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Introduction
The corpora allata (CA) is the site of synthesis of juve-
nile hormone (JH), an essential sesquiterpenoid that con-
trols development and reproduction in insects [1]; while 
the corpora cardiaca (CC) is a neurohemal/endocrine 
gland that synthesizes neuropeptides such as adipoki-
netic hormones (AKHs) that regulate metabolism [2]. In 
Aedes aegypti mosquitoes, a deficiency of JH in the adult 
stage results in ovarian follicular resorption and reduced 
fecundity [3]. In mosquitoes, the last two steps of JH 
III biosynthesis involve metabolism of two precursors: 
farnesoic acid (FA) and methyl farnesoate (MF). Two 
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Abstract
The corpora allata-corpora cardiaca (CA-CC) is an endocrine gland complex that regulates mosquito development 
and reproduction through the synthesis of juvenile hormone (JH). Epoxidase (Epox) is a key enzyme in the 
production of JH. We recently utilized CRISPR/Cas9 to establish an epoxidase-deficient (epox−/−) Aedes aegypti line. 
The CA from epox−/− mutants do not synthesize epoxidated JH III but methyl farneosate (MF), a weak agonist of the 
JH receptor, and therefore have reduced JH signalling. Illumina sequencing was used to examine the differences 
in gene expression between the CA-CC from wild type (WT) and epox−/− adult female mosquitoes. From 18,034 
identified genes, 317 were significantly differentially expressed. These genes are involved in many biological 
processes, including the regulation of cell proliferation and apoptosis, energy metabolism, and nutritional uptake. 
In addition, the same CA-CC samples were also used to examine the microRNA (miRNA) profiles of epox−/− and WT 
mosquitoes. A total of 197 miRNAs were detected, 24 of which were differentially regulated in epox−/− mutants. 
miRNA binding sites for these particular miRNAs were identified using an in silico approach; they target a total 
of 101 differentially expressed genes. Our results suggest that a lack of epoxidase, besides affecting JH synthesis, 
results in the diminishing of JH signalling that have significant effects on Ae. aegypti CA-CC transcriptome profiles, 
as well as its miRNA repertoire.
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enzymes are involved in these two steps. JH methyltrans-
ferase (JHAMT) synthesizes MF from FA, and methyl 
farnesoate epoxidase (Epox) further oxidizes MF to JH III 
[1].

CRISPR/Cas9 was employed to generate an epoxidase-
deficient (epox−/−) Ae. aegypti line [4]. The CA from 
epox−/− mutants do not synthesize epoxidated JH III but 
MF, a weak agonist of the JH receptor, and therefore these 
mutants have reduced JH signalling [4]. The mutant mos-
quitoes complete their life cycle, but while epox−/− adults 
were fertile, the reproductive performance of both sexes 
was dramatically reduced [4].

MicroRNAs (miRNAs) are a class of ~ 22 nt small 
RNAs that regulate gene expression at both the transla-
tional and transcriptional levels. They guide the RNA-
induced silencing complex (RISC) to their mRNA targets, 
modulating gene expression at the post-transcriptional 
level [5]. Further, miRNAs can potentially regulate het-
erochromatin formation and trigger knock down of gene 
expression at longer timescales [6]. In addition, miRNAs 
may up-regulate target gene translation through different 
pathways, such as inhibiting the binding of RNA-degrad-
ing protein, assisting poly-A tail loop formation, and 
recruiting activation factors [7–9].

Specific miRNAs in the CA-CC might contribute to 
the modulation of JH synthesis. Our previous analysis of 
CA-CC miRNA profiles in Ae. aegypti showed that many 
miRNAs were differentially expressed among diverse 
developmental stages of the mosquito, with different 
levels of JH biosynthesis [10]. To address the question of 
how a reduction of JH signalling might influence signal-
ling to, from and within the CA-CC complex, we gener-
ated transcriptome libraries for both WT and epox−/−Ae. 
aegypti CA-CC, and investigated the differential expres-
sion of genes and miRNAs. These results might help to 
identify CA-CC gene networks that might participate in 
regulating development and reproductive processes.

Materials and methods
Insect collection and RNA extraction
Aedes aegypti mosquitoes (Orlando) were raised at 28 °C, 
80% relative humidity, and 16 h light/8 hours dark pho-
toperiod. Larvae were provided Tetramin tropical fish 
food (cat #16,152, Tetra). Adult mosquitoes were offered 
10% sugar water ad libitum. Four-to-five-day old female 
mosquitoes were artificially fed pig blood equilibrated to 
37  °C. ATP was added to the blood meal to a final con-
centration of 1 mM immediately before use.

An epox−/− mutant line generated previously by 
CRISPR/Cas9 via embryonic microinjection [4] was used 
in this study. Corpora allata were dissected from epox−/− 
and WT 3-4-day-old sugar-fed adult female mosquitoes 
in three replicates. Each replicate comprised of 50 CA-
CCs. Total RNA was extracted and DNase-treated using 

a Norgen Biotek’s total RNA purification kit. Total RNA 
was treated with DNase I according to Norgen Biotek’s 
instructions. RNA samples were sequenced by LC Sci-
ences (Texas, USA).

RNA-Seq data analysis
The CLC Genomic Workbench v20.0.2 (QIAGEN) was 
used for removing adapter sequences/low-quality reads 
and processing the sequencing data. Transcriptome and 
small RNA data were generated from Illumina sequenc-
ing. Small RNA data were trimmed using the following 
adapters: Illumina Truseq Small RNA 3’ Adapter (RA3) 
( T G G A A T T C T C G G G T G C C A A G G), and mRNA data 
were trimmed using the Automatic read-through adap-
tor trimming function in CLC Genomics workbench. 
Low quality reads were discarded. Trimmed miRNA 
reads were mapped to the latest Ae. aegypti reference 
genome downloaded from NCBI Reference Sequence 
Database (GCF_002204525.1). For miRNA sequenc-
ing data, we applied a minimum length fraction = 0.5, 
similarity fraction = 0.8, match score = 1, and mismatch 
cost = 2 as matching criteria. miRNAs were identified 
using resources from miRBase (www.miRBase.org) and 
our previously generated extended Ae. aegypti miRNA 
profile [10]. Trimmed transcriptome reads were also 
mapped and assembled using the Ae. aegypti reference 
genome downloaded from the NCBI Reference Sequence 
Database (GCF_002204525.1). For mRNA RNA-Seq 
analysis, we applied a mismatch cost = 2, insertion and 
deletion costs = 3, length and similarity fractions = 0.8, 
maximum number of hits for a read = 10, strand set-
ting = Both, library type setting = Bulk, and minimum 
read count fusion gene table = 5. Low quality reads (qual-
ity score < 0.05) and reads with more than two ambiguous 
nucleotides were discarded.

Gene Ontology (GO) analysis was performed by 
uploading all the differentially expressed genes to the 
Blast2GO bioinformatics platform for functional annota-
tion analysis [11]. We utilised BLAST, InterProScan [12], 
enzyme classification codes (EC), and EggNOG [13] to 
determine the GO terms associated with the differen-
tially expressed sequences. More abundant terms were 
computed for each category of molecular function, bio-
logical process, and cellular components.

An enrichment analysis using Fisher’s Exact Test was 
conducted, using all AaegL5.0 annotated genes as the 
reference dataset. This analysis was performed with the 
FatiGO package, which is integrated into Blast2GO. 
Overrepresented and underrepresented terms were 
identified if their adjusted p value was less than 0.05. A 
dot plot chart was generated to visualise the 30 most 
enriched GO terms of both upregulated and downregu-
lated genes. These 3-dimensional charts represent the 
GO annotation term on the Y-axis, the gene ratio (Nr 
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Test / [Nr Test + Not Annot Test]) on the X-axis, and 
the number of test sequences in the set as the dot size. 
Adjusted p values are indicated using a colour scheme.

To identify potential miRNA binding sites within all 
differentially expressed Ae. aegypti genes, we employed 
three distinct algorithms: RNA22 [14], miRanda [15], and 
RNAhybrid [16]. RNAhybrid is a tool utilised for deter-
mining the normalized minimum free energy (MFE) of 
hybridization between miRNA and their mRNA tar-
get genes. The small RNA sequence is paired with the 
most compatible section of the mRNA. Within the seed 
region (nucleotides 2–8), we excluded G:U pairings, and 
enforced the presence of a helix in the miRNA-target 
duplexes. An allowance of up to five unpaired nucleotides 
on either side of an internal loop was permitted. While 
miRanda considers matching throughout the entire 
miRNA sequence, we ran the program in strict mode, 
prioritizing strict 5’ seed pairing. The seed region was 
assigned additional significance by assigning higher value 
to matches in this region. RNA22 v.2, on the other hand, 
is a target prediction program that relies on patterns. 
Initially, it searches for reverse complement sites within 
a given mRNA sequence and identifies hot spots. Sub-
sequently, the algorithm searches for miRNAs that are 
likely to bind to these sites. In our analysis, we allowed 
a maximum of one mismatch in the seed region and a 
minimum of 12 nucleotide matches in the entire binding 
site. We set the thresholds for sensitivity and specificity 
at 63% and 61%, respectively. Two-model analysis based 
on minimum free energy (MFE), and number of bind-
ing sites were used to identify potential targets [17]. To 
increase the level of confidence, we selected those bind-
ing sites that were predicted at least by two out of three 
of the algorithms.

Results and discussion
Earlier studies described that miRNAs are involved in the 
regulation of metamorphosis and related hormone sig-
nalling [18]. Previous research on CA-CC transcriptome 
biology emphasized the relation between CA-CC miR-
NAs and JH biosynthetic activity; as well as the impor-
tance of establishing CA-CC transcriptome libraries [10, 
19, 20]. The role of JH in controlling reproductive trade-
offs has been extensively studied in female mosquitoes. 
Depending on nutritional and hormonal homeostasis, 
the final number of eggs that develop can be adjusted at 
different times during oogenesis. The JH titre (and there-
fore JH signalling) is fine-tuned to match oogenesis to the 
nutritional status [3, 21]. The epox−/− mutant line is an 
excellent model for the study of CA-CC gene expression 
in mosquitoes; the CA of epoxidase mutants synthesize 
and release MF instead of JH III. These mutant females, 
with low JH signalling, produce fewer eggs. Comparing 
miRNA expression profiles between the two lines enabled 

us to screen for JH-responsive miRNAs and genes in the 
mosquito CA-CC that are differentially expressed in the 
epoxidase mutants allowing to further understand how 
insects might compensate for low JH titre and signalling.

miRNA profiling of CA-CC of epox-/- mutant and WT 
mosquitoes
Illumina small RNA deep sequencing platform was used 
to produce three biological replicates of small RNA pro-
files of CA-CC epox−/− mutant and WT mosquitoes. We 
acquired a total of 34,370,595 small RNA raw reads for 
epox−/− mutant libraries and 39,751,144 for WT mosqui-
toes (Table S1). Less than 0.05% of reads were discarded 
in the different libraries due to their low-quality score 
or lack of adapter sequence, stressing the high quality of 
the sequencing samples. We detected 197 annotated Ae. 
aegypti miRNAs present on miRBase and our previously 
annotated Ae. aegypti miRNAs [10].

We observed a significant spike in total read numbers 
at 21–23 nucleotides, which corresponds to the typical 
length of miRNAs and siRNAs (Fig. 1A and B). Addition-
ally, a smaller peak was observed at 27–29, likely corre-
sponding to PIWI-interacting RNAs (piRNAs), which 
are commonly present in small RNA libraries of insects 
(reviewed in [5]).

Differential expression of miRNAs between CA-CC of epox-/- 
mutant and WT mosquitoes
Our previous research showed that miRNA reper-
toires were different when JH biosynthesis varies [10]. 
Given the JH biosynthetic differences between the WT 
and epox−/− mosquitoes, we expected differences in the 
expression of miRNAs in the CA-CC of both lines. To 
test this hypothesis, we conducted a comparative study of 
the differentially abundant miRNAs of CA-CC between 
WT and epox−/− mutant. Principal Component Analy-
sis (PCA) was conducted on miRNA libraries from WT 
and epox−/−Ae. aegypti. All three WT samples had similar 
profiles and are in one cluster. Two epox−/− mutants are 
in one cluster, while one epox−/− mutant sample (EPOX-
mut_2) is located outside the cluster due to its different 
miRNA profile (Fig. 1C).

Our analysis identified 24 differentially abundant miR-
NAs (Fig.  2). Among these miRNAs, aae-miR-N013-5p, 
aae-miR-1-5p, and aae-miR-981-5p were the most up-
regulated miRNAs in the epox−/− mosquitoes; with 
fold changes (FCs) of 169, 116, and 67, respectively. In 
contrast, the most downregulated miRNAs were miR-
307-5p, miR-2942-3p, and miR-1890-5p, with FCs of -94, 
-48 and − 41, respectively. Data analysis revealed that the 
knockout of epox led to statistically significant changes 
in the abundance of certain miRNAs, as evidenced by a 
normalized fold change above 1.5 and p < 0.05 (Fig.  3). 
The most significantly downregulated miRNA was 
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miR-263a-5p (Fig. 3B), and the most significantly up-reg-
ulated miRNAs were miR-8-5p and miR-N013-3p, with 
p < 0.00005 (Fig. 3A and C). miRNA profiles were gener-
ated for all small RNA libraries, with a minimum thresh-
old of five reads for each miRNA. The count of identified 
mature miRNA varied between 0 and 143,307 counts per 
million (CPM) in each sample. Among the significantly 
differentially expressed miRNAs, the top three with the 
highest max group means include miR-1-3p, miR-14-3p, 
and miR-275-3p, with max group means of 284,424, 
218,293, 109,722, and p value of 1.3E-03, 1.4E-04, 3.7E-
02, respectively.

In our previous study [10], 72 differentially expressed 
miRNAs were found between Ae. aegypti pupa (CA inac-
tive, CA-pup) and sugar-fed adult (CA active, CA + sug) 
while 23 miRNAs were found differentially expressed 
between blood-fed (CA inactive, CA-bf) and CA + sug. 
Similar to epox−/−, JH synthesis is very low in CA-pup 
and CA-bf. A comparative analysis between the dif-
ferentially expressed miRNAs between CA-pup, CA-bf, 
CA + sug, epox−/− and WT was conducted (Fig. S1). 
CA-pup, CA-bf and epox−/− have low JH biosynthesis, 
while CA + sug and WT are actively synthesizing JH. Three 
up-regulated miRNAs (aae-miR-1-3p, aae-miR-2940-3p, 
aae-miR-34-3p) and one down-regulated miRNA in 

Fig. 1 Read distributions and Principal Component Analysis of RNA-Seq data. Distribution of trimmed reads of WT (A) and epox−/− samples (B). (C) Princi-
pal Component Analysis of WT and epox−/− mosquitoes based on small RNA library reads. The plot projects samples onto two-dimensional space with X 
and Y axes being first and second principal components. The samples are clustered by the similarity of the abundancy of their miRNA
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epox−/− (aae-miR-263a-5p) showed similar trend in 
CA-pup. On the other hand, one up-regulated (aae-miR-
10-5p) and one down-regulated (aae-miR-276-2-5p) 
miRNA were found to show similar trend in CA-bf and 
epox−/−Ae. aegypti (Tables S2, S3).

Interestingly, miR-N013-5p, miR-1-5p, and miR-981-5p 
were only detected in epox−/− samples, whereas miR-
307-5p and miR-2942-3p were exclusively detected in 
WT samples (Table S3). Knowledge about the functions 
of these miRNAs in mosquitoes is limited. It has been 
reported that miR-1 maintains muscle fibre integrity dur-
ing rapid growth, and its depletion can cause lethality in 
Drosophila melanogaster [22]. Previous studies suggested 
that miR-1 achieves this by repressing the function of the 
vacuolar adenosine triphosphatase (V-ATPase) complex 
[23].

Depletion of miR-307-5p may contribute to a small 
body size observed in epox−/−Ae. aegypti [4]; as previous 
research has demonstrated that the expression level of 
miR-307 varies across insect developmental stages, sug-
gesting a potential regulatory effect of JH on this miRNA. 

Target genes of miR-307 include genes such as sr, fkh, 
Stat92E, CG32467, Or42a, and kkv, which are involved 
in insect cell growth, neuronal and reproductive organ 
development, and chitin-based cuticle synthesis [24]. 
Heat shock protein 70 (Hsp70) is a stress-responsive gene 
that is up-regulated under different stress conditions [25, 
26]; previous research suggested that Hsp70 may contain 
binding sites for miR-307-5p [26], however, a direct rela-
tionship between miR-307 and CA activity has not been 
previously reported.

miR-2942-3p, which is absent in epox−/− mutants, 
is highly expressed in mosquito larvae, and gradually 
decreases in pupae and adults. miR-2942-3p abundance 
is positively correlated to Aedes albopictus eclosion suc-
cess [27]. It has been reported that miR-2942-3p facili-
tates Ae. albopictus hatching and pupation, and it is 
downregulated in diapausing larvae [27, 28]. Although 
diapause has not been described in Ae. aegypti, low JH 
expression is one of the inductive factors of adult insect 
reproductive diapause [29, 30] and embryonic diapause 
in Ae. albopictus [31].

Fig. 2 Differentially expressed miRNAs between WT and epox−/− mutant
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Several miRNAs that are differentially expressed in 
epox−/− CA-CC have been suggested to play a role in 
regulating the ecdysone pathway. For instance, miR-14 
represses the expression of the ecdysone receptor gene 
(EcR) [32]. Its overexpression in epox−/− suggests that JH 
may be involved in regulating ecdysone signalling in the 
CA-CC. Let-7-5p is up-regulated in epox−/− but is not 
statistically significant (not included in Table S3). This 
well-studied miRNA is also suppressed by JH. Let-7, in 
turn, suppresses Kr-h1, a transcription factor central in 
JH signalling [33].

Our data showed miR-87-3p is among the modulated 
miRNAs (Table S3). It was significantly up-regulated 
in epox−/− CA-CC by 1.8-fold. This miRNA targets the 
Tramtrack69 gene that suppresses D. melanogaster pro-
genitor cell differentiation [34]. Our studies also showed 
that miR-11-3p is significantly overexpressed in epox−/− 
mosquitoes by 1.65-fold, with p < 0.0016 (Table S3). In 
previous studies, miR-11 depleted mutant D. melano-
gaster displayed defects in the central nervous system; 
and double mutations with miR-6, resulted in lethality 
[35]. However, the role of this miRNA in CA-CC biology 
remains to be elucidated.

Several miRNAs playing crucial roles in regulating 
insect reproduction were also found to be differentially 

expressed in our study. For instance, miR-275, which is 
up-regulated in epox−/− mutant mosquitoes by 1.63-fold 
(miR-275-3p) and 2.77-fold (miR-275-5p) (Table S3), 
targets sarco/endoplasmic reticulum Ca2+ adenosine 
triphosphatase (SERCA), which consequently regulates 
Notch cell signalling in Ae. aegypti [36]. The SERCA 
pump is key regulator of cellular calcium homeosta-
sis, a major factor in the regulation of JH biosynthesis 
in the CA of insects [37]. In addition, miR-8, which was 
up-regulated by 4-folds in epox−/− (Table S3), is highly 
expressed in the CA of D. melanogaster and exerts a 
positive effect on cell growth and JH biosynthesis [20]. 
Inhibition of miR-8 in D. melanogaster decreased Jhamt 
expression; on the contrary, overexpression of miR-8 
increased Jhamt expression [20]. In D. melanogaster, 
loss of miR-8 resulted in a significant decrease in CA 
cell nucleus size and expression of Jhamt, suggesting that 
miR-8 is required for CA cell growth and JH biosynthesis. 
miR-8 appears to perform diverse functions in growth 
control of different cell types; it increases body size in 
D. melanogaster, and it is inhibited by 20-hydroxyecdy-
sone (20E) [38]. Moreover, miR-8 represses Secreted Wg-
interacting molecule (Swim) and positively regulates Ae. 
aegypti reproduction by increasing its fat body mass [39]. 
In humans, miR-8 positively regulates cell growth by acti-
vating PI3K and thus promoting insulin/IGF-1 signalling 
(IIS) [40]. The cockroach CA experiences significant cell 
size changes in mated females associated with concomi-
tant changes in JH production [41, 42]; miR-8 acts as a 
positive regulator of CA cell size, although there is no 
evidence that increase of CA size in mosquitoes might be 
a major factor for JH biosynthesis [41].

Furthermore, miR-34-3p, which was up-regulated in 
epox−/− mutant mosquitoes (Table S3), targets the insulin 
receptors InR1 and InR2 in Nilaparvata lugens [43, 44]. 
Co-repression of InR1 and InR2 by miR-34 significantly 
increased the number of eggs deposited by N. lugens [44]. 
The stimulatory role of insulin in JH synthesis has been 
well described in D. melanogaster [20, 45] and mosqui-
toes [46, 47].

Differential expression of mRNAs between CA-CC of WT 
and epox-/- mosquitoes
To investigate which CA-CC genes are affected by 
decreased JH signaling, we conducted a comparative 
analysis of the transcriptome of CA-CC of epox−/− and 
WT mosquitoes. The total number of trimmed reads 
in each sample varied from 130,018,262 to 153,470,316 
(Table S4). Reads mapped in pairs were between 84.33 
and 91.25%, indicating high quality of sequencing. The 
transcriptome analysis revealed that out of the 18,034 
total identified Ae. aegypti genes, 317 were differentially 
expressed (Table S5). There were 171 up-regulated and 
146 down-regulated genes in epox−/− mutants (Fig. 4).

Fig. 3 Differentially expressed miRNAs between WT and epox−/− mu-
tant. (A-I) DE miRNAs with the lowest p values (p < 0.005, **p < 0.0005, 
***p < 0.000050) are shown. Each data point represents a biological repli-
cate. CPM, count per million
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A dot plot was produced showing the Gene Ontology 
(GO) terms for biological process, molecular function, 
and cellular component of the DEGs. In total, 60 and 
77 GO terms were enriched in up- and down-regulated 
genes, respectively. Among these GO terms, “extracel-
lular region” (GO:0005576) was the most significant 
over-represented GO term (Adj. p = 6.08E-07) in the set 
of genes which were down-regulated in epox−/− mutant 

samples. GO terms of “cellular process” (GO:0009987) 
were allocated to 63 genes and were significantly under-
represented in upregulated genes (Adj. p = 2.47E-06). 
Some of the most abundant GO terms which were sig-
nificantly enriched in this study are cellular process, cel-
lular anatomical entity, and binding (Fig. 5). Genes with 
annotated GO terms of nervous system development 
(GO:0007399), neuron differentiation (GO:0030182) and 

Fig. 5 Gene Ontology (GO) analysis representing the 30 most abundant GO terms of differentially expressed genes in epox−/− mutants. The dot plot is 
a combination of biological processes, molecular functions, and cellular components

 

Fig. 4 Volcano plot of CA-CC genes of epox−/− mutant and WT Ae. aegypti mosquitoes. Each dot is a recognized sequence. Red: sequences matching 
significance criteria (Fold change > 2, FDR p ≤ 0.05) for differential gene expression
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neurogenesis (GO:0022008) were among the differen-
tially expressed genes (Tables S6, S7).

Among DEGs, Trypsin epsilon (EpsilonTry, FDR 
p = 3.59E-11), nose resistant to fluoxetine protein 6 (Nrf-
6, FDR p = 0.01) and octopamine receptor 1 (Octr-1, 
FDR p = 0.01) were the most upregulated, with Log2 FCs 
increased by 444, 375, and 375, respectively (Table S5). 
It is noteworthy to mention that Nrf-6 and Octr-1 were 
barely detectable (RPKM = 0) in WT CA-CC. Glutathione 
S-transferase epsilon 7 (GSTe7, FDR p = 1.64E-03), cyto-
chrome c oxidase subunit 7A1 (COX7A1, FDR p = 9.78E-
04), and arrestin domain-containing protein 3 (ARRDC3, 
FDR p = 2.26E-03) were the most down-regulated, with 
FCs of -1040, -1001 and − 713 (Table S5). These three 
genes were expressed in WT Ae. aegypti CA-CC but were 
barely detectable in epox−/− glands. The expression pat-
tern of the three biological replicates was also uniform. 
Among the top 10 genes with the largest max group 
mean, 8 were up-regulated and 2 were down-regulated.

The results of data analysis indicate that the knock-
down of epox significantly altered the expression of 
several genes in the CA-CC, with a Log2 fold change of 
greater than 2, and false discovery rate below 0.05. Some 
of the most significantly differentially expressed genes 
include Broad complex (Br-C) core protein, ADP/ATP 
carrier protein 2 (AAC2), Troponin T (TpnT), muscle LIM 
protein 1 (MLP1), and Lethal (2) essential for life (l(2)efl) 
(Table S5). Several of these differentially expressed genes 
have been associated with the JH synthesis or signaling 
pathways. Br-C is significantly elevated by 4.31 folds in 
epox−/− mutants. Br-C is a transcription factor that is 
responsive to JH. Its main function is to facilitate ecdysis 
and metamorphosis through the induction of ecdysone 
synthesis [48]. It is repressed by Kr-h1, and as a result, 
it is repressed by JH. It is also an ecdysone-inducible 
gene that suppresses the synthesis of JH. Therefore, it is 
an essential component within the JH feedback network 
[49]. The epox−/− mosquitoes have high Br-C expression, 
but surprisingly, Kr-h1, which is the main inhibitory gene 
of Br-C and a major inductively responsive gene to JH, 
remains almost unchanged, with log2 fold change = -0.04 
and FDR p = 0.92. One possible factor that contributes to 
the overexpression of Br-C is the ecdysone receptor/ultra-
spiracle (EcR/USP) dimer; in which USP is up-regulated 
by 0.323-fold with FDR p = 0.14, while EcR remained 
almost unchanged, with fold change = -0.135 and FDR 
p = 0.69.

Takeout (TO) was down regulated by -4.69 fold with 
FDR p = 1.90E-07 (Table S5). The TO gene encodes a JH 
binding protein that is highly expressed in Diploptera 
punctata and Ae. aegypti CAs [50], and it has been pro-
posed that acts as an intracellular JH or JH precursor car-
rier protein [51]. The JH receptor, Methoprene-tolerant 

(Met), which is downstream of the JH regulatory pathway 
induces TO expression [52, 53].

Another differentially expressed gene that is involved in 
JH signaling pathway is Nuclear Receptor Seven Up (SVP), 
which was up-regulated by 0.485 folds with FDR p = 0.012 
(Table S5). SVP plays a central role replacing Ae. aegypti 
USP in the AaEcR ⁄AaUSP heterodimer complex, thereby 
blocking the action of 20E [54]. The overexpression of 
SVP may be part of a JH synthesis feedback network, 
where the CA-CC of epox−/− tries to produce more MF in 
response to a low JH signal. A similar JH feedback on JH 
synthesis has been recently described in D. melanogaster 
[55]. Tailless (tll) was up-regulated by 6.42-fold, although 
with suboptimal FDR P = 0.11 (Table S5). tll encodes a 
nuclear hormone receptor and is known to facilitate 
development in D. melanogaster, including larval seg-
mentation [56], neurogenesis [57], and more importantly, 
the development of corpora cardiaca [58]. Its overex-
pression may increase CA-CC activity in response to a 
decreased JH signaling.

Among the up-regulated genes, Nrf-6 is a membrane 
lipid transporter protein that has been extensively stud-
ied in Caenorhabditis elegans. It plays a crucial role in 
facilitating the cellular uptake of various nutrient mol-
ecules [59]. The D. melanogaster beltless (blt) gene, 
which is homologous to Nrf-6, supports oogenesis and 
embryogenesis via transportation of yolk proteins [60]. 
It is abundant not only in reproductive glands, but also 
in neuronal systems such as brain, ventral cord, neuro 
secretory cells and interneurons [61]. Nrf-6 was found to 
mobilize small lipophilic molecules to surrounding tis-
sue and most importantly, Nrf-6 is responsible for lipid 
signaling in C. elegans [62]. This upregulation of Nrf-6 in 
CA-CC may indicate an increase of CA-CC energy con-
sumption required for more MF production, or it could 
imply altered downstream lipid signaling.

Epsilon-class GST (GSTe) genes are insect-specific, 
and they are known to confer pesticide resistance to 
Ae. aegypti and Anopheles funestus mosquitoes [63, 
64]. However, a more important function of GSTe7 is 
to facilitate insect molting and development under the 
regulation of ecdysone. A study in B. mori suggests that 
GSTe7 expression was increased in correlation with high 
ecdysone titer [65], and its loss-of-function resulted in 
lethality during molting. The low JH signal in Ae. aegypti 
might increase the titer of ecdysone, therefore GSTe7 is 
predicted to be overexpressed in epox−/− mutants. How-
ever, we observed the exact opposite, where GSTe7 was 
down-regulated by over a thousand-folds, being the most 
down-regulated gene in the library.

AAC2 was up-regulated by 8-folds in CA-CC of epox−/− 
(Table S5). It is an anti-apoptotic gene and plays cyto-
protective roles in some cancer cells. It contributes to 
the maintenance of mitochondrial membrane integrity, 
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preventing the onset of the intrinsic apoptosis path-
way [66]. Its overexpression may result in a more active 
CA-CC. Moreover, AACs are essential in providing met-
abolic energy during the flight of insects, and they are 
highly expressed in myofibrils of indirect flight muscles 
in D. melanogaster [67]. Overexpression of these proteins 
may indicate accelerated metabolic rate of CA-CC in 
epox−/− insects [68, 69].

COX7A1 is a subunit of cytochrome C oxidase, which 
is a tumor suppressor gene expressed in mitochondria 
[70]. It initiates the intrinsic apoptosis pathway, in which 
cytochrome C is released from mitochondria and acti-
vates caspase cascades. On the other hand, ARRDC3 is 
a tumor suppressor gene in mammalian models, but it 
is conserved in insects such as D. melanogaster [71, 72]. 
It is a pro-apoptotic receptor expressed on cell surfaces, 

and interacts with receptors such as neural precursor 
development downregulated protein 4 (NEDD4) and 
β2-adrenergic receptor (β2AR) [73]. However, the more 
important role of ARRDC3 in regulating cell fate is to 
inhibit Yorkie (Yki), an essential protein in the Hippo 
pathway that promotes cell proliferation. The down 
regulation of pro-apoptotic genes such as COX7A1 and 
ARRDC3, together with the up-regulation of proto-onco-
genes such as AAC2 might be related to dysregulated 
proliferation of epox−/− CA cells.

Interaction of differentially expressed genes and miRNAs
We used three different tools, namely RNA22, miRanda, 
and RNAhybrid, to predict the potential miRNAs’ inter-
action target sites on the differentially expressed genes. 
Sixteen differentially expressed genes were predicted to 
have at least one potential binding target by more than 
one software (Table 1). The number of binding sites for 
each miRNA and gene are visualized in Fig. 6A and B. It 
is predicted that aae-miR-981-5p, aae-miR-263a-5p, and 
aae-miR-275-3p regulate the highest number of genes, 
while Futsch is regulated by the highest number of miR-
NAs. A further investigation of these miRNAs and Futsch 
will most likely reveal their potential role in CA-CC 
homeostasis.

A two-model target analysis showed that miR-981-5p 
has 40 potential target predictions on 31 different genes, 
ranked at the top by number, while miR-263-5p and miR-
275-3p have 18 and 17 potential target sites on 15 and 
13 genes, respectively (Table S8). Other miRNAs with 
potential target sites include miR-34-3p, miR-2940-3p, 
miR-11-3p, miR-N013-5p, miR-276-1-5p, miR-981-3p, 
miR-N004-3p, miR-988-3p, miR-307-5p, miR-275-5p, 
miR-14-3p, miR-87-3p, miR-1-3p, miR-210-5p, miR-
184-5p, miR-210-3p, miR-8-5p, miR-2942-3p, miR-10-5p, 
miR-1-5p, with 1–6 potential targets (Table S8).

Among all the genes that have been identified with 
miRNA binding sites, the gene with the highest miRNA 
match number is microtubule-associated protein (MAP) 
Futsch. Its interactive miRNAs include miR-11-3p, miR-
263a-5p, miR-2940-3p, miR-8-5p, and miR-981-5p, with 
miR-11-3p predicted by both miRanda and RNA22, miR-
2940-3p and miR-8-5p predicted by RNA22 and RNAHy-
brid (Table S9). The gene was up-regulated by 5.47-fold 
in CA-CC of epox−/−. Futsch is a microtubule binding 
protein that maintains microtubule loops as well as the 
tubulin mass. It is known to regulate synaptic growth in 
D. melanogaster [74]. As described above, miR-11-3p 
and miR-263a-5p facilitate insect neuronal develop-
ment. While the binding target between Futsch and 
miR-263a-5p was predicted by miRanda only, both RNA-
hybrid and miRanda predicted binding between Futsch 
and miR-11-3p, which were both up-regulated in epox−/−. 
The binding between Futsch and miR-8-5p/miR-2940-3p 

Table 1 Genes with miRNA binding sites predicted by more 
than one miRNA target identification tool
Gene Acces-
sion code

Description miRNA 
binding 
site

miRNA(s)

AAEL005529 microtubule-associated 
protein futsch, transcript 
variant X8

8 aae-miR-11-3p, 
aae-miR-2940-
3p, aae-miR-8-5p,

AAEL014246 UDP-glucuronosyltrans-
ferase 2B1, transcript 
variant X2

4 aae-miR-1-5p

AAEL007793 Alkyldihydroxyacetone-
phosphate synthase

3 aae-miR-275-3p

AAEL012496 ankyrin repeat and BTB 3 aae-miR-981-5p

AAEL003886 arrestin domain-contain-
ing protein 17

3 aae-miR-275-3p

AAEL017300 mucin-5AC, transcript 
variant X1

3 aae-miR-981-5p

AAEL005720 NACHT and WD repeat 
domain-containing 
protein 2

3 aae-miR-981-5p

AAEL003788 protein msta, transcript 
variant X1

3 aae-miR-981-5p

AAEL014541 protein-glucosylgalac-
tosylhydroxylysine 
glucosidase

3 aae-miR-981-3p

AAEL006649 TNF receptor-associated 
factor 4

3 aae-miR-263a-5p

AAEL002554 anosmin-1, transcript 
variant X1

2 aae-miR-981-5p

AAEL017022 cell wall protein DAN4, 
transcript variant X1

2 aae-miR-275-5p

AAEL000360 dnaJ homolog subfamily 
B member 13

2 aae-miR-263a-5p

AAEL000663 MAPK regulated 
corepressor interacting 
protein 2

2 aae-miR-11-3p

AAEL012852 trypsin 3A1-like 2 aae-miR-11-3p

AAEL005200 venom carboxylester-
ase-6, transcript variant 
X4

2 aae-miR-981-5p
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was predicted by RNAhybrid and RNA22. Consequently, 
the association between miR-11-3p, miR-8-5p, miR-
2940-3p and Futsch is worth investigating.

The main function of UDP-glucuronosyltransferase 
(UGT) is to metabolize xenobiotic compounds into non-
toxic substances, more specifically through the catalysis 
of lipophilic compound glycosylation [75–77]. It is closely 
associated with insecticide resistance [78–80], and con-
fers resistance to temperature stress. It is also believed 
that some genes in the UGT family regulate trans-
membrane transportation, while others are receptors 
responding to exterior stress signals [81]. The gene was 
down-regulated in epox−/− by 5.1-fold and is potentially 
targeted by miR-1-5p, miR-2940-3p, and miR-988-3p. 
Both RNA22 and RNAhybrid found potential target sites 
for miR-1-5p, while miR-2940-3p and miR-988-3p were 
predicted by RNAhybrid only (Table S9).

ATP-binding cassette transporters (ABC) are a class 
of membrane-bound ATP-dependent pumps [82]. 
Class G ABC (ABCG) is highly expressed in protho-
racic gland, where ecdysone is synthesized. It func-
tions in the transportation of ecdysone and thus 
participating in the synthesis of 20E [83]. In addition, 
it also functions in xenobiotic detoxification [84]. It 
is down-regulated in epox−/− mutants by 244.7-fold. 

miR-276-1-5p, miR-276-2-5p, miR-2940-3p and miR-
981-3p were predicted to target ABCG20. miR-276-1 and 
miR-276-2 are generated from distinct precursor loci but 
have the same mature sequence, and all four matches 
were predicted by RNAhybrid (Table S9).

Alkyldihydroxyacetonephosphate synthase (AGPS) reg-
ulates neuronal development in D. melanogaster [85]. It is 
targeted by miR-275-3p and miR-981-5p. Both miRanda 
and RNAhybrid predicted target binding between miR-
275-3p and AGPS, while miR-981 was predicted only by 
RNA22 (Table S9). The role APGS may play in CA-CC 
metabolism remains to be elucidated.

Conclusions
This work presents a comprehensive analysis of the 
transcriptome and small RNA profiles of wild-type and 
CRISPR-Cas9 mediated mutation of the epoxidase gene 
in Ae. aegypti. Epoxidase is a key enzyme in the synthe-
sis of juvenile hormone. Experimental work with corpora 
allata is very challenging due to their very small size and 
therefore producing transcriptomes of these special-
ised glands is very valuable in itself. While the presented 
work is mainly descriptive, it provides comprehensive 
transcriptome and small RNA profiles of the glands in 

Fig. 6 Visualization of interaction of differentially expressed genes and miRNAs. Genes (A) and miRNAs (B) visualized by number of binding sites
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an important insect vector, as well as insights into the 
impact of JH signalling on the CA-CC biology.
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