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Abstract
Background  Single-cell transcriptomics provides means to study cell populations at the level of individual cells. In 
leukocyte biology this approach could potentially aid the identification of subpopulations and functions without 
the need to develop species-specific reagents. The present study aimed to evaluate single-cell RNA-seq as a tool for 
identification of chicken peripheral blood leukocytes. For this purpose, purified and thrombocyte depleted leukocytes 
from 4 clinically healthy hens were subjected to single-cell 3′ RNA-seq. Bioinformatic analysis of data comprised 
unsupervised clustering of the cells, and annotation of clusters based on expression profiles. Immunofluorescence 
phenotyping of the cell preparations used was also performed.

Results  Computational analysis identified 31 initial cell clusters and based on expression of defined marker genes 
28 cluster were identified as comprising mainly B-cells, T-cells, monocytes, thrombocytes and red blood cells. Of 
the remaining clusters, two were putatively identified as basophils and eosinophils, and one as proliferating cells of 
mixed origin. In depth analysis on gene expression profiles within and between the initial cell clusters allowed further 
identification of cell identity and possible functions for some of them. For example, analysis of the group of monocyte 
clusters revealed subclusters comprising heterophils, as well as putative monocyte subtypes. Also, novel aspects of 
TCRγ/δ + T-cell subpopulations could be inferred such as evidence of at least two subtypes based on e.g., different 
expression of transcription factors MAF, SOX13 and GATA3. Moreover, a novel subpopulation of chicken peripheral 
B-cells with high SOX5 expression was identified. An overall good correlation between mRNA and cell surface 
phenotypic cell identification was shown.

Conclusions  Taken together, we were able to identify and infer functional aspects of both previously well known as 
well as novel chicken leukocyte populations although some cell types. e.g., T-cell subtypes, proved more challenging 
to decipher. Although this methodology to some extent is limited by incomplete annotation of the chicken genome, 
it definitively has benefits in chicken immunology by expanding the options to distinguish identity and functions of 
immune cells also without access to species specific reagents.
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Background
The domestic fowl is the world’s most ubiquitous live-
stock and poultry products, meat and eggs, are an impor-
tant source of protein for the growing human population. 
Moreover, the number of chickens reared worldwide is 
predicted to continue to increase [1, 2]. One vital part 
in safeguarding chicken health and welfare in all types of 
husbandry systems is to achieve effective and sustainable 
control of infectious diseases. To succeed in developing 
such measures comprehensive knowledge on the chicken 
immune system is paramount. Studies of the chicken 
immune system have historically contributed to several 
important findings even for mainstream immunology, 
e.g., the delineation of B- and T-cell lymphoid systems, 
but currently chicken immunology is lagging behind the 
mammalian counterparts particularly mouse and human 
immunology [3]. The general organisation of the chicken 
immune system is very similar to those of mammals, but 
several important differences exist, and it is thus vital not 
to indiscriminately translate new knowledge from mam-
mals without verifying with chicken specific data. A large 
part of modern immunology involves in-depth pheno-
typic and functional identification of different cells of 
the immune system, e.g., T-cell subpopulations. Chicken 
immune cells can currently be phenotypically identified 
at protein level by immunofluorescence labelling and 
flow cytometric analysis using chicken specific reagents 
to several canonical immune markers, e.g., co-receptors 
CD4 and CD8, and some markers unique for chickens, 
e.g., the transmembrane protein Bu-1 (chB6) expressed 
on B-cells and some none-immune cells [4] and the 
mannose receptor MMR1L4 (MRC1L-B) expressed on 
monocytes [5, 6]. Indeed, in addition to identification of 
standard leukocyte populations such as B-cells, T-helper 
(Th) cells and cytotoxic T-cells (CTL) using these avail-
able reagents, various “special features” of chicken 
immune cells have also been discovered and novel rare/
unusual immune cells have been indicated. For exam-
ple, it was recognised early that chickens have a stable 
population of CD4 + CD8 αα+ T-cells in blood, spleen 
and among intestinal intraepithelial lymphocytes [7, 8]. 
Recently, presence of chicken TCRα/β + CD4 + CD8αβ+ 
[9] and TCRα/ β+ CD4-CD8αα + T-cells [10] was also sug-
gested. Moreover, chickens belong to the group of species 
that have high numbers of TCRγ/δ + T-cells in the cir-
culation and secondary lymphoid organs [11] and three 
main subpopulations of these have been identified so far 
[12]. However, work to further increase the resolution 
of chicken immune cell phenotyping is often hampered 
by dearth of chicken-specific reagents to detect crucial 
immunological markers such as cytokines and transcrip-
tion factors for cell identification at protein level. In addi-
tion, it may also be difficult to assess which markers to 
focus reagent development efforts on without prior 

species-specific knowledge on their expression. Massively 
parallel single-cell RNA sequencing (RNA-seq) enables 
analysis of single cells with whole-transcriptome resolu-
tion without development of species-specific reagents 
provided that an appropriately annotated genome for 
the species in question exists. The methodology may 
then offer a higher dimensionality for analysing individ-
ual immune cells compared to e.g., flow cytometry with 
selected markers, and it may be possible to identify not 
only previously known but also novel cell types, to infer 
cell functions and to identify suitable cell markers [13].

The present study aimed to evaluate the use of sin-
gle-cell RNA-seq for in-depth phenotypic and putative 
functional identification of chicken peripheral blood 
leukocytes. Single-cell RNA-seq has fruitfully been used 
to study mixed immune cell populations from several 
“non-mainstream” species such as pigs [14], horses [15], 
and teleost fish [16]. For chicken immune cells, purified 
“lymphocytes” [17], spleen cells [18] and bursal cells [19] 
have been used for single-cell RNA-seq but the focus of 
these studies have been on different viral infections and 
limited immune cell identification was reported. Periph-
eral blood is an easily accessible source of leukocytes 
but mRNA analysis of these in the chicken is compli-
cated by presence of both nucleated red blood cells and 
thrombocytes. We therefore sought to decrease these cell 
types that were not the focus of the present investigation 
among cells submitted to sequencing. Chicken red blood 
cells can be reduced by Ficoll gradient centrifugation that 
in mammals is considered to enrich so called peripheral 
blood mononuclear cells (PBMC), mainly monocytes and 
lymphocytes. For chickens however, cells enriched by this 
procedure comprise a high proportion of thrombocytes 
that are of similar size as chicken lymphocytes. Chicken 
thrombocytes exclusively express the CD41/61 intergrin 
complex [20] and we used this as target for immuno-
magnetic separation to reduce the proportion of throm-
bocytes in the leukocyte preparations submitted for 
sequencing.

Results
Outcome of peripheral blood leukocyte isolation
For this study leukocytes were isolated from blood from 
four 24-week-old laying hens by Ficoll gradient centrifu-
gation to reduce the content of red blood cells. Subse-
quently, the proportion of thrombocytes was reduced by 
immunomagnetic separation based on the expression of 
the intergrin complex CD41/61. Immunofluorescence 
phenotyping of the cell preparations showed that the 
proportion of thrombocytes was reduced from 46 to 60% 
CD41/61 + cells before depletion to 5–7% after (Addi-
tional file 1). Moreover, flow cytometric phenotyping 
(using antibody panels and gating strategies described in 
Additional files 5 and 6) showed that in the final depleted 
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cell preparations submitted to sequencing, cells that were 
identified were on average 52% lymphocytes, 16% mono-
cytes, 11% red blood cells and 6% heterophils.

Defining the general single-cell resolution landscape 
of peripheral blood leukocytes by expression of marker 
genes
Initial quality assessment from sequencing of the four 
samples showed that on average 4773 cells per sample 
(range 3020–5557 cells/sample) and 47,970 reads per cell 
(34,045–66,925 reads/cell) were analysed, the median 
number of detected genes per cell ranged from 1025 to 
1202 and the sequencing saturation ranged from 84 to 
91%. Unsupervised graph-based clustering of the total 
16,936 cells that passed the final quality control, i.e., inte-
grated from the four individual chickens, resolved 31 
clusters (Fig. 1A). A selection of marker genes (Table 1) 
was used for cluster identification. These genes were 
either universally recognised leukocyte markers, e.g., 
CD3, chicken specific leukocyte markers, e.g., Bu-1, or 
identified as useful in the literature. Based on marker 
gene expression patterns and graph-based clustering 
on principal components, clusters were assigned to 11 
groups with 2 subgroups; monocytes, B-cells (with sub-
group SOX5 + B-cells), TCRγ/δ T-cells, CD4 T-cells (with 
subgroup putative Treg), CD8 T-cells, “cytolytic cells”, 
putative basophils, putative eosinophils, proliferating 
cells, thrombocytes and red blood cells. All these cell 
groups were represented in similar proportions in the 
four individual chickens (Fig. 1B). The expression pattern 

of a selection of marker genes across the different clusters 
is shown in Fig. 2. Data for most clusters within the dif-
ferent groups were analysed in detail as described below. 
Cells in cluster 27 were identified as red blood cells 
based on the high expression of HBBA (Fig. 2) and cells 
in cluster 9 were identified as thrombocytes based on the 
expression of ITGA2B and ITGB3 that in combination 
make the CD41/61 complex exclusive for chicken throm-
bocytes. These two clusters were not analysed further.

Monocyte clusters and sub-cluster analysis
The distinct group formed by clusters 5 and 6 (Fig.  1A) 
was defined by expression of MMR1L4 (Table  1; Fig.  2) 
as mainly comprising monocytes. Further analysis of 
gene expression within clusters 5 and 6 (Additional 
file 2) showed that relative expression of MMR1L4 and 
MHCII genes BLB1, BLB2, and CD74 differed between 
the clusters revealing a pattern of high MMR1L4/low 
MHCII expression in cluster 5 and low MMR1L4/high 
MHCII expression in cluster 6. Moreover, expression of 
MMP9 was noted in some cells in cluster 6 which sug-
gested this cluster in addition to monocytes also could 
comprise heterophils. Therefore, a re-cluster analysis was 
performed on clusters 5 and 6 in which six sub-clusters 
(0–5) were indicated (Fig. 3A). Based on the differential 
expression of MMR1L4, exclusively expressed in chicken 
monocytes, MHCII genes and MMP9 that is expressed 
in chicken heterophils but not in chicken monocytes, 
we found that sub-clusters 0, 1, 3, 4, and 5 comprised 
mainly monocytes and that sub-cluster 2 likely contained 

Fig. 1  (A) UMAP visualization of the 16 936 studied cells in a 2D space after clustering with putative cell type annotations for the main clusters. Cells 
(points) are coloured based on their cluster identity. Putative cell types have been annotated using manual annotation from marker expression and gene 
ontology of expressed genes (Table 1). (B) Fractions of cell types for cell preparations from the individual hens
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mainly heterophils (Fig. 3B). Moreover, the re-clustering 
also revealed a polarisation of cells with high MMR1L4 
expression and low/lower MHCII expression (cluster 0,1) 
and low MMR1L4 expression and high/higher MHCII 
expression (cluster 3,4,5), as seen in the original cluster-
ing. Differential expression of a selection of immune/
immune function genes (Fig.  3B) indicate differences in 

functions and monocyte phenotype as discussed below. 
The top enriched GO- and KEGG-terms (List at Gene 
Expression Omnibus (GEO); www.ncbi.nlm.nih.gov/
geo, accession number GSE224329) for original cluster 5 
comprised several terms concerning MHCII and antigen 
presentation on MHCII and for cluster 6 different terms 
for chemotaxis and cell migration were prominent. The 

Table 1  Marker genes used for primary annotation of cell types among chicken leukocytes
Gene 
abbreviation

Name Cell type Comment

LOC396098 chB6/Bu-1 B-cell Unique for chicken B-cells [4]
PAX5 Paired box 5 B-cell
CD247 CD3 ζ subunit of T-cell receptor complex T-cell Also expressed in NK-cells [59]
CD3E CD3ε subunit of T-cell receptor complex T-cell
CD3D CD3δ subunit of T-cell receptor complex T-cell
TARP TCR gamma alternate reading frame protein TCRg/d + T-cell
CD4 Cluster of differentiation 4 T-helper cell (Th)
CD8A Cluster of differentiation 8α T-cell In chickens expressed on several T-cell types and some 

NK-cells [71]
CD8BP Cluster of differentiation 8β pseudogene T-cell In chickens expressed on CTL and some TCRg/d + T-cells [12]
MMR1L4 macrophage mannose receptor 1-like 4 monocyte Exclusively expressed on chicken monocytes [5, 6]
ITGA2B integrin subunit alpha 2β / CD41 thrombocyte The CD41/61 complex exclusively expressed on chicken 

thrombocytes [20]
ITGB3 integrin subunit beta 3 /CD61 thrombocyte The CD41/61 complex exclusively expressed on chicken 

thrombocytes [20]
HBBA hemoglobin subunit epsilon 1 red blood cell
MMP9 Matrix metallopeptidase 9 heterophil Expressed in chicken heterophils but not in chicken mono-

cytes [40]
GNLY Granulysin Cytolytic cell
FASLG Fas ligand Cytolytic cell
GZMA Granzyme A Cytolytic cell
GZMM Granzyme M Cytolytic cell
IL2RA Interleukin-2 receptor subunit α T-regulatory cell 

(Treg)
Among resting CD4 + T-cells primarily expressed in Treg [54]

CTLA4 Cytotoxic T-lymphocyte associated protein 
4 (CD152)

Treg Among resting CD4 + T-cells primarily expressed in Treg [54]

MKI67 Marker of proliferation Ki-67 Proliferating cell Expression associated with cell proliferation [72]
PPIA Peptidylprolyl isomerase A Proliferating cell Expression associated with cell proliferation [73]
YBX1 Y-box binding factor 1 Proliferating cell Expression associated with cell proliferation [74, 75]
DACH1 Dachshund family transcription factor 1 Eosinophil Eosinophil associated gene [76]
MCTP2 Multiple C2 and transmembrane domain 

containing 2
Eosinophil Eosinophil associated gene [76]

PIP5K1B Phosphatidylinositol-4-phosphate 5-kinase 
type-1 beta

Eosinophil Eosinophil associated gene [76]

FRY FRY microtubule binding protein Eosinophil Eosinophil associated gene [76]
LOC770612 interferon-induced transmembrane protein 

1-like (IFITM1)
Eosinophil Eosinophil associated gene [76]

IL5RA Interleukin-5 receptor subunit α Eosinophil Eosinophil associated gene [76]
CTSG Cathepsin G Granulocyte, baso-

phil, mast cells
Serine protease expressed in granulocytes including baso-
phils and in mast cells [77]

HDC Histidine decarboxylase Basophil Basophil/mast cell associated gene [78]
GATA2 GATA-binding factor 2 Basophil Basophil/mast cell associated gene [79]
FCER1G Fcε receptor Ig Basophil Expressed mainly on basophils/mast cells but also on e.g., 

eosinophils [80]
NDST2 N-deacetylase and N-sulfotransferase 2 Basophil Basophil/mast cell associated gene [78]
CD63 Cluster of differentiation 63 Basophil Expressed on basophils [81]

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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top enriched GO and KEGG terms for sub-clusters com-
prised chemotaxis and myeloid leukocyte migration for 
subclusters 0, 1 and 3, Toll-like and NOD-like receptor 
signalling for subcluster 2, myeloid leukocyte differentia-
tion for subclusters 4 and 5, and MHC II for subclusters 
1 and 5.

B-cell clusters
B-cells (clusters 2, 10, 18, 19, 20, 21 and 26; Fig. 4) were 
primarily identified by the expression of the chicken spe-
cific B-cell marker Bu-1, LOC396098, as well as B-cell 
master regulator transcription factor PAX5 (Table  1; 
Fig. 2). Clusters 2, 10, 18, 20, 21 and 26 formed a distinct 
group of clusters while cluster 19 was positioned on its 
own (Fig.  4A). Differential expression of a selection of 
B-cell associated genes and other immune genes was ana-
lysed for the B-cell clusters (Fig.  4C). This showed that 
all these clusters had a high expression of other typical 
B-cell associated genes such as the B-cell receptor genes 
CD79A (LOC121108878) and CD79B, immunoglobulin 
light chain, IGLL1, and IgA, VH26L1, B-cell transcription 

factors EBF1 and TCF4, and MHCII genes BLB1, BLB2 
and CD74. The expression pattern of the selected genes 
was similar between these clusters except for cluster 19 
and cluster 10. Of the latter two, cells in cluster 19 showed 
a high expression of SOX5, which was unique among the 
B-cell clusters. In addition, cells in cluster 19 showed the 
highest expression of Bu-1, EVI2A, IRAG2, BHLHE41, 
PTPRJ, MAML3 and BANK1 among the B-cell clusters. 
In contrast, cells in cluster 10 showed the highest expres-
sion of B-cell receptor genes CD79A and CD79B, IGLL1, 
MHCII genes, CXCR4, BAFF (TNFSF13B), BAFF-recep-
tor (TNFRSF13C) and HMGB1 among the B-cell clusters. 
Cells in cluster 10 also showed a high expression of dif-
ferent ribosomal proteins and the top enriched GO- and 
KEGG-terms (Lists at GEO; GSE224329) for this cluster 
involve ribosomes but also GO-terms concerning MHC 
and antigen processing and presentation on MHCII were 
identified for this cluster. For clusters 2, 18, 19, 20, 21 and 
26 different B-cell and immunoglobulin associated terms 
as well as C-type lectin receptor signalling pathway were 
among the highest enriched GO- and KEGG-terms (List 

Fig. 2  Dot plot of expression of marker genes (Features) in the indicated clusters (Identity) defined in Fig. 1. The radius of the dot corresponds to percent-
age of cells in each cluster expressing the gene, and colour intensity corresponds to scaled expression values. Expression values are scaled within the 
plot. LOC396098 – Bu-1

 



Page 6 of 18Maxwell et al. BMC Genomics          (2024) 25:124 

at GEO; GSE224329). For cluster 19, Negative regulation 
of response to oxidative stress (GO:1,902,883) was also 
enriched.

T-cell clusters
Clusters 0, 1, 3, 4, 7, 8, 11–16, 23, 24, 25, 29, and 30 
(Fig. 5) were annotated as T-cells based on their expres-
sion of T-cell marker genes CD247, CD3E, CD3D, TARP, 
CD4, CD8A and CD8BP (Table 1; Fig. 2). These clusters 
(Fig.  5A) were analysed for differential expression of a 
selection of T-cell associated genes and other immune 
genes (Fig.  5C). Cells in cluster 4 were then, based on 
expression of genes associated with cytolytic functions, 
GNLY, FASLG, GZMA and GZMM, attributed cyto-
lytic capacity and this cluster is presented separately in 
the section below. The remaining T-cell clusters were 
assigned as containing mainly: TCRγ/δ + T-cells: 1, 0, 23, 
25 and 29; CD4 + cells: 3, 8, 11, 12, 13, 14, 15, 16, 24 and 
30 and CD8αβ+ cells: 7.

TCRγ/δ + T-cells  Cluster 1, 0, 23 and 25 formed a dis-
tinct group of clusters while cluster 29 grouped together 
with cluster 7, i.e., CD8αβ+ cells (Fig. 5A). Cells in clus-
ters 1, 0, 23 and 25 were identified by high expression of 
TARP and also showed expression of the TCR δ-chain 
(LOC121110951; Fig. 5B). Among the selection of T-cell 
associated and other immune genes, cells in these clusters 
also shared a high expression of MAF, SOX13, GATA3, 

KK34 and INPP5A that distinguished them from the other 
T-cell clusters (Fig. 5C). Cells in all TCRγ/δ+ T-cell clus-
ters also showed a low expression of IL7R compared to 
cells in CD4 + and CD8αβ+ T-cell clusters. Apart from 
a high expression of TARP cells in cluster 29 showed 
a different expression pattern compared to the other 
TCRγ/δ + T-cell clusters but shared the expression of 
PTPN14 with these, which was distinct from other T-cell 
clusters. Cells in cluster 29 also showed a distinct expres-
sion of MYB and a high expression of BCL11B compared 
to other T-cell clusters and high expression of CBLB 
similar to that observed for cluster 7. For cluster 0 the 
top enriched GO-terms involved nucleic acid transcrip-
tion, and for clusters 23 and 25 regulation of nucleic acid 
transcription (List at GEO; GSE224329). Cells in cluster 1 
showed a high expression of different ribosomal proteins 
(List at GEO; GSE224329) and the top enriched GO- and 
KEGG-terms for this cluster involve ribosomes. For clus-
ter 29 top enriched GO-terms included those involved in 
T-cell activation, T cell differentiation and T-cell receptor 
recombination.

CD4 + T-cells  Clusters 3, 8, 11–16, 24 and 30 formed a 
group of clusters in close proximity of the group of clus-
ters 7 (CD8αβ + cells) and 29 (TCRγ/δ + T-cells, Fig. 5A). 
All these clusters contained some cells that expressed 
CD4, albeit very few in cluster 13 (Fig. 5B). With respect 
to expression of the selected T-cell associated and other 

Fig. 3  (A) UMAP after re-clustering of cells in initial monocyte clusters 5 and 6 (MMR1L4 + cells) at resolution 0.8. The analysis identified six subclusters 
0–6 identified by different colour cells. Subclusters identified as heterophils, low MMR1L4 high MHCII expressing and high MMR1L4 low MHCII expressing, 
respectively are indicated. (B) Dot plot of expression of a selection of monocyte and heterophil associated genes in the indicated subclusters. The radius 
of the dot corresponds to percentage of cells in each cluster expressing the gene, and colour intensity corresponds to scaled expression values. Expres-
sion values are scaled within the plot. LOC121107581 – S100-A4-like, J6367-MGP02– CYTB, LOC395551– CCL4
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immune genes the expression pattern of most of these 
clusters was similar (Fig. 5C). However, in cluster 8 some 
cells showed a high expression of IL2RA (CD25) and 
CTLA4 and this cluster was therefore putatively identi-
fied as comprising regulatory T-cells (Treg). Distinctive 
for cluster 8 was also some cells with high expression of 
IL18R1 and the relatively highest expression of RORA 
compared to other T-cell clusters. For clusters 3, 8, 11, 12, 
13, 15, 16, 24 and 30, GO- and KEGG-terms concerning 
different aspects of T-cells such as T cell activation, CD4-
positive, alpha-beta T cell activation and T cell receptor 
signalling pathway were among the top enriched (List at 
GEO; GSE224329). Cells in cluster 14 showed the rela-
tively highest expression of CD3D, CD3E and CD4 and 
had a distinctive high expression of TPT1 among the 
T-cell clusters, and also comprised some cells expressing 
CD8A, CD8BP and GNLY. Cells in this cluster showed a 
high expression of different ribosomal proteins (List at 
GEO; GSE224329) and the top enriched GO- and KEGG-
terms involve ribosomes.

CD8αβ + T-cells  Cluster 7 grouped with cluster 29 
(Fig.  5A) and contained cells with high expression of 
CD8A and CD8BP (Fig. 5C) and was therefore identified 

as comprising CD4-CD8αβ+ T-cells Among the selected 
T-cell associated and other immune genes, cells in cluster 
7 showed a distinct high expression of CD226. The top 
enriched GO- and KEGG-terms for this cluster involved 
immune response activation and signalling, T-cell recep-
tor signalling and T-cell receptor recombination (List at 
GEO; GSE224329).

Cytolytic cell cluster and sub-cluster analysis
Cluster 4 was positioned on its own in proximity to 
the CD4+ and CD8αβ+ T-cells (Fig.  5A). Cells in clus-
ter 4 were judged as comprising T-cells based on the 
expression of T-cell marker genes (Table  1; Fig.  2) and 
also showed a high expression of genes associated with 
cytolytic functions, GNLY, FASLG, GZMA and GZMM 
(Fig.  5C). Some cells in this cluster showed a strong 
expression of CD8A and CD8B but the expression of 
TARP, TRVB6-5 (TCRβ), CD247, CD3D and CD3E 
was relatively low. Therefore, cluster 4 was annotated 
as cells with cytolytic capacity of probably mixed lin-
eage and a re-cluster analysis was performed to inves-
tigate cell types within the cluster (Fig.  6). This analysis 
indicated three subclusters (0–2; Fig.  6A). Cells in sub-
cluster 0 constituted approximately 50% of cells in the 

Fig. 4  (A) UMAP for B-cells (LOC396098+, i.e., Bu-1+) with putative cell types established based on the differential expression of Bu-1 within the data. (B) 
Fractions of B-cell types for cell preparations from the individual hens. (C) Dot plot of expression of a selection of B-cell associated genes in the B-cell 
clusters. The radius of the dot corresponds to percentage of cells in each cluster expressing the gene, and colour intensity corresponds to scaled expres-
sion values. Expression values are scaled within the plot. LOC121108878 - CD79A, LOC395551– CCL4
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original cluster 4 and showed low expression of CD3D, 
CD3E, TARP and TRBV6-5 indicating that this sub-
cluster comprised low numbers of T-cells while high 
expression of CD247 (CD3ζ) suggests that a majority 
of cells might be NK cells. Of the studied genes indica-
tive of cytolytic activity, cells in sub-cluster 0 showed a 
high expression of FASLG. Cells in this sub-cluster also 
showed a distinct high expression of TOX, as well as high 
expression of BCL11B and ADCY7. Cells in sub-cluster 1 
showed a high expression of CD3D, CD3E and TRBV5-
6 as well as CD8A and CD8BP, indicating that this sub-
cluster contained CTL. In this sub-cluster all the studied 
genes indicative of cytolytic activity showed significant 
expression and GZMA and GZMM had the highest 
expression and FASLG the lowest. Cells in sub-cluster 1 
also showed high expression of BCL11B and some cells 
showed a high expression of CD226. Cells in sub-cluster 
2 expressed high levels of TARP, indicating that it con-
tained TCRγ/δ + T-cells. Of the genes indicative of cyto-
lytic activity, GNLY showed the highest expression in this 
sub-cluster. Cells in this sub-cluster also showed a high 
expression of CBLB, RUNX1, INPP5A, IL2RB, ADCY7 

and SATB1. For cluster 4 as well as sub-clusters 0–2, top 
enriched GO- and KEGG-terms involved activation of 
leukocytes and different lymphocyte malignancies (Lists 
at GEO; GSE224329).

Proliferating cell cluster
Cluster 22 likely consisted of proliferating cells as indi-
cated by their high expression of proliferation-associated 
genes e.g., MKI67, PPIA and YBX1 (Table  1) and many 
ribosomal proteins (List at GEO; GSE224329). Some 
cells assigned to cluster 22 formed clusters of cells within 
groups belonging to three other primary cell types: cyto-
lytic cells in cluster 4, monocytes in cluster 5 and 6, and 
B-cells in mainly cluster 10, while some cluster 22 cells 
form a distinct cluster not embedded in another cell pop-
ulation (Additional file 3  A). When re-clustered, these 
cells again form four clusters (0–3; Additional file 3B). Of 
these sub-clusters, cells in sub-cluster 0 remained fairly 
anonymous with the top expressed genes being involved 
in e.g., proliferation, mitosis and DNA transcription (List 
at GEO; GSE224329). However, due to this sub-cluster’s 
closeness to sub-clusters 2 and 3 and some expression 

Fig. 5  (A) UMAP for a subset of data corresponding to T-cells with putative T-cell types annotated based on the differential expression within the sub-
cluster. (B) Fractions of T-cell types for cell preparations from the individual hens. (C) Dot plot of expression of a selection of T-cell associated genes in the 
T-cell clusters. The radius of the dot corresponds to percentage of cells in each cluster expressing the gene, and colour intensity corresponds to scaled 
expression values. Expression values are scaled within the plot. LOC121110951 - TCR δ-chain
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of CD4 and CD28, we suggest these cells were lympho-
cytes. For cells in sub-cluster 2 the top-10 expressed 
genes included GNLY, GZMA, FASLG, CBLB, TARP and 
SH2D1A, and several other cytolytic and CD3 genes as 
well as CD8A were also highly expressed, which indicated 
that this sub-cluster contained cytolytic cells including 
cytolytic TCRγ/δ + T-cells. For cells in sub-cluster 3 the 
top-10 expressed genes included VH26L1 (IgA), IGLL1, 
JCHAIN, MZB1, and PDIA4, and several other typi-
cal B-cell genes were highly expressed, which indicated 
that this subcluster contained B-cells including, based 
on the expression of JCHAIN, plasma blasts. For cells in 
sub-cluster 1 the top-10 expressed genes included IFI30, 
CD74, BLB2, LY86 and CSF3R, and several other genes 
associated with antigen presentation and myeloid cells 
including MMR1L4 were highly expressed, which indi-
cates that this sub-cluster comprised antigen presenting 
myeloid cells.

Enriched GO- and KEGG terms for cluster 22 included 
terms that are ribosome, cytoskeleton, and translation 
associated (List at GEO; GSE224329). Therefore, this 
cluster is likely a mixture of cells from different major cell 
groups that were actively proliferating.

Putative eosinophil cluster
Cluster 17 was distinct from other groups (Fig. 1A) and 
cells in this cluster lacked strong expression of any of 
the general marker genes used for identification (Fig. 2). 

Based on high expression of DACH1, MCTP2, PIP5K1B, 
FRY, LOC770612 (IFITM1), IL5RA and FCER1G (List at 
GEO; GSE224329) that have been associated with eosin-
ophils (Table  1) this cluster was putatively assigned as 
eosinophils.

Putative basophil cluster
Cluster 28 was distinct from other groups (Fig.  1A) 
and based on high expression of CTSG, HDC, GATA2, 
FCER1G, NDST2 and CD63 that are genes associated 
with basophils/mast cells (Table 1) as well as the KEGG-
term Glycosaminoglycan biosynthesis - heparan sulfate / 
heparin (KEGG:00534; List at GEO; GSE224329) that was 
highly enriched for this cluster it was putatively assigned 
as basophils. However, genes normally associated with 
other cell types e.g., CD3D and CD3E (Fig. 2), were also 
highly expressed by cells in this cluster and it may thus 
contain a mixture of cell types.

Correlation between cellular identification by mRNA 
expression and cell surface marker phenotyping
Results from the single-cell RNA-seq based identification 
of gene expression and cell identification were compared 
to phenotypical identification by immunofluorescence 
labelling and flow cytometric analysis overall (Fig. 7) and 
for the individual animals (Additional file 4). In general, 
the results from the two methods showed a good correla-
tion. For CD8β + cells and heterophils mRNA expression 

Fig. 6  (A) UMAP after re-clustering cells of cytolytic cells in initial cluster 4 with putative cell types annotated based on the differential expression within 
the subcluster. The analysis identified three subclusters 0–2 identified by different colour cells. (B) Dot plot of expression of a selection of T-cell associated 
genes in the cytolytic subclusters. The radius of the dot corresponds to percentage of cells in each cluster expressing the gene, and colour intensity cor-
responds to scaled expression values. Expression values are scaled within the plot. LOC121110951 - TCR δ-chain
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values were on average lower than corresponding values 
from cell surface phenotyping.

Discussion
This study was carried out as a guide to assess benefits 
and limitations of single-cell RNA-seq in phenotypic and 
functional identification of chicken leukocytes. Unsu-
pervised graph-based clustering of single-cell RNA-seq 
data from peripheral blood leukocytes delineated the 
cell transcriptomes into 31 clusters. Employing the cur-
rent annotation of the chicken genome it was possible to 
identify 28 of these with reasonable certainty by manual 
curation identifying expression of basic canonical marker 
genes and/or chicken specific immune genes. In addition, 
the remaining three clusters were putatively identified 

by recognition of gene expression patterns that could 
be compared to those of mammalian leukocytes. More-
over, the relative distribution of leukocyte populations 
defined by mRNA expression showed a good correlation 
to that identified by cell surface protein expression and 
flow cytometric characterisation. Hence, we were con-
vinced that the identification of major leukocyte popula-
tions e.g., monocytes, heterophils, B-cells and different 
T-cells, was satisfactory. With respect to numbers and 
types of clusters identified and resolution of the identi-
fication, our results were also comparable to what has 
been reported for PBMC from horses (31 clusters [15]) 
and pigs (36 clusters [14]). In contrast, a study of single-
cell RNA-seq of purified chicken “lymphocytes” reports 
a total of merely nine clusters and only three of these 

Fig. 7  Identification of chicken leukocytes in the indicated populations by phenotypical identification by immunofluorescence labelling and flow cyto-
metric analysis (FACS; blue bars) and by single-cell mRNA expression (mRNA; pink bars). For phenotypical identification, cells were identified as cells in 
the “lymphocyte gate” with cell surface expression of Bu-1, CD4, CD8α, CD8β, TCRγ/δ and TCRα/β (combination of TCRα/Vβ1 and TCRα/Vβ2), respectively. 
Monocytes were identified by FSC/SSC characteristics and cell surface expression of MMR1L4 (MRC1L-B) and heterophils were identified by FSC/SSC 
characteristics and cell surface expression of CD45. Data was expressed as proportions of populations out of live events for each individual hen. For gat-
ing strategies see Additional file 6. For mRNA identification, cells with log2 fold change ≥ 0.25 expression of LOC396098 (Bu-1), CD4, CD8A (CD8α), CD8BP 
(CD8β) and MMR1L4 were considered positive. For TCRγ/δ, cells in clusters 1, 0, 23, 25 and 29 were considered positive, for TCRα/β cells in clusters 3, 8, 11, 
12, 13, 14, 15, 16, 24, 30 and 7 were considered positive and for heterophils cells in monocyte subcluster 2 were considered positive. Data was expressed 
as proportions of positive cells out of the total number of cells after filtering for each individual hen. Results shown are means ± 95% confidence intervals, 
n = 4
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were identified, two T-cell clusters and one B-cell clus-
ter [17]. We believe that differences in the bioinformatic 
analysis of data were the most likely reasons to the dis-
agreeing outcome of that study compared to the pres-
ent results even though they also report lower number 
of reads per cell compared to the current study. Differ-
ences in bioinformatic analyses between the two studies 
include stringency of filtering as well as choice of normal-
isation algorithm when normalising UMI counts. In the 
current study, the SCT transform normalisation method 
that has been specifically developed for single cell data in 
order to preserve biological heterogeneity [21] was used 
while Qu et al. [17] used the log-normalisation. Hafe-
meister and Satija [21] showed that the use of the SCT 
transform instead of the log-transform for normalisation 
of UMI count revealed additional biological substruc-
ture in several cell populations. We therefore believe 
that this difference in normalisation method could have 
impacted the interpretation of results between these 
two studies. Moreover, a study of single-cell RNA-seq of 
chicken spleen cells reports 12 clusters that were identi-
fied as three general T-cell clusters, two TCRγ/δ T-cell 
enriched clusters, two B-cell clusters, two macrophage 
clusters, two granulocyte clusters and one cluster of anti-
gen presenting myeloid cells [18]. This latter study states 
limited resolution as a reason for not being able to iden-
tify different cell types, particularly T-cells, further. In 
comparison, the latter study reports that approximately 
50% less genes were detected per cell [18] compared to 
the present results, which possibly explain their poor 
detection of genes with low expression levels e.g., CD4. 
Thus, the sequencing depth, numbers of analysed cells 
and bioinformatic approach of the current study gener-
ated considerably more information on leukocyte sub-
types compared to these previous reports on chicken 
leukocytes and can probably be considered a “minimal 
requirement” for useful leukocyte subtype phenotyping 
by single-cell RNA-seq. Nonetheless, in some cases e.g., 
regarding expression of CD4 and CD8 genes, it seemed 
a further increased sequencing depth could potentially 
improve the resolution of identified cell subtypes. How-
ever, low gene expression of key transcripts for leukocyte 
phenotyping e.g., of T-cells, is a recognised problem in 
single-cell RNA-seq and other strategies such as chang-
ing the methodology for library preparation might also 
be needed to increase the ability of resolving these phe-
notypes by single-cell RNA-seq [22].

B-cells
Among the leukocyte clusters in the current study, B-cell 
clusters were among the easiest to identify. Cells in the 
seven B-cell clusters showed strong expression of a whole 
panel of typical B-cell genes including transcription fac-
tors, B-cell receptor genes, immunoglobulin genes and 

Bu-1. Despite the ease of identification as B-cells, based 
on RNA-expression patterns for five of these clusters 
we were not able to distinguish between them and des-
ignate their identity or function beyond this. Nonethe-
less, cells in B-cell cluster 10 showed higher expression 
of B-cell receptor genes, MHC II genes, IGLL1, CXCR4, 
BAFF (TNFSF13B), BAFF-receptor (TNFRSF13C) and 
HMGB1 compared to the other B-cell clusters, and they 
also showed a high expression of ribosomal proteins. We 
therefore concluded B-cells in this cluster could be des-
ignated as “activated”, i.e., active in protein synthesis and 
antigen presentation, which was also supported by the 
GO-terms enriched for this cluster.

B-cells in cluster 19 were positioned separately from 
the group formed by the other B-cell clusters indicat-
ing that these cells had an overall more distinctive RNA 
expression pattern than the other identified B-cells. The 
highest expressed gene in this cluster was SOX5 which 
was not expressed in the other B-cell clusters. In human 
B-cells, high SOX5 expression has been shown during 
late stages of differentiation [23] and the GO-term “nega-
tive regulation of response to oxidative stress” enriched 
for this cluster also supports terminal/late-stage differ-
entiation of these cells [24]. In so-called CD11c + atypical 
B-cells (ABCs, [25]) high SOX5 expression is a common 
feature. These ABC B-cells constitute a heterogeneous 
population with so far largely unknown functions that has 
been identified in humans, mice [25] and recently also 
among horse PBMC [15]. However, for chicken B-cells in 
the current cluster 19 we did not observe expression of 
other genes commonly identified for ABCs using single-
cell RNA-seq such as ITGAX (CD11c), TBX21 (T-bet), 
FCRL4, FCRL5, ZEB2 or FGR [25]. Nevertheless, we 
observed increased expression of BANK1 and BHLHE41 
which was likewise observed for horse T-bet + B-cells [15] 
and BANK1 has been associated with human and murine 
ABCs [26, 27]. Additionally, cells in cluster 19 had a high 
expression of BHLHE41, PTPRJ and MAML3 that in 
mammals have been associated with B-1 B-cells [28, 29] 
and marginal zone B-cells [30]. Neither ABC B-cells nor 
native type B-cells have yet been described in chickens 
but it is known that chickens have circulating natural 
antibodies [31] that in mammals are produced by native 
type B-cells such as B1 B-cells and marginal zone B-cells. 
Hence, based on the current knowledge on gene expres-
sion in chicken peripheral B-cells we cannot conclusively 
identify the B-cells in cluster 19 but suggest they are a 
distinct population of late stage differentiated B-cells of 
either “ABC” or native type that are a novel observation 
in chickens.

Myeloid cells
To identify monocytes we used expression of MMR1L4 
(MRC1L-B), a member of the chicken mannose receptor 
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family that is exclusively expressed in chicken mono-
cytes/macrophages and corresponding to the mamma-
lian mannose receptor C-type 1 (MRC1, CD206) [5, 6]. 
By MMR1L4 expression, we initially identified clusters 
5 and 6 that form a distinct separate group, as compris-
ing monocytes. Further sub-cluster analysis of this clus-
ter group revealed six sub-clusters that we identified by 
expression of MMR1L4, MHC II genes and MMP9 as 
five sub-clusters comprising mainly monocytes and one 
comprising mainly heterophils. Chicken spleen macro-
phages have previously been divided into two groups 
by cell surface expression of MMR1L4 and MHC II, 
i.e., MMR1L4highMCHIIlow and MMR1L4lowMHCIIhigh, 
respectively [32]. These populations were also assigned 
functional differences where MMR1L4highMCHIIlow 
cells showed higher phagocytic capacity, higher migra-
tory capacity, lower antigen presenting properties and 
lower expression of some pro-inflammatory cytokines 
compared to MMR1L4lowMHCIIhigh cells. For circulating 
monocytes, we have also observed alterations in cell sur-
face expression of MMR1L4 and MHC II upon bacterial 
infection of chickens with a rapid, transient shift towards 
MMR1L4highMCHIIlow expressing monocytes early 
after infection [33, 34]. In the current data, we defined 
monocyte sub-clusters 0 and 1 as “MMR1L4 high” and 
sub-clusters 3–5 as “MMR1L4 low”. Conversely, sub-
clusters 0 and 1 were generally “MHC II low” and sub-
clusters 3–5 were generally “MHC II high” although the 
relative expression of MHC II varied more between the 
individual subclusters compared to the expression of 
MMR1L4 that showed a more uniform level of expression 
within the two sub-cluster groups. Furthermore, differ-
ences in phenotype and functions between the mono-
cyte sub-clusters could be inferred from expression of 
other immune genes. For example, for cells in “MMR1L4 
high” sub-clusters high expression of PPARG, associated 
with M2-macrophages in mammals [35], and S100A12 
and SPINK2 that have antimicrobial properties [36–38], 
were observed. For cells in “MMR1L4 low” sub-clusters 
several genes associated with cell activation and inflam-
matory responses were highly expressed e.g., ALCAM 
(CD166), LOC39551 (CCL4), SAA and TLR7. Hence, 
the indicated functional differences between monocyte 
sub-clusters showed resemblance with the functional 
differences observed for chicken MMR1L4highMCHIIlow 
and MMR1L4lowMHCIIhigh spleen macrophages [32]. 
Moreover, our analysis indicated that chicken monocytes 
might have more functional subsets within the two gen-
eral “MMR1L4 high” and “low” populations. This would 
be in analogy with mammalian systems where e.g., for 
humans three major and potentially several more minor 
different functional subsets of circulating monocytes 
have been identified [39].

For cells in sub-cluster 2 a high expression of MMP9 
and very low expression of MMR1L4 and MHC II genes, 
were observed. It has previously been shown that MMP9 
is expressed in chicken heterophils but not in chicken 
monocytes [40]. Cells in subcluster 2 also showed a 
high expression of BHLHE40 and NR4A3 that in mam-
mals have been associated with neutrophils [41, 42], i.e., 
the mammalian homologue to chicken heterophils. We 
therefore concluded that subcluster 2 likely contained 
mainly heterophils. In the primary analysis, the hetero-
phils were embedded within monocyte cluster 6. This is 
likely due to their common origin as myeloid cells and 
many common functions, e.g., phagocytosis, resulting in 
similar general mRNA expression patterns that made the 
sub-cluster analysis necessary to distinguish between the 
two cell types. Interestingly, cells in the heterophil sub-
cluster showed a striking “pro-inflammatory” mRNA-
expression profile with high expression of e.g., IL1B, IL18, 
CD83, TLR4, and TRAF3. This could reflect a heterophil 
“high alert state” as sentinel cells with mRNA-expression 
of pre-formed cytokines in granules or secretory vessels 
for rapid release upon challenge, as suggested for mam-
malian neutrophils [43].

T-cells
The identification of different T-cell populations in the 
current data set proved more challenging than that of 
B-cells and monocytes. Such problems have also been 
reported in other studies of single-cell RNA transcrip-
tomics of T-cell subpopulations, for mouse and human 
T-cells [22], as well as for horse PBMC [15] and chicken 
spleen cells [18]. This can be due to limited resolution 
due to insufficient sequencing depth or to differences 
between mRNA expression levels and protein expres-
sion of markers by which T-cell populations are currently 
defined, e.g., CD4, CD8α and CD8β, or more probably 
a combination of both. We found that the expression 
of CD4, CD8α and CD8β never comprised all cells in a 
cluster. Similarly, very low expression of CD4 and CD8α 
was reported for chicken spleen cells [18]. Nonetheless, 
we were able to further identify the clusters comprising 
T-cells into: TCRγ/δ + T-cells, CD4 + cells, CD8αβ + cells 
and “cytolytic cells”.

Chicken TCRγ/δ+ T-cells have so far been divided 
into three main subpopulations based on their cell sur-
face expression of CD8, i.e., TCRγ/δ+CD8-, TCR γ/
δ+CD8αβ + and TCRγ/δ+ CD8αα+ [12]. The TCR γ/
δ+CD8- subpopulation is usually dominant among 
PBMC, which was also the case for the cells used in the 
present study: approximately 94% TCR γ/δ+CD8-, 4% 
TCRγ/δ+ CD8αβ+ and 2% TCRγ/δ+ CD8α+ out of the 
whole TCRγ/δ+ population. By mRNA-expression we 
identified the majority of TCRγ/δ+ T-cells in the distinct 
group formed by clusters 1, 0, 23 and 25 that showed no 
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expression of CD8. For TCRγ/δ+ T-cells in sub-cluster 2 
of the cytolytic cells some CD8α expression was detected. 
The TCRγ/δ+ T-cells in the small cluster 29 showed no 
CD8 expression but because CD8 mRNA expression 
was generally low in the current dataset one may spec-
ulate that cluster 29 cells still comprised some TCRγ/
δ+ CD8 + T-cells based on their close proximity to clus-
ter 7 containing CD8αβ+ cells. Hence, it seems the group 
of clusters 1, 0, 23 and 25 comprised the TCRγ/δ+CD8- 
subpopulation, while cytolytic cell sub-cluster 2 and 
possibly cluster 29 comprised the TCRγ/δ+CD8 + sub-
populations, which correlates well with the relative distri-
bution of TCRγ/δ+ T-cell subpopulations detected by cell 
surface protein expression. Compared to the other TCRγ/
δ+ T-cell clusters, cells in cluster 1 showed a high mRNA 
expression of TPT1 that is considered important for 
TCR-mediated cell proliferation [44], and of ribosomal 
proteins and the cytokine KK34. We therefore concluded 
cells in cluster 1 comprised “activated” TCRγ/δ+ CD8- 
T-cells. Expression of the chicken TCRγ/δ+ T-cell specific 
cytokine KK34 [45] was found in the group of clusters 1, 
0, 23 and 25 but not in cluster 29 or cytolytic subcluster 
2. Similarly, KK34 expression was shown by single-cell 
RNA-seq for cells in the TCRγ/δ+ CD8- cluster, but not 
in the TCRγ/δ+ CD8 + cluster, of chicken spleen cells [18]. 
Cells in cluster 29 showed a distinct high expression of 
transcription factor MYB (c-Myb) that was not seen in 
any other T-cell cluster. In addition to its role in early 
TCRγ/δ+ T-cell development [46], MYB expression in 
mammalian peripheral T-cells has been found involved 
in e.g., proliferation [47], memory T-cell formation and 
T-cell exhaustion [48]. Cells in the group of clusters 1, 
0, 23 and 25 shared a high expression of transcription 
factors MAF, SOX13 and GATA3 that was not evident 
in the other TCR γ/δ+ T-cell clusters. Of these, MAF 
(c-MAF) and SOX13 have been identified as essential 
for the IL-17 producing TCRγ/δ+ T-cell subtype in mice 
[49, 50]. In mammals, GATA3 has several recognised 
functions in T-cells and T-cell development, e.g., as mas-
ter regulator of Th2 differentiation and in regulation of 
group 2 innate lymphoid cell development and function 
[51]. Interestingly, a study of porcine TCRγ/δ+ T-cells 
showed that GATA3 protein expression correlated with 
the CD2- phenotype of TCRγ/δ+ T-cells, which was also 
characterised as CD8α−/dimCD27+perforin- while a sub-
set of CD2 + TCRγ/δ+ T-cells were mainly GATA3- and 
T-bet + CD8αhighCD27−/dimperforin+ [52]. In that study 
it was also suggested that these two TCRγ/δ+ T-cell sub-
types represent different TCRγ/δ+ T-cell lineages and 
that CD2-GATA3 + CD8α−/dimCD27+perforin- TCRγ/
δ+ T-cells may recognise antigen in a TCR-independent 
manner. Hence, the current results on mRNA expres-
sion profiles of chicken TCRγ/δ+ T-cells were likewise 
indicative of at least two distinctive subpopulations, i.e., 

the group of clusters 1, 0, 23 and 25 vs. cluster 29 and 
cytolytic subcluster 2, where the differences in transcrip-
tion factor expression could indicate lineage differences. 
Moreover, cells in cluster 29 but not those in the other 
TCRγ/δ+ T-cell clusters, show expression of CD28 that is 
closely linked to TCR activation. This could thus indicate 
that the GATA3 expressing cells in clusters 1, 0, 23 and 25 
could be TCRγ/δ+ T-cells employing TCR-independent 
antigen recognition in analogy with what was suggested 
for porcine GATA3 + TCRγ/δ+ T-cells. Our observation 
on CD28 expression by TCRγ/δ+ T-cells was also sup-
ported by an early observation on cell surface protein 
expression, that some chicken TCRγ/δ+ CD8 + T-cells 
were CD28 positive while the remaining TCRγ/δ+ T-cells 
were CD28 negative [53].

We identified ten clusters comprising CD4 expressing 
cells that formed their own cluster group. Like the group 
of B-cell clusters, for most of these we were not able to 
distinguish between their mRNA-expression patterns to 
designate their identity or function beyond CD4 + T-cells. 
However, cells in cluster 14 showed a high mRNA expres-
sion of TCR subunits CD3D and CD3E, as well as of TPT1 
[44] and of ribosomal proteins. We therefore concluded 
cells in cluster 14 comprised “activated” CD4 + T-cells. 
Moreover, some cells in cluster 8 showed a high expres-
sion of IL2RA (CD25) and CTLA4, genes that in rest-
ing mammalian CD4 + T-cells are primarily expressed in 
Treg [54]. We therefore putatively identified cluster 8 as 
comprising Treg among other CD4 + T-cells. However, a 
hallmark of mammalian Treg is the expression of tran-
scription factor Foxp3 that was recently also identified in 
the chicken [55]. The chicken Foxp3 gene was still miss-
ing from the reference annotation of the current chicken 
genome, and we therefore used additional methods to 
test for its expression but nevertheless could not detect 
this in the current dataset. This could be due to e.g., lim-
ited resolution, but consequently we currently lack defin-
itive evidence for Treg in cluster 8. Interestingly, cells in 
cluster 11 showed a distinct high expression of SMAD7 
that in mice and humans have been associated with Th1 
CD4+ T-cells involved in autoimmunity [56, 57].

We identified two clusters comprising CD8αβ+ T-cells, 
cluster 7 and cytolytic cell subcluster 1. Cells in cluster 
7 did not show expression of genes associated with cyto-
lytic activity, i.e., GNLY, FASLG, GZMA and GZMM, 
and we therefore concluded this cluster comprises rest-
ing and/or “non-effector/non-cytolytic” CD8αβ+ T-cells. 
In addition, some expression of TARP was also recorded 
for cells in cluster 7 and it is hence likely that this clus-
ter contains a mixture of T-cells. The gene with highest 
expression in cluster 7 was CD226 and this gene also 
showed a high expression in cytolytic cell subcluster 
1. In humans and mice CD226 has a high cell surface 
expression on NK-cells and CTL [58] and our current 
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results thus suggest that it might be a CTL marker in the 
chicken.

Cytolytic cells
Cluster 4, positioned on its own near the other T-cell 
clusters, was found to contain a mixture of cell types and 
due to a high expression of genes associated with cyto-
lytic activity, i.e., GNLY, FASLG, GZMA and GZMM, we 
identified it as comprising cytolytic cells. It appears that 
distinguishing different cell types with cytolytic functions 
can be challenging using single-cell RNA-seq as earlier 
described e.g., for horse PBMC [15]. By further analy-
sis of cluster 4 we identified three subclusters putatively 
identified as mainly NK-cells in subcluster 0 (high expres-
sion of CD247 (CD3ζ) [59]) and low expression of CD3D, 
CD3E, TARP and TRBV6-5), mainly CTL in subcluster 1 
(high expression of TRBV6-5 (TCRβ), CD8A and CD8BP) 
and mainly TCRγ/δ+ CD8+ T-cells in subcluster 2 (high 
expression of TARP). Interestingly, the relative expression 
of GNLY, FASLG, GZMA and GZMM showed different 
patterns for these cytolytic cell types, which could indi-
cate cell type differences in preferential killing mecha-
nisms. It should however be noted that to our knowledge, 
the hens used in the current study were not experiencing 
any infections and the cytotoxic cells should probably be 
regarded as “resting”. Hence, the expression of cytolytic 
activity genes might well be different when the cells are 
engaged in killing. For the TCRγ/δ+ CD8+ T-cells in sub-
cluster 2 a high expression of IL2RB was noted, which 
corresponds well with the observation that spontaneous 
cytotoxicity of chicken spleen TCR γ/δ+CD8 + T-cells was 
enhanced by preincubation with interleukin-2 [60].

Conclusions
Taken together, using single-cell RNA-seq we were able 
to identify most major leukocyte types with reasonable 
certainty and the results corresponded well with those 
obtained using conventional flow cytometric leukocyte 
phenotyping. Among B-cells we identified a subpopu-
lation of putative terminally differentiated B-cells that 
are a novel observation among chicken leukocytes. For 
monocytes and TCRγ/δ T-cells we were able to iden-
tify and verify functional aspects of previously observed 
subpopulations as well as making novel observations. In 
depth identification of other T-cell subtypes proved more 
challenging although some new observations were made 
e.g., regarding cytotoxic cell types. This methodology 
definitively has benefits for cell identification and func-
tional analysis in a species like the chicken where species 
specific reagents for classical immunological analyses are 
limited and it will further improve with a better annota-
tion of the chicken genome. Data from the current study 
will probably provide more novel information when more 
knowledge on mRNA expression in chicken leukocytes is 

obtained, e.g., by transcriptomic analysis of purified cell 
populations and of cells during different immunological 
responses.

Methods
Chickens, sample collection and leukocyte preparation
Four clinically healthy 24-week-old Dekalb White Leg-
horn-type layer hens were sampled for this study. The 
hens were reared at a conventional pullet producer 
and moved to the high biosecurity animal facilities at 
the Swedish Veterinary Agency, Uppsala, Sweden, two 
weeks prior to sample collection. They belonged to a 
larger group of 15 hens and 3 cocks used for SPF-egg 
production and blood donation and were group housed 
in a pen with chopped straw on the floor, perches, lay-
ing nests, dust baths and water and feed ad libitum in a 
room with negative pressure ventilation. At the time of 
sampling some hens in the group had commenced laying 
but it was not known if the individuals sampled had laid 
eggs yet. Blood was collected from the jugular vein into 
sterile heparinised blood collection tubes (#368,494, BD 
Vacutainer ®, BD Life Sciences). The blood was diluted 
1:1 in sterile phosphate buffered saline without Ca2+ and 
Mg2+ at pH 7 (PBS) and peripheral blood leukocytes were 
isolated by Ficoll-Paque PLUS (GE Healthcare Life Sci-
ences) gradient centrifugation as previously described 
[61]. Cells were suspended in PBS supplemented with 2% 
foetal bovine serum (Gibco® #10,082,147, ThermoFisher 
Scientific) and 1 mM EDTA and the number of thrombo-
cytes in the samples were reduced by immunomagnetic 
cell separation using the EasySep PE Positive Selection 
Kit II (#17,684, StemCell Technologies) and PE-conju-
gated mouse monoclonal antibody to chicken CD41/61 
(clone 11C3, #AM05550PE-N, OriGene) according to 
the StemCell Technologies depletion protocol no. 28,898 
as previously described for chicken leukocytes [61]. The 
depleted cell preparations were suspended in PBS with 
0.04% bovine serum albumin (#A7030, Sigma-Aldrich), 
viability of cell preparations was estimated by trypan blue 
exclusion to 92–97%.

Library preparation and sequencing
Cell samples were submitted within 3.5 h of blood sample 
collection to the Science for Life Laboratory SNP&SEQ 
Technology Platform, Uppsala, Sweden for library prep-
aration and sequencing. Preparation of libraries from 
approximately nine thousand cells per bird was per-
formed from fresh purified leukocytes with the Chro-
mium NextGEM Single Cell 3′ v3.1 kit (10x Chromium), 
resulting in successful preparations from approximately 
five thousand cells per bird. Sequencing was performed 
using a NovaSeq SP flow cell (Illumina) to an average tar-
get depth of 35,000 reads/cell. Two lanes were used for 
each sample.
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Read counting
Read counting was performed using the 10x genomics 
software Cell Ranger [62] (Version: 7.0.0) standard work-
flow with the existing reference genome and genome 
annotation for the chicken (NCBI taxa: 9031. Assembly: 
RefSeq GCF_016699485.2; GenBank GCA_016699485.1). 
The used genome assembly was from 2021 and was 
assembled by the Vertebrate Genomes Project. The 
annotation (annotation release ID: 106) used was from 
2021/2022.

Read counting was performed for each sample using 
Cell Ranger count, with the resulting matrix files used 
for downstream analysis. The computational pipeline 
includes read trimming, genome alignment using STAR 
(Spliced Transcripts Alignment to a Reference) [63], 
transcriptome alignment of reads based on transcrip-
tome compatibility of mapped reads, Barcode correction, 
UMI counting and cell calling based on the EmptyDrops 
method [64, 65].

Data preparation and integration
Putative doublets were removed from the matrices using 
the DoubletDetection [66] package in python. After dou-
blet prediction the barcode list was edited to remove 
putative doublets.

Each matrix, barcode, and feature file set were loaded 
into R (Version: 4.2.2) as a Seurat [67] (Version: 4.3.0) 
object. Cells with a higher mitochondrial percentage than 
20%, cells with a lower feature count than 300, and fea-
tures that appear in less than three cells were filtered out 
from each object. RBCs were also filtered out based on 
HB-gene expression; cells with more than 5% HB genes 
were filtered out. After filtering, the data were nor-
malised in Seurat using SCTransform() independently on 
each of the four objects with method “glmGamPoi”.

The data was integrated on 3000 variable features that 
were prepared using PrepSCTIntegration() and calcu-
lated using SelectIntegrationFeatures() on the four Seurat 
objects. Anchor cells were defined using FindIntegra-
tionAnchors() with normalization.method set to “SCT”. 
The anchors were then used for integration using Inte-
grateData() with normalization.method set to “SCT”.

Cluster determination
Dimensionality reduction was performed using PCA on 
the variable features calculated for the data integration. 
The cumulative proportion of variance was calculated 
and used to determine how many principal components 
(PCs) to keep. The cut-off was set so that 90% of variance 
would be conserved; this resulted in 27 PCs being used 
for downstream analyses for the complete dataset.

After PCA, the nearest neighbours for each cell were 
computed using FindNeighbors() on the first 27 dimen-
sions. FindClusters() was called to establish cluster 

boundaries using the standard Louvain algorithm. The 
resolution was evaluated using clustree [68]. The default 
resolution of 0.8 was used when analysing the entire 
dataset and different resolutions were evaluated and used 
when re-analysing subsets of data.

For cluster visualisation UMAP was run using 
RunUMAP() with reduction set to “pca” on the first 27 
dimensions.

Cluster annotation
Annotations of the clusters were performed using a com-
bination of manual annotation by inspection of differen-
tially expressed genes and GO term enrichment.

The marker gene-based annotation was performed by 
sub-setting the cells by cluster identity and running the 
FindMarkers() function in on these cells with assay set to 
“SCT” and only.pos set to TRUE.

GO- and KEGG-term enrichment analysis was per-
formed using the R-library gprofiler2 [69]. The GO terms 
were created per cluster using gost() with the top 100 dif-
ferentially expressed genes as the query. The GO search 
was performed against the reference database for Gallus 
gallus.

Potential expression of recently discovered chicken 
FOXP3 [55] that was still missing from the reference 
annotation of the chicken genome was tested both by 
manually adding the putative FOXP3 gene to the anno-
tation file before read counting and looking for expres-
sion (in one sample) and by using short nt blast on a blast 
database constructed of all reads per sample and query-
ing the mRNA sequence against this database. Neither 
approach showed any indication of expression of FOXP3 
in the current samples.

Re-analysis
The major clusters were all re-analysed using the above 
steps on the corresponding cell subsets. This was done to 
investigate if any biologically significant subgroups could 
be found within the original clusters.

Immunofluorescence labelling of purified leukocytes
Immunofluorescence labelling and flowcytometric 
analysis was used to identify leukocytes according to 
cell surface expression of lineage markers as previously 
described [70]. In brief, samples of purified leukocytes 
were labelled with either of the three antibody panels 
listed in Additional file 5 for 20 min at room temperature 
in the dark, panel 1 was used on samples both prior and 
after immunomagnetic separation while panels 2 and 3 
were only used with depleted cell samples. LIVE/DEAD® 
fixable Aqua dead stain (#L34957, ThermoFisher Scien-
tific) was used for dead cell exclusion in all panels. Cells 
were subsequently washed and fixed with 1.25% parafor-
maldehyde and stored at 4 °C until analysis.
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Flow cytometry was performed using a BD FACSVerse 
(BD Biosciences), equipped with 488  nm blue, 633  nm 
red and 405  nm violet lasers and results were analysed 
using the FACSDiva (BD Biosciences) software. Single-
stained compensation controls and fluorescence minus 
one (FMO) negative controls were included in the assays, 
the gating strategies are shown in Additional file 6 and 
samples were recorded until 30,000 events in the CD45 
gate were acquired. Titrations of all antibodies were per-
formed to determine optimal labelling conditions prior 
to the experiment.
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