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Abstract 

Background Significant differences in immune responses, prevalence or susceptibility of diseases and treatment 
responses have been described between males and females. Despite this, sex-differentiation analysis of the genetic 
architecture of inflammatory proteins is largely unexplored. We performed sex-stratified meta-analysis after protein 
quantitative trait loci (pQTL) mapping using inflammatory biomarkers profiled using targeted proteomics (Olink 
inflammatory panel) of two population-based cohorts of Europeans.

Results Even though, around 67% of the pQTLs demonstrated shared effect between sexes, colocalization analysis 
identified two loci in the males (LINC01135 and ITGAV) and three loci (CNOT10, SRD5A2, and LILRB5) in the females 
with evidence of sex-dependent modulation by pQTL variants. Furthermore, we identified pathways with relevant 
functions in the sex-biased pQTL variants. We also showed through cross-validation that the sex-specific pQTLs are 
linked with sex-specific phenotypic traits.

Conclusion Our study demonstrates the relevance of genetic sex-stratified analysis in the context of genetic dissec-
tion of protein abundances among individuals and reveals that, sex-specific pQTLs might mediate sex-linked pheno-
types. Identification of sex-specific pQTLs associated with sex-biased diseases can help realize the promise of individu-
alized treatment.
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Background
Differences in inflammation between males and females 
can explain sex-biased susceptibility and severity of vari-
ous common diseases such as atherosclerosis, cancer, 
autoimmune diseases and many more [1]. While females 
are less prone to infectious diseases than males, they 
account for more than 80% of individuals presented with 
autoimmune diseases such as systemic lupus erythema-
tosus (SLE), rheumatic arthritis (RA) and autoimmune 
thyroid disease [2]. Sex differences in immunological 
responses and disease susceptibility may be influenced 
by the complex interaction of sex hormones [3], host 
microbiome [4], immune-regulatory genes located on the 
X-chromosome [5] and environmental exposures [6–8]. 
It is also possible that genetic polymorphisms associated 
with immune phenotypes partially account for sex-based 
differences in immune response. In this regard and given 
the recent recognition of sex-stratified analysis, studies in 
the context of epigenetics [9, 10] and transcriptomics [11, 
12] have been conducted. The disproportionate sex influ-
ence on all these phenotypes, including treatment effi-
cacy [13], makes it imperative to understand the role of 
sex on modulation of inflammation in complex traits and 
diseases which will ultimately help our quest of develop-
ing personalized treatments.

Many of the key inflammatory markers which are 
released into the bloodstream during inflammation and 
are associated with chronic diseases are proteins, the 
functional molecules encoded by the genome [14]. A 
plethora of protein quantitative trait loci (pQTL) stud-
ies have been conducted to characterize genetic variants 
associated with circulating protein levels in both healthy 
and disease individuals [15–21]. Despite the burgeon-
ing number of studies reporting sex-based differences in 
the immune response, most of the research on pQTLs 

analysis mainly adjust for sex differences in the model 
without seeking to identify sex-specific pQTLs. A recent 
study clearly demonstrated sex-dependent effect on the 
circulating concentrations of inflammatory proteins [22]. 
Therefore, identifying the precise factors driving the 
inter-individual variability in inflammatory protein levels 
especially in sex-dependent fashion will help to compre-
hensively understand sex differences in inflammatory-
driven diseases and to make meaningful prediction of 
individual risk for diseases.

In the present study, using two population-based 
cohorts, we aimed to identify which genetic variants 
affect inflammatory protein levels in sex-specific man-
ner. We identified and compared genetic variants associ-
ated with protein concentrations profiled with the Olink 
Inflammation panel using meta-analytic approach in 
males and females separately. We demonstrate that while 
the regulation of numerous pQTL variants is independ-
ent of sex, some key loci act discordantly between sexes 
and are correlated with sex-dependent traits.

Results
We aimed to identify single nucleotide polymorphisms 
(SNPs) associated with plasma protein concentrations 
profiled in males and females samples separately using 
two different population-based cohorts. To enhance sta-
tistical power and to detect robust signals, pQTL asso-
ciation results of 66 inflammatory proteins and 4,028,465 
SNPs of both cohorts were integrated using meta-analy-
sis. A general overview of the cohorts and analyses con-
ducted is displayed in Fig. 1.

Identification of pQTLs in males
In the males (N = 318), we observed a total of six genome-
wide significant pQTLs (P < 5 ×  10–8) which comprises of 

Fig. 1 Graphical representation of study cohorts, design and analysis conducted. This study utilized two population-based cohorts (500FG & 
300 BCG) of individuals of European decent. Imputed genetic data and plasma protein abundances profiled with the Olink inflammatory panel 
were available for protein quantitative trait (pQTL) mapping in sex-dependent fashion. The resulting summary statistics were integrated using 
the meta-analytic approach for males and females separately. Colocalization and functional enrichment analysis of the identified meta-analyzed 
pQTL variants were conducted. Finally, we cross-validated the identified pQTL variants with previously published molecular traits
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two trans-pQTL variants (rs3213964 and rs11207327) 
regulating TNFRSF9 and CD5 levels respectively. The 
four cis-acting pQTL variants (lying 250  kb window 
around the tested protein-coding gene) were associated 
with CCL25, CD6, IL-10RB and IL-18R1 proteins. Sum-
mary of the meta-analyzed results are represented with 
Manhattan plot (Fig. 2A) while regional association plots 
are used to zoom into the genomic regions surround-
ing the index pQTL variants of each significant pQTL 

locus (Fig.  2B). In general, the cis-acting pQTL variants 
showed stronger genetic associations. For example, the 
most strongly associated intronic SNP rs7605284 with 
IL-18R1 (P = 7.22 ×  10–19,Zscore = 8.871) followed by SNP 
rs2843699 correlating with IL-10RB (P = 3.29 ×  10–12, 
Zscore = -6.965) were all residing in the cis-regions. 
Interestingly, trans-pQTL variant (rs11207327) corre-
lating with CD5 levels resides in the LINC01135 locus, 
suggesting that genetic polymorphisms in both the 

Fig. 2 Summary of pQTL meta-analysis results in males. A Manhattan plot depicting the association results of significant genetic variants 
(P < 0.05). The red bold horizontal line marks the genome-wide significant threshold (p-value < 1 ×  10–8) and the black dashed denotes 
the suggestive threshold (p-value = 5 ×  10–5). Top pQTL variants and their correlated proteins are displayed on the plot. B Regional association plots 
of the genome-wide significant loci (p < 1 ×  10–8). The -log10 association p-values are plotted on the y-axis against physical position (NCBI build 36) 
of each marker on the x-axis. The pQTL variants are color coded according to their correlation coefficient  (r2) with the top SNP using the hg19/1000 
Genomes European samples
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protein-coding and non-coding regions play a role in 
regulating variations in plasma protein levels. The most 
significantly associated genetic variant for each protein in 
the males is reported in Table 1. Detailed summary sta-
tistics for the results of pQTL mapping in each cohort 
and meta-analyzed results with suggestive associations 
for the males are presented in Table S1.

Identification of pQTLs in females
Next, we repeated the meta-analysis of the 66 proteins 
in the females (N = 359) to uncover SNPs controlling 
inflammatory protein levels in females. We identified a 
total of nine genome-wide significant pQTLs compris-
ing four trans pQTL variants (rs12634152, rs608574, 
rs12977062 and rs67015567) which affected IL-12B, IL18, 
PD-L1 and CX3CL1 abundances respectively. The five 
cis-acting pQTL variants were associated with proteins 
such as IL-18R1, MCP-2, CCL25, CD6, and IL-10RB. 
The SNP rs1985329 showing the most significant asso-
ciation (P = 1.15 ×  10–26) is within an intron mapping to 
IL18R1. All the 9 pQTLs showed stronger associations in 
females than in males except rs2843699-IL-10RB asso-
ciation (P = 2.43 ×  10–11, Zscore = -6.678) in females and 
(P = 3.29 ×  10–12,Zscore = -6.965) in males. The general 
meta-analyzed results are summarized with Manhat-
tan plot (Fig. 3A) and the genomic regions around each 
of the genome-wide significant pQTL variants are rep-
resented with regional association plots (Fig.  3B). The 
trans-pQTL SNP rs12634152 on chromosome 3 which 
significantly correlated with IL-12B mapped to the LPP 
(Lipoma-preferred partner) locus. Interestingly, genetic 
polymorphisms in the LPP gene are potential risk fac-
tors for autoimmune diseases such as celiac disease and 
Addison’s diseases [23, 24]. Table 2 shows the lead pQTL 
results for all the 66 proteins interrogated in the females. 
Suggestive associations for each cohort identified in the 
females after pQTL mapping and meta-analysis are pre-
sented in Table S2.

Colocalization analysis implicates sex‑specific pQTL loci
Next, to identify genomic regions that are shared 
between males and females or unique pQTLs variants, 
we performed genetic colocalization analysis for all the 
genome-wide significant loci. A tested region with pos-
terior probability (PP4 >  = 0.75) show a common asso-
ciation in both males and females. In the males, we 
compared the six significant loci with the same regions 
in the females. There was strong evidence of shared 
causal variant with PP4 values ranging from 0.94 to 0.99 
in four genomic loci: CCL25, CD6, IL10RB and IL18R1 
(Fig.  4A.). Interestingly, at the LINC01135 and ITGAV 
loci (Fig.  4B), the PP4 values were just 0.06 and 0.07 
respectively, which suggests lack of shared causal variant 

between sexes. In fact, index SNP look-up showed that 
the index SNPs in these regions specifically regulate pro-
teins in males. For example, at the LINC01135 locus, the 
upstream variant rs11207327 showed strong association 
with CD5 (P = 4.85 ×  10–8, Zcore = -5.457) in males but 
was not significant in females (P = 0.26, Zscore = -1.126). 
We also observed a higher PPH1 value (0.693) and a 
lower PP3 value of 0.0185, supporting the evidence that 
only males have significant associations in the tested 
region (Table  S3). Individuals carrying the G allele on 
average produced the highest abundance of CD5 lev-
els. Similarly, at the ITGAV locus, while the index SNP 
rs3213964 surpassed the genome-wide significant thresh-
old (P = 1.63 ×  10–8, Zscore = -5.647) in the males, this 
effect was completely masked in the females (P = 0.23, 
Zscore = -1.188). This observation was further by sup-
ported by the higher PP1 and lower PP3 values 0.894 and 
0.0069 (Table S3).

We observed on average higher production of 
TNFRSF9 levels for individuals with the A allele. To elu-
cidate whether the identified two male-specific loci were 
not driven by sample size variation or up-scaling of sam-
ple size via meta-analysis, we interrogated such effect in 
the biggest cohort (500FG) with comparatively similar 
sample size (Males = 184, females = 187) and a similar 
pattern was observed (Figure  S1A). Of note, of all the 
male-specific loci detected, the lead pQTL SNPs were all 
trans-pQTLs.

We next performed similar colocalization analy-
sis in the nine loci detected after pQTL mapping in 
females. For six loci, namely IL-10RB, CCL8, IL-18RAP, 
LPP, CD6, and ELAVL1 we did not observe any female-
specific effects as affirmed by the strong colocalization 
with PP4 values ranging from 0.89 to 0.99 (Fig. 5A). On 
the other hand, no evidence of shared causal variant 
was detected in three loci and the lead SNPs in these 
regions exhibited trans-association only in females 
(Fig. 5B). For example, at the CNOT10 locus (PP4 = 0.05), 
the downstream SNP rs67015567 on chromosome 3, 
linked with CX3CL1 levels was significant in females 
(P = 1.2 ×  10–8, Zscore = -5.70) but not in the males 
(P = 0.98, Zscore = -0.028). While the females carrying 
the C allele on averaged produced the highest level of 
CX3CL1, we observed the contrary in the males. Also, 
at the LILRB5 locus (PP4 = 0.06), while the association of 
SNP rs12977062 on chromosome 19 with PD-L1 reached 
genome-wide significant in females (P = 4.34 ×  10–8, 
Zscore = 5.476), no significant association was detected 
in males (P = 0.37, Zscore = -0.901). Similarly for PD-L1 
levels, females with the T allele produced the highest lev-
els while their counterpart males produced the least. We 
further observed female-specific effect at the SRD5A2 
locus (PP4 = 0.19) where the association strength of the 
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Table 1 Summary statistics of index-pQTLs for males after meta-analysis

MarkerName A1 A2 Weight Zscore P.value Direction chr pos Protein

rs7605284 t g 318 8.871 7.23E‑19  +  + 2 103044175 IL.18R1
rs8105816 t c 318 7.001 2.54E‑12  +  + 19 8099017 CCL25
rs2843699 t c 318 ‑6.965 3.29E‑12 – 21 34663850 IL.10RB
rs4939488 t c 318 6.944 3.80E‑12  +  + 11 60786474 CD6
rs3213964 a g 318 ‑5.647 1.63E‑08 – 2 187540732 TNFRSF9
rs11207327 a g 318 ‑5.457 4.85E‑08 – 1 59371517 CD5
rs7259738 c g 318 -5.425 5.79E-08 – 19 53308330 CD40

rs2041190 a g 318 5.407 6.42E-08  +  + 17 32634541 MCP.2

rs3098547 a g 318 5.395 6.86E-08  +  + 15 27873562 HGF

rs9771768 a g 318 5.392 6.98E-08  +  + 8 139165953 IL7

rs1986471 t c 318 5.337 9.43E-08  +  + 3 127001452 OPG

rs9323902 t g 318 -5.296 1.19E-07 – 14 94572110 LAP.TGF.beta.1

rs9983324 a g 318 -5.264 1.41E-07 – 21 21130809 CXCL6

rs678815 c g 318 -5.258 1.46E-07 – 11 102713777 MMP.1

rs72800254 a g 318 -5.224 1.75E-07 – 16 83201614 TNFRSF14

rs58814158 t g 318 -5.208 1.91E-07 – 13 110820255 FGF.23

rs924935 a g 318 5.161 2.45E-07  +  + 3 16172032 CCL28

rs7530589 a g 318 -5.134 2.83E-07 – 1 22756991 TRANCE

rs2346994 a g 318 5.109 3.24E-07  +  + 16 26478953 CCL23

rs7429951 a g 318 -5.104 3.33E-07 – 3 18031227 uPA

rs12578430 t c 318 5.096 3.47E-07  +  + 12 104093212 CDCP1

rs72783206 a g 318 -5.067 4.03E-07 – 2 34173056 IL.17A

rs7151919 a g 318 -5.049 4.43E-07 – 14 21139505 CSF.1

rs1963248 t g 318 5.04 4.65E-07  +  + 1 74346006 FGF.19

rs112953000 t c 318 -5.01 5.45E-07 – 21 37365315 MCP.4

rs2604330 a g 318 4.994 5.92E-07  +  + 8 15729358 TNFB

rs2568222 a g 318 4.987 6.12E-07  +  + 2 85377979 PD.L1

rs73232950 c g 318 4.981 6.32E-07  +  + 21 46208128 CASP.8

rs1233829 a t 318 4.972 6.62E-07  +  + 1 198041374 CXCL11

rs10977778 c g 318 -4.97 6.69E-07 – 9 9459604 CXCL10

rs2543063 t c 318 4.954 7.27E-07  +  + 8 39832166 Flt3L

rs112770619 a g 318 -4.942 7.73E-07 – 8 119484547 TWEAK

rs4942873 t c 318 4.941 7.76E-07  +  + 13 50392047 IL6

rs60844779 a t 318 4.925 8.45E-07  +  + 5 149456772 CCL19

rs2165385 t c 318 -4.924 8.46E-07 – 18 27371049 CST5

rs4854604 a c 318 4.924 8.50E-07  +  + 3 133780263 CD8A

rs34011530 c g 318 4.894 9.87E-07  +  + 11 1689461 NT.3

rs2552275 c g 318 4.892 9.96E-07  +  + 8 6022581 CD244

rs9324481 c g 318 -4.887 1.03E-06 – 8 139121726 CXCL1

rs9502959 t c 318 -4.877 1.08E-06 – 6 206599 TRAIL

rs1814451 t c 318 4.876 1.09E-06  +  + 17 47540123 DNER

rs72977655 t c 318 -4.867 1.13E-06 – 2 235708696 EN.RAGE

rs4335544 a c 318 4.854 1.21E-06  +  + 11 21,330,182 ADA

rs2570672 c g 318 4.85 1.24E-06  +  + 8 6026307 IL18

rs75674858 a g 318 4.847 1.25E-06  +  + 4 44388139 IL8

rs10933215 t c 318 4.843 1.28E-06  +  + 2 228661357 IL10

rs4328681 a g 318 4.833 1.34E-06  +  + 2 45261612 MMP.10

rs357292 t g 318 4.79 1.67E-06  +  + 5 38923732 OSM

rs493480 c g 318 4.777 1.78E-06  +  + 15 55879574 CXCL9
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lead SNP rs608574 on chromosome 2 with IL18 was sig-
nificant (P = 6.95 ×  10–10, Zscore = -6.167) in females, 
but not in males (P = 0.051, Zscore = -1.952). Individuals 
carrying the C allele produced the highest levels of IL18 
but the average levels for the C and G alleles were com-
parable in the males. The female-specific genetic vari-
ants were also apparent in the analysis considering only 
the largest cohort (Figure  S1B), suggesting that sample 
size differences cannot account for this effect. In all the 
three genomic regions, we observed lower PP2 values 
compared to PP1 values, suggesting the presence of sig-
nificant associations only in. females (Table S4). Further-
more, we observed an interaction effect between sex and 
the genotypes of the sex-specific pQTLs, and all but one 
was statistically significant (Figure S2, Table S5), support-
ing the robustness of the findings.

Conditional analysis identifies secondary pQTL signals
Colocalization analysis with coloc is built under the 
assumption of a single causal variant per trait and we 
observed instances of complex LD relationship between 
some index pQTL variants and neighboring SNPs. For 
example, variants associated with TNFRSF9 (Fig. 2) and 
IL18 and PDL1 (Fig.  3) among the males- and females- 
specific loci. After performing conditional analysis on the 
top pQTL variants, as summarized in Table S6, no genetic 
variants reached the significant threshold (pC < 5 ×  10–8) 
for IL18 and CX3CL1 proteins. In the case of TNFRSF9 
conditioned on rs3213964, 28 pQTL variants were sig-
nificant, However, these variants showed various degree 
of LD correlation with the top pQTL variant  (R2 ranging 

from 0.239 to 0.754). Interestingly, for CD5 conditioned 
on rs11207327, the four significant pQTL variants 
(rs2764912, rs11207331, rs10889121, and rs4912382) 
have no correlation with the top SNP  (R2 ranging from 
0 to 0.1). Similar observation was made for PDL1 condi-
tioned on rs12977062. The four significant pQTL variants 
(rs2361797, rs73058787, rs380731, and rs36068997), cor-
related poorly with the index pQTL  (R2 ranging from 0 to 
0.1), suggesting the presence of multiple or independent 
associations at the sex-specific loci.

Exploring the proportion of sex‑specific pQTLs 
across the genome
After identifying sex-specific pQTLs using the genome-
wide significant threshold, we next wondered to what 
extent the pQTLs are sex-dependent if we reduce the sta-
tistical threshold. To do this, we selected pQTL variants 
for each of the 66 proteins used for meta-analysis sepa-
rately for each sex at a nominal threshold (P < 0.05). In 
the males, the total number of pQTL variants association 
(P < 0.05) range between 160,302 and 198, 838 depend-
ing on the protein we tested (Fig.  6A). The number of 
these pQTLs with significant association (P < 0.05) only 
in males ranged between 152,955 and 189,844 (Figure 
S3A), which in percentage terms, spans between 3.80% 
to 4.71% of the total genetic variants of over 4.0 mil-
lion interrogated (Figure S3C). In females, the identified 
pQTLs (P < 0.05) with consistent effect size direction in 
both cohorts for all the 66 proteins ranged from 178,773 
to 199,759 (Fig. 6B). The number of these pQTL variants 
that were significant (P < 0.05) only in females ranged 

Table 1 (continued)

MarkerName A1 A2 Weight Zscore P.value Direction chr pos Protein

rs9855230 a g 318 4.751 2.03E-06  +  + 3 64642056 CCL4

rs4752902 a g 318 4.742 2.12E-06  +  + 11 48148779 LIF.R

rs11017041 a c 318 -4.741 2.12E-06 – 10 131795756 TGF.alpha

rs1034527 t c 318 -4.738 2.16E-06 – 8 120939125 SCF

rs744768 a g 318 4.732 2.22E-06  +  + 7 132014951 CCL3

rs10756341 t c 318 4.725 2.31E-06  +  + 9 12203051 ST1A1

rs1216465 a c 318 4.723 2.33E-06  +  + 11 100343360 MCP.1

rs11881877 a g 318 -4.712 2.46E-06 – 19 53401760 IL.12B

rs57254266 a g 318 4.711 2.47E-06  +  + 11 5352458 VEGFA

rs9771768 a g 318 4.704 2.55E-06  +  + 8 139165953 CXCL5

rs4839524 a g 318 -4.704 2.55E-06 – 1 116800201 X4E.BP1

rs167500 a c 318 4.684 2.81E-06  +  + 18 1907316 SIRT2

rs85023 a g 318 4.623 3.78E-06  +  + 20 45181296 CX3CL1

rs1759325 t c 318 -4.616 3.91E-06 – 10 59838496 CCL11

rs7964436 t c 318 4.581 4.64E-06  +  + 12 15561776 CCL20

rs7628951 a g 318 4.562 5.06E-06  +  + 3 56457705 AXIN1

rs8060853 a g 318 4.553 5.29E-06  +  + 16 30403858 FGF.21
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from 169,779 to 191,123 (Fig. 6B) which shows a percent-
age of 4.21% to 4.74% (Figure S3C).

Aiming to minimize the degree of false positive asso-
ciations, we next applied a strong suggestive association 

threshold (P < 5 X  10–5). The numbers of sex-specific 
pQTLs ranged from 79 to 309 for the males (Fig. 6C) and 
from 64 to 520 (Fig. 6D) in females. The limited percent-
age of sex-specific pQTLs at a lenient threshold or the 

Fig. 3 Summary of pQTL meta-analysis results in females. A Manhattan plot illustrating the association results of significant genetic variants 
(P < 0.05). The red bold horizontal line denotes the genome-wide significant threshold (p-value < 1 ×  10–8) and the black dashed denotes 
the suggestive threshold (p-value = 5 ×  10–5). Top pQTL variants and their correlated proteins are displayed on the plot. B Regional association plots 
of the genome-wide significant loci (p < 1 ×  10–8). The -log10 association p-values are plotted on the y-axis against physical position (NCBI build 36) 
of each marker on the x-axis. The pQTL variants are color coded according to their correlation coefficient  (r2) with the top SNP using the hg19/1000 
Genomes European samples
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Table 2 Summary statistics of index-pQTLs for females after meta-analysis

MarkerName Allele1 Allele2 Weight Zscore P.value Direction chr pos Protein

rs1985329 t c 359 ‑10.689 1.15E‑26 – 2 103058208 IL.18R1
rs4939488 t c 359 7.983 1.43E‑15  +  + 11 60786474 CD6
rs1204494 t c 359 ‑7.017 2.27E‑12 – 19 8060420 CCL25
rs2843699 t c 359 ‑6.678 2.43E‑11 – 21 34663850 IL.10RB
rs2041190 a g 359 6.336 2.36E‑10  +  + 17 32634541 MCP.2
rs608574 c g 359 ‑6.167 6.95E‑10 – 2 31833066 IL18
rs12634152 t c 359 ‑6.116 9.58E‑10 – 3 188121019 IL.12B
rs67015567 t c 359 ‑5.7 1.20E‑08 – 3 32828703 CX3CL1
rs12977062 t c 359 5.476 4.34E‑08  +  + 19 54755922 PD.L1
rs175133 t c 359 -5.414 6.17E-08 – 11 60859791 CCL4

rs62094708 a g 359 -5.397 6.78E-08 – 18 56159522 Flt3L

rs6486739 a g 359 5.391 7.01E-08  +  + 12 129440318 CST5

rs13075467 t c 359 -5.338 9.39E-08 – 3 135609551 CXCL6

rs1954112 t c 359 -5.304 1.13E-07 – 14 86674145 CD244

rs10816341 t c 359 -5.293 1.21E-07 – 9 98440825 CASP.8

rs1880614 t c 359 5.255 1.48E-07  +  + 7 53247740 TRANCE

rs1741298 t c 359 -5.25 1.52E-07 – 20 4133990 HGF

rs1959748 t c 359 5.248 1.53E-07  +  + 14 86683256 CCL3

rs7710132 c g 359 5.244 1.57E-07  +  + 5 51345337 TGF.alpha

rs56875031 c g 359 -5.235 1.65E-07 – 8 6252045 FGF.21

rs6842405 t c 359 5.211 1.88E-07  +  + 4 179558777 IL10

rs36018306 t g 359 -5.195 2.04E-07 – 19 52655428 OSM

rs4299800 c g 359 -5.18 2.22E-07 – 6 169337246 FGF.23

rs33234 a g 359 5.179 2.24E-07  +  + 12 31030018 EN.RAGE

rs562966 t c 359 5.168 2.36E-07  +  + 11 120076116 TNFRSF14

rs16922761 t c 359 5.162 2.44E-07  +  + 11 95708152 MMP.10

rs2191835 t c 359 -5.148 2.63E-07 – 2 229942970 IL.17A

rs6460958 a g 359 -5.13 2.89E-07 – 7 12572904 CXCL9

rs7936105 t c 359 -5.03 4.91E-07 – 11 77610834 TNFB

rs10270821 t c 359 -5.02 5.18E-07 – 7 124051449 TNFRSF9

rs9270845 t c 359 -4.999 5.77E-07 – 6 32570571 MCP.1

rs7818631 t c 359 4.976 6.48E-07  +  + 8 96427828 FGF.19

rs2102759 a g 359 -4.963 6.93E-07 – 2 161866727 CCL23

rs13254474 t c 359 -4.959 7.08E-07 – 8 2918923 IL8

rs7843880 a g 359 -4.944 7.67E-07 – 8 9099173 CCL11

rs73085912 a g 359 4.92 8.67E-07  +  + 3 54197988 MMP.1

rs17523444 a g 359 -4.919 8.69E-07 – 5 15657540 VEGFA

rs324347 a g 359 4.91 9.09E-07  +  + 5 104092939 OPG

rs3772382 t c 359 4.908 9.19E-07  +  + 3 24185307 LIF.R

rs2303147 t c 359 -4.906 9.28E-07 – 19 49143025 CD5

rs396832 a g 359 4.903 9.45E-07  +  + 21 37299882 IL7

rs35617738 a g 359 -4.894 9.87E-07 – 3 171187483 CCL28

rs1943821 t c 359 4.891 1.00E-06  +  + 18 70986060 uPA

rs9430101 t c 359 4.863 1.15E-06  +  + 1 213014295 CCL19

rs8033014 a g 359 4.863 1.16E-06  +  + 15 50437063 X4E.BP1

rs4076388 t c 359 4.85 1.23E-06  +  + 3 72333947 ST1A1

rs12403928 t c 359 4.838 1.31E-06  +  + 1 190564863 CDCP1

rs10733202 t g 359 -4.838 1.31E-06 – 9 10027632 CXCL10

rs10832590 t c 359 -4.815 1.47E-06 – 11 16318856 CD40
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limited numbers of sex-specfifc pQTL variants (P < 5 X 
 10–5) relative to all the SNPs tested, suggests that most of 
the genetic variants associated with protein abundances 
act in sex independent manner. This is supported by the 
findings of colocalization analysis among the genome-
wide significant hits, whereby approximately 67% 
(males = 4/6, females = 6/9) of pQTLs have similar effects 
in both sexes.

Functional and regulatory annotation of sex‑specific pQTLs
The functional consequences of the sex-specific pQTLs 
with suggestive evidence of association (P < 5 ×  10–5) 
shows that most of these pQTLs are within introns and 
intergenic regions, for both the males (Fig.  7A) and 
females (Fig.  7B). The sex-specific pQTLs were least 
represent in coding genomic regions such as UTRs and 
exons. We next examined the regulatory potential of 
the of the sex-specific pQTLs and observed that 39.5% 
and 37.1% of the pQTLs identified had RegulomeDB 
score of 5 for both the males (Fig.  7C) and females 
(Fig.  7D) respectively. We observed significant enrich-
ment of pQTLs with RegulomeDB score of 5 among 
genetic variants with RegulomeDB scores in the database 
based on chi-squared test (X-squared = 754.57, df = 1, 
p-value = 2.26 ×  10–16). This observation indicates that 
most of the identified pQTLs are likely to alter transcrip-
tion factor binding sites (TFBs) and are therefore regula-
tory. In fact, lower RegulomeDB scores provide evidence 
that, the pQTL variants are located in a functional 
region and pQTL variants falling within the category one 

was as low as 1.5% and 1.4% in the males and females 
respectively.

Given that most of the identified pQTLs were pre-
dicted to alter TF binding sites, we mapped the sex-spe-
cific pQTL variants with suggestive evidence association 
to TFBs to uncover the affected transcription factors 
(TFs). Several TFs were identified after TF enrichment 
analysis in the males (Fig.  7E) with DUX4, CREB1 and 
ELK4 being the three most enriched TFs. In the females 
(Fig.  7F), TFs such as FOXP2, ELK1, and FOXA1 were 
mostly enriched. Knowing that pQTL variants change or 
disrupts TF-binding is crucial to understand the molec-
ular mechanisms of how pQTL variants impact protein 
abundances.

Biological interpretation of TFs and gene sets
Next, we sought to gain mechanistic insight into the pre-
dicted TFs (see methods) and curated gene sets (map-
ping pQTL variants to genes) from the sex-specific 
pQTL variants (P < 5 ×  10–5). To do this, we performed 
over-representation analysis to identify enriched bio-
logical pathways. Among the predicted TFs (Table S7 & 
Table S8), we selected significant TFs with P-value < 0.05 
which means that only TFs identified not by chance are 
used for further analysis. According to the Reactome 
database, several pathways were significantly enriched for 
the TFs in the males (Fig. 8A, Table S9). Pathways such 
as FOXO-mediated transcription of cell cycle genes and 
Signaling by Activin and Signaling by NODAL were iden-
tified. We also identified enrichment of TFs in pathways 
such as Endogenous sterols, ESR-mediated signaling and 

Table 2 (continued)

MarkerName Allele1 Allele2 Weight Zscore P.value Direction chr pos Protein

rs1342420 t c 359 4.814 1.48E-06  +  + 20 6138415 TWEAK

rs980325 a g 359 -4.814 1.48E-06 – 6 153148350 NT.3

rs8105276 a g 359 4.8 1.59E-06  +  + 19 9101857 CCL20

rs654186 a t 359 4.797 1.61E-06  +  + 6 132640349 TRAIL

rs16887551 a g 359 -4.796 1.62E-06 – 8 38470624 AXIN1

rs62273562 a g 359 4.758 1.95E-06  +  + 3 102908341 MCP.4

rs2266374 t c 359 -4.746 2.08E-06 – 10 14736230 ADA

rs10916078 a g 359 4.743 2.10E-06  +  + 1 223857726 SIRT2

rs2368328 a g 359 -4.722 2.33E-06 – 10 28654250 CXCL11

rs4547370 t g 359 -4.71 2.48E-06 – 17 63281454 CSF.1

rs75956752 t c 359 -4.695 2.67E-06 – 13 90524286 CD8A

rs73159896 t g 359 4.685 2.80E-06  +  + 22 17295981 CXCL1

rs55984748 t g 359 -4.672 2.98E-06 – 20 739264 IL6

rs2092212 c g 359 -4.645 3.40E-06 – 22 43318948 SCF

rs6727186 t c 359 -4.612 3.98E-06 – 2 69103817 DNER

rs9267393 a c 359 -4.585 4.55E-06 – 6 31469365 LAP.TGF.beta.1

rs9324265 a g 359 -4.566 4.98E-06 – 13 112835484 CXCL5
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Estrogen-dependent nuclear events downstream of ESR-
membrane signaling in the females (Fig. 8B, Table S10). 
GO ontology analysis shows that the TFs for the males 
(Figure  S4A) and females (Figure  S4B) are generally 
involved in metabolic, biological and developmental 
processes.

To explore biological relevance of the gene sets using 
the Reactome database, while pathways such as Extra-
cellular matrix organization, Collagen formation, 
Collagen biosynthesis and modifying enzymes and 

Protein–protein interactions at synapses were identified 
among the top 15, others such as Regulation of insu-
lin secretion were significant pathways discovered for 
males (Fig. 8C, Table S11), while for females the mapped 
gene-sets were enriched for pathways such as Ca2 + path-
way, Platelet homeostasis, Muscle contraction (Fig.  8D, 
Table  S12). The Neuronal system however appeared as 
common pathway in both sexes. Gene ontology analy-
sis for males (Figure  S5A) and females (Figure  S5B) 
revealed that the curated genes-sets are overall involved 

Fig. 4 Illustration of colocalization analysis results in males. A Locus comparison plots of shared genomic loci between males and females (B) Locus 
comparison plots of male-specific genomic loci. The protein names and -log10 association p-values are displayed on the vertical axis and the names 
of the loci and chromosomes are represented on the horizontal axis. The posterior probability values (PP4) are also indicated on the plot
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in biological, metabolic, developmental and reproduc-
tion processes. The identification and understanding of 
sex-specific pathways is crucial to design effective thera-
peutics, especially for the diseases that are expressed dif-
ferently between sexes.

Sex‑dependent pQTL variants overlap with sex‑related 
molecular traits
We cross referenced the genome-wide significant index 
pQTL variants with other phenotypic traits, not limited 
to gene expression, metabolites, and epigenetic markers, 

to explore any potential biological pleiotropy. Over-
all, in the males, all the pQTLs variants showed asso-
ciation with various diseases or traits and expression 
levels of genes (Figure  S6). For example, male-specific 
pQTL rs3213946 is also eQTL for several genes (ITGAV, 
FAM171B, ATP6V1B2 and ZC3H15) and associated with 
diseases such as inflammatory bowel disease, coronary 
artery disease, and attention deficit hyperactivity disor-
der. Another male-specific pQTL rs11207327 linked with 
CD5 levels also modulates the expression of genes (JUN, 
KRT79, TACSTD2), and it is associated with diseases and 

Fig. 5 Illustration of colocalization analysis results in females. A Locus comparison plots of shared genomic loci between males and females 
(B) Locus comparison plots of female-specific genomic loci. The protein names and strength of association (-log10 p-values) are displayed 
on the vertical axis against the chromosomal physical position on the horizontal axis. The posterior probability values (PP4) are also indicated 
on the plot
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traits (Asthma, self-reported haemorrhoids and treat-
ment with estriol product). Evidence of prior associations 
with metabolites (e.g., X-12441, citrate and Hypoxan-
thine) and epigenetic markers (e.g., H3K4me1, H3K27ac 
and cg07810476) were also uncovered.

Similarly, in females, the index pQTL variants are 
also eQTLs and correlate with other traits (Figure  S7). 
For instance, SNP rs608574 linked with IL18 and 

showing association only females, regulates genes such as 
SRD5A2, CAPN13, SLC30A6, NLRC4, XDH and SPAST, 
and it is as well associated to traits and diseases (e.g., 
height, age started oral contraceptive pill, single delivery 
by caesarean section, treatment with diltiazem, chronic 
sinusitis, birth control pills and fistulae involving female 
genital tract). Another pQTL SNP rs12977062 associ-
ated with PD-L1 regulates multiple genes, not limited to 

Fig. 6 Distribution of pQTLs after meta-analysis in both cohorts. Total number of pQTL variants with consistent effect size direction in both cohorts 
after meta-analysis (P < 0.05) in males (A) and in females (B). C Number of male-specific pQTL variants with strong suggestive cut-off (P < 5 X  10–5) 
per protein after meta-analysis of both cohorts in males. D Number of female-specific pQTL variants with strong suggestive cut-off (P < 5 X  10–5) 
per protein after meta-analysis of both cohorts in females
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GP6, TPM3P6 and LILRB5. Associations with epigenetic 
markers (e.g., percent-splice-in and cg15691140), other 
traits and diseases (treatment with noriday tablet, con-
vulsions, birth weight, height, treatment with tridestra 

tablet and atherosclerosis) were also detected. These 
observations cross validate the identified pQTL variants 
and justifies the roles of pQTLs in explaining the mecha-
nisms of diseases.

Fig. 7 Illustration of functional annotation results of sex-specific pQTLs (p value = 5 × 10–5). Distribution of sex-specific pQTL variants’ functional 
consequences in males (A) and females (B). Bar plots distributions of RegulomeDB scores indicating the regulatory potential of pQTL variants 
for males (C) and females (D). Interpretation of the scores is sandwiched in between the bar plots. Line plots of Transcription factor enrichment 
analysis of male-specific pQTL variants (E) and female-specific pQTL variants (F). The top 25 enriched TFs are ploted on the x-axis and the level 
of significance are indicated in the color legend
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Discussion
This study investigated the contribution of host genetics 
to sex differences in inflammatory proteins production 
capacity by conducting meta-analysis of pQTL sum-
mary statistics in males and females separately using two 
population-based cohorts. Given the well-known sexual 
dimorphism in most complex traits and diseases, there 
is growing awareness for large scale genetic studies to 
unravel sex-specific genetic factors.

In this study, we provide evidence for the contribution 
of common autosomal SNPs for differences in inflamma-
tory biomarker between sexes by identifying genome-
wide significant pQTLs in the sex-stratified analyses for 
males (6 pQTLs) and for females (9 pQTLs). In general, 
we observed that majority of the pQTL effects, from the 

tested autosomal SNPs (4,028,465) on the 66 proteins, 
are shared between males and females with approxi-
mately 5% displaying sex-specific effects. This observa-
tion is concordant with previously published evidence, 
highlighting the lack of strong sex-biased genetic effects 
on complex traits. For example, large scale twin studies 
across 50 human traits observed sex-specific genetic fac-
tors for 25% of the traits with limited sex-specific genetic 
variants except for the apparent puberty-related traits 
[25]. Another study targeting specifically 20 neuropsy-
chiatric and behavioral traits, showed that between-trait 
genetic correlation estimates were not significantly dif-
ferent between males and females [26]. In fact, a recent 
study showed that sex-specific eQTLs do not account 
for the sex-specific trait associations and demonstrated 

Fig. 8 Biological interpretation of sex-biased pQTLs variants (p value = 5 × 10–5). Pathway enrichment analysis using significantly enriched TFs 
matched to the sex-specific pQTL variants in males (A) and in females (B). Pathway enrichment analysis of annotated gene sets in males (C) 
and in females (D). P-value < 0.05 with Bonferroni multiple correction method was set for significantly enriched terms (category). Genes and or TF 
names related to the pathways are displayed on the circular plot
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through power analysis that millions of GWAS sam-
ples are required to detect sex-specific trait associations 
driven by sex-biased eQTLs [27]. Therefore, even though 
the limited percentage of sex-specific pQTLs identi-
fied in our study is in line with previous findings, statis-
tical power could account for the minimal percentage 
observed as well.

Albeit most of the genome-wide pQTLs appeared to 
exhibit shared effect between males and females, colo-
calization analyses also highlights specific genomic-loci 
with sex-biased effects. The two loci harboring male-
specific pQTLs are LINC01135 and ITGAV, which are 
lncRNA and protein coding genes respectively. While 
the function of LINC0113 gene is not completely known, 
recent study has demonstrated its role in prostate can-
cer- skin cancer affecting males [28]. Interestingly, the 
sentinel pQTL variants at these loci (ITGAV (rs3213964) 
and LINC0113 (rs11207327)) were previously reported 
to be associated with various diseases and intermedi-
ate traits such as gene expression and metabolites which 
are likely to mediate the observed associations. The SNP 
rs3213964 at ITGAV gene is evident through cross valida-
tion approach to be associated with male-related pheno-
typic traits such as malignant neoplasm of testis, sitting 
height and self-reported testicular cancer which supports 
the stronger associations detected in males.

Furthermore, three pQTLs (CNOT10 (rs67015567), 
LILRB5 (rs12977062) and SRD5A2 (rs608574)) were 
identified to modulate proteins specifically in females. 
The CNOT10 gene is related to metabolic pathways as it 
is predicted to be involved in catabolic process and also 
participates in negative regulation of translations. The 
LILRB5 gene is involved in the regulation of immune 
pathways and its role in negative regulation of cytokine 
production is reported [29]. We further showed that the 
lead SNP rs12977062 at the LILRB5 gene is correlated 
with expression of other genes and epigenetic markers. 
The SRD5A2 gene is involved in pathways such as metab-
olism of steroid hormones and widely known for the 
regulation of testosterone biosynthetic process. Although 
testosterone is traditionally thought of as males sex hor-
mones, females also produce it but in lower quantities 
[30]. Supporting this, the SRD5A2 gene also converts 
progesterone or corticosterone into their corresponding 
5-alpha-3-oxosteroids [31] and mutations in the SRD5A2 
gene has been associated with human intersex condition 
termed as pseudohermaphroditism [32]. These unique 
characteristics of this gene makes it possible to function 
in either sex, but we speculate that genetic polymor-
phisms in this gene might regulate phenotypes differently. 
In line with this claim, the lead SNP rs608574 at SRD5A2 
gene overlap with female dominated traits, among oth-
ers treatment with livial tablet and fistulae involving 

female genital tract, supporting the stronger association 
of this variants specifically in females. Surprisingly, all 
the genome-wide significant pQTL variants identified 
with sex-specific effects are trans-pQTLs, which suggests 
that the uncovered pQTL variants may not have direct 
effect on the protein coding gene but other proteins and 
pathways are involved in the mechanism underlying the 
genetic sex-differences in protein levels.

Interestingly and supporting this argument, over-rep-
resentation analysis of genes mapping to the female-spe-
cific pQTLs implicated pathways such as  Ca2+ pathway 
and cardiac conduction which has functional interplay 
in cardiovascular diseases, with increased susceptibility 
among females in developed countries [33]. Regulation 
of calcium ion  (Ca2+) cycle is important for cardiac con-
traction and relaxation and estrogen levels in plasma can 
affect cardiac function [34]. Aside geometric differences 
of the healthy heart, functional differences such as con-
tractility exist between sexes with smaller cardiac output 
and larger ejection fraction are reported in females com-
pared to males [35]. On the other hand, pathway analysis 
highlighted the function of genes annotated to the male-
specific pQTLs to collagen formation and protein–pro-
tein interaction.

Furthermore, large proportion of these pQTLs variants 
are TFBS variants, suggesting their gene regulatory role. 
The TFs identified are enriched among sex-related path-
ways. For instance, in the females are Endogenous sterols, 
ESR-mediated signaling and Estrogen-dependent nuclear 
events downstream of ESR-membrane signaling. Higher 
concentrations of endogenous sex steroids and muta-
tions of estrogen signaling receptor (ESR) genes are some 
of the underlying causes of breast cancer [36, 37]. In the 
males, pathways such as signaling by activin and signaling 
by nodal were detected. Activin is mainly produced in the 
male reproductive tract and helps main cell–cell interac-
tions, especially in the testis and prostate [38]. Similarly, 
the nodal signaling pathway is known to regulate fetal 
testicular development and uncontrolled nodal signaling 
has been implicated in testicular cancer [39]. While these 
downstream observations strongly support the validity 
of the identified sex-dependent pQTL variants, further 
mechanistic studies are required to discern the mecha-
nisms by which these pathways drive sex-specific pQTLs.

Limitations of the study
It is important to acknowledge that, exclusion of the sex 
chromosome variants is a major limitation. Despite sev-
eral evidence pointing to the autosomal genomic region 
to driving phenotypic sex-differences [6], the X chro-
mosome is known to accommodate the largest number 
of genes related to the immune system [40]. Also, even 
though, we employed meta-analysis of two different 
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cohorts to increase statistical power, upscaling of the 
sample sizes and the utilization of methods that con-
sider effect size differences between males and females, 
could help identify additional genome-wide significant 
loci. Additionally, increasing the number of proteins by 
utilizing the Olink explore panel is desirable for future 
work. Finally, to be able to ascertain whether the iden-
tified pQTLs are population-specific or shared, and to 
subsequently facilitate the translation of the findings into 
clinical practice, extending this analysis to diverse popu-
lations is warranted.

Conclusion
In conclusion, we identified and characterized sex-spe-
cific pQTLs, which is crucial to discerning the underlying 
mechanisms of complex diseases, traits and biomarkers. 
Given that proteins determine almost all cellular process, 
ultimately dictate the phenotypic expression, and dys-
regulation of proteins are also implicated in several dis-
eases, the identified sex-specific pQTL variants could be 
use as genetic instruments through mendelian randomi-
zation to interrogate how these inflammatory mediators 
are causally implicated in sex-biased phenotypes and/
or diseases. This information will eventually help under-
stand disease biology and also facilitate the development 
of new therapeutics with strong efficacy in one sex.

Materials and methods
Study cohorts
The 500FG cohort is a population-based cohort of 
healthy individuals of Western European ancestry con-
sisting of 237 males and 296 females with age range of 
18-75 years. The 300BCG cohort is another population-
based cohort of 325 (142 males and 183 females) healthy 
individuals of Western European origin with age range of 
18–71  years. Sex classification of research participants 
was based on sex assigned at birth.

Both cohorts are part of the Human Functional 
Genomics Project (wwww. human funct ional genom ics. 
org), aimed at identifying the genetic and non-genetic 
determinants of the immune response.

Measurement of inflammatory protein biomarkers
Inflammatory protein levels were measured using tar-
geted proteomics (Olink® platform). We generated 
protein abundance of the plasma samples which was 
quantified using the inflammatory panel of 92 proteins. 
The Olink data are reported in NPX values (Normalized 
Protein expression) which are on log 2 scale. Immunoas-
says utilized by Olink are based on the Proximity Exten-
sion Assay (PEA) technology [41], which makes use 
of oligonucleotide-labelled antibodies binding to their 
respective protein. When the two antibodies are brought 

in proximity, a DNA polymerase target sequence is 
formed, which is subsequently quantified by quantitative 
real-time polymerase chain reaction (qPCR). Each plate 
included interplate controls which are used to adjust any 
potential plate difference. NPX values were intensity nor-
malized with the plate median for each assay as the nor-
malization factor (Intensity Normalization v.2).

Preprocessing / filtering of protein data and normalization
Samples that did not pass Olink internal quality control 
or flagged “Warning” were excluded, so as proteins which 
failed to be quantified in at least 75% of the samples. The 
remaining 73 and 70 proteins in the 500FG and 300BCG 
cohorts respectively, with NPX values below the protein-
specific detection limit (LOD) were replaced with their 
corresponding LOD values as recommended by Olink. 
66 proteins were common between both cohorts after 
filtering.

Genotyping and genetic data quality control
We previously described details of the genotyping, impu-
tation and all quality control procedures for the 500FG 
[42] and 300BCG [43] cohorts. For the 500FG cohort, 
DNA samples of approximately 500 individuals were 
genotyped with the commercially available SNP chip, 
Illumina HumanOminiExpress-8 v1.0 and DNA sam-
ples of 325 individuals were genotyped for the 300BCG 
cohort using the Infinium Global Screening Array MD 
version 1.0 from Ilumina SNP chip. The genotype calling 
for both cohorts were performed using Optical 0.70 with 
the default settings [44]. Standard pre-imputation qual-
ity filters such as excluding variants with call rate ≤ 0.99 
Hardy–Weinberg equilibrium (HWE) ≤ 0.0001 and 
minor allele frequency (MAF) ≤ 0.001. Per sample quality 
control such as sex discrepancies, cryptic relatedness and 
population stratification to exclude genetic outliers (17 
and 12 in the 500FG and 300BCG cohorts respectively) 
were applied. Genotyped samples were imputed with the 
Michigan Imputation server [45], with the Genome of the 
Netherlands Consortium, (GoNL 2014) and the human 
reference consortium (HRC r1.1 2016) reference panels 
for the 500FG and 300BCG cohorts respectively.

We filtered out genetic variants with imputation qual-
ity score  (R2) < 0.3 and MAF cut-off of 5%. A total of 
4,296,841 and 4,358,039 SNPs were available for the 
300BCG and 500FG cohorts respectively.

Protein QTL mapping
The association of protein-genotype analysis was per-
formed in a sex-stratified manner for both cohorts sepa-
rately as protein measurements were not performed at 
the same time. We used the linear model function in the 
Matrix-eQTL R package [46] for association analysis. Age 

http://www.humanfunctionalgenomics.org
http://www.humanfunctionalgenomics.org
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of the participants was included in the model which was 
fitted on the inverse ranked normalized protein concen-
tration. In the 300BCG cohort, a total of 306 (Males = 134 
and Females = 172) samples were retained after quality 
control and with matched genotype–phenotype data. 
In the case of the 500FG, the total samples used for 
pQTL mapping was 371 consisting of 184 males and 187 
females. In the males, the mean ages are 27.20 and 29.56, 
and the standard deviations are 12.30 and 14.68 for the 
300BCG and 500FG cohorts respectively. In the females 
also, the mean ages are 24.66 and 24.77 and the standard 
deviations are 8.60 and 10.98 for the 300BCG and 500FG 
cohorts respectively. Wilcoxon test did not show any sig-
nificant age difference between both cohorts in each sex 
(P > 0.05).

Meta‑analysis of males and females pQTL results
The meta-analysis was carried out using fixed effects 
sample size weighted analysis method implemented in 
METAL package [47], based on pQTL summary statis-
tics (p-values). Here, the analysis which was conducted 
for males and females from both cohorts separately, was 
confined to the 66 proteins and 4,028,465 SNPs common 
between the 500FG and 300BCG cohorts. We extracted 
SNPs with consistent effect size direction per protein for 
further analysis.

Estimation of study‑wide significant threshold
To account for the multiple testing burden, the significant 
cut-off is determined based on the ratio of the 5% signifi-
cant level and the product of the number of proteins (66) 
and the number of tested SNPs (4,028,465). The resulting 
p-value was 1.89 ×  10–10. Given that few associations sur-
passed this stringent threshold, we considered the con-
ventional genome-wide significant threshold (5.0 ×  10–8) 
together with colocalization analysis to identify key loci 
exhibiting sex-dependent effect. For sex-specific biologi-
cal insights, we used associations with strong suggestive 
threshold of 5.0 ×  10–5 in one sex which failed to be repli-
cated in the opposite sex at nominally significant thresh-
old of 0.05.

Colocalization of pQTLs between sexes
Colocalization of pQTLs identified in males and females 
was performed using Bayesian colocalization method 
which is implemented in the coloc package in R [48]. 
The default prior probability and parameters that a ran-
dom variant in the region is causal to both traits was 
applied. For each protein-SNP genome-wide significant 
pair considered for colocalization, SNPs within a window 
size of 500 kb around the lead SNP were tested. A pos-
terior probability (PP4 >  = 0.75) is considered as strong 
evidence of colocalization or shared genomic region 

between the sexes [48]. Other hypothesis tested are PP1 
and PP2 which indicates either males or females have sig-
nificant associations in the tested region and PP3, which 
indicates that both males and females have significantly 
unique causal variants. LocusCompareR, being an R 
package was used for visualizing the results [49].

Conditional analysis on index sex‑specific pQTL variants
We performed conditional analysis using the GCTA-
COJO software [50]. As the software requires effective 
size and standard error statistic as input, the METAL 
Zcores from the meta-analysis results were used to esti-
mate the effect size (Beta) and standard error (SE) values 
using the two equations suggested by previously [51].

The parameters in the equation are defined as: sample 
size (N), and minor allele frequency (MAF). The 500FG 
cohort was used as the LD reference panel. The analy-
sis was confined to regions around 250  kb of the index 
pQTL variants. A conditional p-value (pC) threshold of 
5 ×  10–8 was used to identify secondary hits.

Functional annotation of sex‑specific pQTLs
We selected sex-specific pQTLs with strong suggestive 
association (5.0 ×  10–5) for functional annotation. The 
functional consequences of the pQTL variants on genes 
functions were explored using the ANNOVAR method in 
Functional Mapping and Annotation of GWAS (FUMA) 
[52]. The putative regulatory potential of the pQTLs were 
also accessed with RegulomeDB [53] which incorporates 
high-throughput, experimental, different data sources 
and computational predictions to score genetic variants. 
RegulomeDB assigns scores ranging from 1 to 6 to help 
classify SNPs and to determine genetic variants with or 
with regulatory functionality. Genetic variants with lower 
scores indicate stronger evidence of residing in a regula-
tory region.

Mapping sex‑specific pQTLs with transcription factor 
binding sites
SNP2TFBS web-based annotation tool [54], was applied 
to study functional effects of genetic variants within 
transcription factor binding sites (TFBS) of the human 
genome. Briefly, a SNP’s effect on transcription factor 
(TF) binding is estimated with position weight matrix 
(PWM) model for the binding specificity of the corre-
sponding factor. This results in a list of SNPs that over-
laps with predicted binding sites of a specific TF. The 

(1)Beta = Zscore/sqrt 2∗MAF∗(1−MAF)∗ N + Zscore2

(2)
SE = 1/sqrt

(

2∗MAF∗(1−MAF)∗
(

N + Zscore2
))
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list of TFs being mapped by the SNPs are generated. The 
TF enrichment is done by computing the ratio of the 
observed SNP hits over the expected hits for each TF.

P-value less than 0.05 was declared as statistically sig-
nificant threshold for TF enrichment.

Pathway over‑representation analysis
The SNP2GENE function in FUMA [52] was applied to 
annotate sex-specific pQTL variants to genes. Default 
settings in FUMA were used to identify independent lead 
associations with the following parameters:  r2 < 0.6 for 
independent significant SNPs, 2nd  r2 < 0.1 for index SNPs 
and a window size of 250 kb to determine LD blocks. The 
independent lead SNPs are then mapped to genes based 
on positional and functional information of SNPs. The 
curated gene sets were used as input for both pathway 
enrichment analysis and Gene Ontology (GO) slim anal-
ysis. Gene Ontology slim analysis provides a higher-level 
summary or term of GO ontologies or provides a broader 
overview of the GO ontology terms.

Enrichment of the candidate gene list and TFs were esti-
mated using ClusterProfiler R package for hypergeometric 
test [55]. Bonferroni multiple testing correction method 
with q-value < 0.05 was declared as significant pathways. 
For a broader overview of the annotated terms, GO slim 
analysis was performed with the WebGsalt tool [56].

Integration of pQTL variants with other molecular traits: 
cross validation
We looked up for a range of phenotypes or traits that 
are associated with the identified genome-wide signifi-
cant independent pQTLs with Phenoscaner [57], which 
is a curated database of publicly available summary sta-
tistics of large-scale genotype–phenotype associations, 
not limited to NHGRI-EBI GWAS catalog and dbGAP 
catalogs. Association results of traits such as gene expres-
sion, proteins, metabolites, epigenetics and diseases with 
our pQTL variants were downloaded and overlap analy-
sis was conducted. A nominal threshold of 1 ×  10–3 was 
applied to select SNP-phenotype associations from the 
database.

Statistical analyses
All statistical methods and tools used are described 
under the appropriate sections in the methods. Analy-
sis and visualization were performed in R version 4.10 
unless otherwise stated. Two-way Analysis of Vari-
ance (ANOVA) was performed to examine the potential 
interaction between SNP genotypes and Sex. The aov () 
function in R was used for conducting the analysis and 
interaction effects were visualized using the interaction. 
plot () function.
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