
linked to PCOS pathogenesis through its role in main-
taining normal ovarian function, response to gonadotro-
phins and susceptibility to the effects of androgens [38]. 
It is involved in a signalling cascade necessary for ovarian 
function and ovulation, and previous research has sup-
ported a YAP1 mediated mechanism for cell survival and 
differentiation of granulosa cells during ovulation [39]. 
This may suggest that this gene contributes to oligoamen-
orrhoea, and resultant infertility seen in PCOS.

There were 18 SNPs meeting genome wide suggestive 
association with the combined overweight and obese 
PCOS strata. Among these, the TEX41 (testis expressed 
41) gene is a non-coding RNA gene, and has been iden-
tified as a locus associated with circulating AMH levels 
in women [40]. The SNP found to be associated with 
AMH levels, rs13009019, is in strong LD in Europeans 
 (r2 = 0.81) with the SNP identified in this study, rs813684 
[16], and is thus likely representative of the same signal. 
On chromosome 22, rs9613552 is found within the gene 
TTC28-AS1 (TTC28-Antisense RNA 1). This long non-
coding RNA gene has been shown to be downregulated 
in type 2 diabetes and decreased expression is potentially 
related to higher risk of developing type 2 diabetes [41]. 
CDH18 (cadherin 18 type 2) is one of the closest genes 
to rs77388455 on chromosome 5. This gene has been 
reported as associated with phenotypic characteristics 
common to metabolic syndrome and therefore PCOS, 
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including insulin resistance, glucose intolerance, type 2 
diabetes mellitus (T2DM) and obesity [42]. The top SNP 
for this gene had a much lower P-value and greater effect 
size in the non-lean cohort relative to the lean group 
(P = 9.01 ×  10–7 vs. P = 0.64, and beta 0.39 vs 0.03, respec-
tively). Given the increased propensity for PCOS affected 
women to develop T2DM, and the associated metabolic 
syndrome type clinical features, it is possible that CDH18 
has some link to PCOS, particularly overweight/obese 
PCOS. Although signals meeting GW significance were 
also identified in the overweight/obese groups combined, 
including DENND1A, the strength of association was 
lower than that seen in the lean cohort. This may imply 
that PCOS in overweight/obese women is influenced 
by environment as well as by genetics. Weight gain and 
high BMI are associated with PCOS-like features such 
as insulin resistance and oligoamenorrhoea [43, 44]. It is 
possible that in a proportion of overweight/obese women 
the strength of the association with genetics is diluted by 
environmental factors. The relationship between obesity 
and genetics also needs to be considered, whereby obe-
sity may be regarded as an environmental modifier of 
PCOS, affecting the emergence of an underlying genetic 
predisposition as body weight increases.

The gene-based analysis in this study found LINC02905 
to be significantly associated with lean PCOS, in addi-
tion to DENND1A. LINC02905 is a small uncharacter-
ised gene located in between GATA4 and NEIL2 in a 
well-established PCOS susceptibility locus. LINC02905 
is also known as GATA4 downstream membrane gene 
(G4DM) and is considered to be one of the target genes 
of GATA4 [45]. GATA4 (Gata Binding Protein 4) encodes 
a member of the GATA family of zinc-finger transcrip-
tion factors, which is thought to play a role in embryo-
genesis, myocardial differentiation and function and 
normal testicular development [46]. Alterations in the 
expression of GATA4 have been associated with different 
types of cancer, including ovarian cancer [45, 46]. Inter-
estingly, this locus has shown heterogeneity of effect in 
previous research when analyses were compared accord-
ing to PCOS subtypes, based on different diagnostic cri-
teria. This signal showed stronger association with PCOS 
defined by NIH criteria (i.e., hyperandrogenism and oli-
goamenorrhoea) [4].

The other gene highlighted in gene-based analyses was 
ERBB4 (v-erb-a erythroblastic leukemia viral oncogene), 
which was found to be associated with PCOS in the com-
bined overweight/obese group. This gene has previously 
been associated with PCOS in both women of European 
ancestry and Han Chinese women [4, 20]. ERBB4 is a 
member of the tyrosine protein kinase family and epider-
mal growth factor receptor subfamily. This gene has been 
associated with both ovulatory dysfunction and polycystic 

ovarian morphology, and is hypothesised to be involved 
in oligoamenorrhoea and infertility aspects of this con-
dition [4, 20]. Furthermore, a murine model, involving 
Erbb4 deletion has demonstrated the emergence of vari-
ous characteristics seen in PCOS patients, specifically 
disrupted ovulatory cycles with oligomenorrhoea, obesity 
and impaired oocyte development. In addition, hormonal 
disturbances included increases in LH and AMH levels, 
as well as hyperandrogenism [47]. These findings suggest 
that ERBB4 may play a key role in PCOS pathophysiology 
and this is supported by a demonstrated functional role 
for this gene in ovarian homeostasis and folliculogenesis 
[47]. The association of this locus specifically with over-
weight/obese PCOS subjects is a novel finding.

All SNPs previously associated with PCOS were found 
to be nominally associated with PCOS in at least one of 
the three BMI stratifications included in this study. A 
higher proportion of SNPs met criteria for replication 
in the lean group compared to the individual or com-
bined overweight and obese strata. This is unlikely to 
be purely due to sample size as the lean and non-lean 
(combined overweight/obese) groups contained compa-
rable numbers. Some of the SNPs replicated within the 
lean group have been associated with ovulatory dysfunc-
tion and hyperandrogenism, supporting the concept that 
the lean phenotype is typified by hormonal disturbance 
and ovarian abnormality, as opposed to the overweight/
obese phenotype, which may display a predominance 
of metabolic disturbance, such as insulin resistance. For 
example, rs2349415 within FSHR has been reported as 
associated with higher FSH levels as well as ovulatory 
dysfunction [7, 48]. This SNP demonstrated strongest 
association with PCOS in the lean group, followed by the 
overweight group and no association in the obese cohort 
(P = 3.99 ×  10–3, 0.02 and 0.96, respectively). Similarly, 
SNPs within YAP1, TOX3 and IRF1/RAD50  were only 
significant in the lean group, and have previous associa-
tion with ovulatory dysfunction, hyperandrogenism and 
increased testosterone levels respectively [4, 7].

The population used for this study comprised a higher 
proportion of lean women than is described epidemio-
logically. PCOS-affected women are mostly overweight 
or obese, with 16–30% falling into a normal or lean BMI 
category, though around half of cases in this study were 
BMI < 25  kg/m2. Examination of the different cohorts 
included in the meta-analysis demonstrated varying 
proportions of women in the BMI strata. The Western 
Australian PCOS research group aimed to recruit lean 
women to the study wherever possible to maximise sam-
ple size for this group in genetic research, though the 
proportion of lean/normal BMI women included was 
just under one third of the WA cohort. The Estonian and 
Rotterdam cohorts comprised higher proportions of lean 
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women, with 64% and 55% lean cases included respec-
tively. It is noted that these proportions are different to 
epidemiological reports, though may, in part, be reflec-
tive of obesity epidemiology differences between the 
various cohorts included. Estonia and The Netherlands 
are known to have lower rates of obesity than Australia 
and the United States, with data from the US indicating 
over one third of women in general are obese, compared 
to 20% in the Netherlands [49]. Overall, a higher number 
of lean women included in the study improves power for 
analysis. The previous GWAS available in the literature 
were conducted in women with BMI within the over-
weight to obese range, based on WHO definitions, hence 
this study is different to those previously reported and 
needs to be considered when drawing comparison. The 
two large studies in Han Chinese women reported mean 
BMI within the overweight range for Asian populations, 
ranging 23.28–24.76 between the two studies and discov-
ery and replication cohorts [3, 7]. The studies conducted 
in women of European/Caucasian ethnicity included 
women classified as overweight or obese, with all cases 
reported to be BMI > 25 [4–6].

Conclusion
The results from this study provide further evidence to 
support the theory of genetic differences between lean 
and overweight/obese PCOS-affected women. Whilst the 
exact mechanisms by which these signals are contribut-
ing to the pathophysiology of this condition are yet to 
be elucidated, the locations and proximity to a number 
of genes previously linked with features of PCOS, includ-
ing ovulatory dysfunction and aberrant metabolism, inti-
mates their potential involvement. Many of the variants 
identified in this study were intronic, suggesting that they 
are exerting an effect through modification or enhance-
ment of transcriptional regulation of genes in close prox-
imity (i.e., most often within 200  kb or less) [50], thus 
influencing the differences in expression of phenotype 
in these subjects. The findings reported in this study are 
unique and add to the growing body of evidence support-
ing both a genetic basis for PCOS as well as differences in 
genetic patterns based on PCOS phenotype.

Methods
In this study, a meta-analysis of case–control GWAS data 
stratified according to BMI was performed. Study sub-
jects were allocated into three groups according to BMI, 
based on WHO definitions. Lean PCOS was defined 
by BMI ≤ 25  kg/m2, overweight PCOS was defined by 
BMI > 25—< 30  kg/m2 and obese PCOS was defined by 
BMI ≥ 30 kg/m2; control subjects were similarly stratified.

The study subjects used for this analysis were sourced 
from six separate international cohorts, from the United 

States of America, Australia, Estonia, Finland and the 
Netherlands. Each centre recruited PCOS affected 
women and control subjects of European ancestry or 
identified them from an existing biobank. For the pur-
poses of study inclusion, PCOS cases were defined 
according to NIH or Rotterdam criteria, or based on 
ICD codes and questionnaires (“PCOS coded/self-
reported”) depending on the criteria stipulated by each 
individual centre. Controls were defined as women who 
did not have a PCOS diagnosis, recruited from popu-
lation-based samples. Research contributions from the 
United States of America included the Cedars Sinai 
(n = 359 cases and n = 276 controls) [51] and BioVU 
(n = 365 cases and n = 6535 controls) [20] cohorts. The 
Australian cohort was from WA-PCOS (n = 271 cases 
and n = 2492 controls) [18, 52]. The contribution from 
Estonia was from Estonian Biobank (n = 3665 cases 
and n = 113,878 controls) [15]. The cohort from Fin-
land was FinnGen (n = 643 cases and n = 117,794 con-
trols) [15] and from the Netherlands was the Rotterdam 
PCOS Cohort, with PCOS cases diagnosed in Erasmus 
Medical Centre, Rotterdam by thorough standardized 
screening [4] and controls provided by the Lifelines 
Cohort Study (n = 634 cases and n = 7685 controls) [53] 
All these participating cohorts have been described in 
detail previously.

Genotyping, quality control and imputation
Cohort-specific information is summarised in Sup-
plementary Table  5. Only individuals from European 
ancestry were included in the meta-analysis, with each 
cohort performing adjustment for principal components 
to correct for any population stratification. GWAS was 
performed for each cohort using either the SAIGE [54] 
or SNPTEST [55] software packages. SAIGE software 
accounts for imbalance in case control ratios, and uses 
a random effect model. Summary results were supplied 
from each cohort for meta-analysis, with quality control 
of the supplied results files performed using EasyQC [56].

Meta‑analysis
Meta-analysis was performed using the METAL software 
[57]. METAL effectively handles analyses where studies 
contain disproportionate numbers of cases and controls, 
thus allowing flexibility, and performs tests for heteroge-
neity to ensure participating studies demonstrate consist-
ent effects [57]. Meta-analysis was performed using the 
METAL software using a fixed effects model weighted by 
standard error [57]. METAL effectively handles analyses 
where studies contain disproportionate numbers of cases 
and controls, thus allowing flexibility, and performs tests 
for heterogeneity to ensure participating studies demon-
strate consistent effects [57].
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Annotation and bioinformatics analysis of meta‑analysis 
results
Meta-analysis results were annotated using FUMA soft-
ware [14]. This platform performs functional mapping 
and annotation of GWAS results to facilitate interpreta-
tion and provide biological context, thus helping to iden-
tify causal variants. Both single-variant based annotation 
and gene-based testing approaches were employed. The 
FUMA module, SNP2GENE approach, uses submit-
ted GWAS summary statistics to identify lead SNPs and 
perform functional annotation of all variants in the sur-
rounding genomic regions. Three mapping processes, spe-
cifically positional, eQTL and chromatin mapping, work 
in concert to create a mapped genes table, which in turn 
is used for the next major function of the FUMA software 
suite, GENE2FUNC. This process annotates the biologi-
cal context of these genes thus providing insight into the 
potential mechanisms of the involved loci [14]. Condi-
tional analysis of the lean PCOS meta-analysis results 
was performed using the COJO function of the GCTA 
package [17], which uses GWAS summary statistics and 
estimated LD from a sample population to identify inde-
pendent association signals within a genetic locus [58]. 
The sample genotypes used for LD estimation in the con-
ditional analysis were from the Western Australia cohort. 
Replication analysis of previously identified PCOS loci 
was performed for each BMI stratum, with P < 0.05 con-
sidered nominally significant evidence of replication. Beta 
values/odds ratios were then examined to confirm a con-
sistent allelic effect to that previously reported. Analysis of 
the linkage disequilibrium (LD) in regions of interest was 
performed using LDlink (1000 Genomes Project Phase 3 
EUR population) [16]. Expression quantitative trait locus 
(eQTL) associations were assessed using the GTEx data-
set [13]. Co-localisation analysis of GWAS results was 
performed using the coloc package in R [12], which uses 
a Bayesian framework to calculate posterior probabilities 
for 5 different scenarios regarding the presence and co-
localisation of association signals in two datasets.
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