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Abstract
Long-read sequencing is revolutionizing de-novo genome assemblies, with continued advancements making it 
more readily available for previously understudied, non-model organisms. Stony corals are one such example, with 
long-read de-novo genome assemblies now starting to be publicly available, opening the door for a wide array of 
‘omics-based research. Here we present a new de-novo genome assembly for the endangered Caribbean star coral, 
Orbicella faveolata, using PacBio circular consensus reads. Our genome assembly improved the contiguity (51 versus 
1,933 contigs) and complete and single copy BUSCO orthologs (93.6% versus 85.3%, database metazoa_odb10), 
compared to the currently available reference genome generated using short-read methodologies. Our new de-
novo assembled genome also showed comparable quality metrics to other coral long-read genomes. Telomeric 
repeat analysis identified putative chromosomes in our scaffolded assembly, with these repeats at either one, 
or both ends, of scaffolded contigs. We identified 32,172 protein coding genes in our assembly through use of 
long-read RNA sequencing (ISO-seq) of additional O. faveolata fragments exposed to a range of abiotic and biotic 
treatments, and publicly available short-read RNA-seq data. With anthropogenic influences heavily affecting O. 
faveolata, as well as its increasing incorporation into reef restoration activities, this updated genome resource can 
be used for population genomics and other ‘omics analyses to aid in the conservation of this species.
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Background
Advances in sequencing technologies are providing new 
opportunities in genome assembly and research, spe-
cifically, long-read sequencing methodologies such as 
PacBio and Oxford Nanopore. Longer stretches of DNA 
can reduce the number of contigs and improve the clas-
sification of highly repetitive regions such as telomeric 
and centromeric repeats [1–4] which is commonly a 
problem and more difficult with short-read sequencing. 
In addition, reductions in the cost have made long-read 
sequencing methodologies highly accessible and attain-
able for use in non-model organisms, facilitating new 
research into inter/intra-population variation, as well as 
investigations into areas such as gene function and gene 
coding sequences.

Stony corals (order Scleractinia) are keystone organ-
isms, providing the framework for subtropical and tropi-
cal coral reef ecosystems. At present, the 10 long-read 
coral genomes that are publicly available all represent 
those of Pacific coral species [5–10], with no long-read 
genomic resources available for Caribbean corals. Orbi-
cella faveolata (Fig.  1A) is an important reef-building 
coral in the family Merulinidae in the Caribbean. While 
historically inhabiting back and fore reefs at a range of 
depths throughout the Caribbean [11, 12], it is now listed 
as “threatened” under the US Endangered Species Act 

[13] and “endangered” on the IUCN red list [14]. Despite 
ongoing protection efforts, populations of O. faveolata 
have continued to decrease in the Caribbean due to 
bleaching [15, 16] and disease events, specifically stony 
coral tissue loss disease [17, 18]. As a result, Caribbean 
reef restoration activities are currently incorporating O. 
faveolata [19–21]. A highly contiguous and complete ref-
erence genome would be an invaluable resource to sup-
port restoration efforts through use in ‘omics analysis 
such as population genetic studies [16, 22] and transcrip-
tomics [23–25]. With local and global anthropogenic 
influences having drastic effects on coral assemblages 
and populations [26–29], a well annotated and contigu-
ous genome can also lay the foundations for studies aim-
ing to identify resistance biomarkers within and between 
populations [30] to variables such as heat stress, disease, 
and ocean acidification.

Previously, an O. faveolata genome was assem-
bled using short-read technology (NCBI accession 
GCA_002042975.1) [31]. Here, we used long-read PacBio 
circular consensus sequencing (CCS) of high molecular 
weight (HMW) DNA extracted from O. faveolata sperm 
collected in the field (Fig.  1B) to assemble a more con-
tiguous and complete de-novo genome assembly of O. 
faveolata. We achieved a highly contiguous and com-
plete de-novo genome assembly, with long-read RNA-seq 

Fig. 1 Orbicella faveolata on a reefscape and gamete bundle collection methodology. A. Picture of an adult Orbicella faveolata colony at Horseshoe reef 
during the day. B. Gamete bundle collection methodology apparatus. Picture shows the top of the net which is placed over the adult coral colony, with 
an attached 50 ml conical centrifuge tube allowing collection of gamete bundles
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(ISO-seq) resulting in better gene prediction. We then 
discuss how to further improve our resource using 
approaches such as optical mapping or Hi-C sequencing, 
and provide applications for the implementation of this 
genetic resource into ongoing conservation and restora-
tion initiatives.

Results
De-novo genome assembly
High molecular weight (HMW) DNA extracted from 
Orbicella faveolata sperm yielded 2,604,886 HiFi 
reads (average length = 12,688 base paris (bp), total 
length = 32,999,915,949 bp). A BLASTn [32] search of the 
raw HiFi reads identified 54,828 reads which were con-
sidered as contaminants (prokaryotic, viral, and UniVec 
databases) with a bit score > 1000 (2.1% of the raw HiFi 
reads). After removal of these sequences, 2,550,058 con-
taminant free (CF) HiFi reads (average length = 12,671 bp, 
total length = 32,313,799,715 bp) remained and were used 
for de-novo genome assembly. The CF HiFi reads had 
an estimated sequencing coverage of 99x, a predicted 
genome length of 469,984,355 bp, ploidy of two, homozy-
gosity of 98.7%, heterozygosity of 1.26%, and duplication 
of 0.552 (Fig. 2A).

CF HiFi reads were assembled into primary and alter-
nate pseudo-haplotype assemblies with HiFiasm [33]. 
Kmer profile analysis of primary and alternate assem-
blies with Merqury [34] confirmed successful duplicate 
purging (Fig. 2B). The primary assembly consisted of 62 
contigs, with a largest contig of 40,246,328  bp, N50 of 
33,295,526  bp, L50 of 7, and GC content of 39.49% as 

identified by Quast [35, 36]. BUSCO [37] analysis of the 
primary assembly identified 94.86% of metazoan sin-
gle copy orthologs to be complete (single copy: 93.61%, 
duplicated: 1.26%), fragmented to be 2.31%, and missing 
2.83%. For Quast [35, 36] and BUSCO [37] results of the 
alternate pseudo-haplotype, please see Supplementary 
File 1. Scaffolding of the primary assembly with ntLink 
[38] yielded 51 scaffolds and unchanged quality metrics 
from the primary assembly (Fig. 3A). BUSCO [37] results 
were also unchanged as a result of scaffolding (Fig. 3B). 
Hard and soft masking of scaffolds resulted in 50.20% 
(247,928,041  bp) of bases masked (Fig.  4). For a full 
breakdown of masking results, please see Supplementary 
File 2.

Telomere analysis, using tidk (https://github.com/tol-
kit/telomeric-identifier), identified 19 scaffolded contigs 
with telomeric repeats (TeloScafs) at either one (telocen-
tric, 12 of the 19 scaffolds), or both (metacentric, 7 of the 
19 scaffolds), ends (Fig. 4). BUSCO [37] analysis of the 19 
TeloScafs identified 90.2% metazoan single ortholog cop-
ies to be complete (single copy: 89.4%,duplicated: 0.8%), 
fragmented of 2.4%, and missing of 7.4%.

Genome annotation
There were 10 RNA-seq samples (Table  1) that were 
successfully pooled in equal concentration and used for 
ISO-seq library prep. ISO-seq (https://github.com/Paci-
ficBiosciences/IsoSeq) processing of the CCS HiFi reads 
resulted in 310,755 high quality (hq) transcripts with an 
average transcript count of 14. Prior to PASA [39] an ini-
tial cleaning, using seqClean [40], of the hq transcripts 

Fig. 2 GenomeScope2 and Merqury analyses of the cleaned raw HiFi reads, primary, and alternative assemblies using HiFiasm. A. GenomeScope2 linear 
k-mer distributions for O. faveolata generated from Merqury output. Black line shows a theoretical diploid model for this species, with computed homo-
zygosity (aa) and heterozygosity (ab) of 98.7% and 1.2% respectively. B. Merqury plot of the primary and alternative assemblies using HiFiASM in --primary 
mode. Default parameters showed duplicates were purged adequately (red and blue lines) resulting in no additional filtering before scaffolding, down-
stream gene prediction, and annotation steps
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resulted in validation of 310,572 transcripts (1,926 
trimmed) and the removal of 183 transcripts (by dust: 10, 
by short: 173). PASA [39] analysis resulted in 57,279 gene 
model assemblies. From this, TransDecoder (https://
github.com/TransDecoder/TransDecoder) identified 
56,835 coding sequences (CDs), with 53,673 open reading 
frames (ORFs) which could be propagated to the genome. 
These ORFs were used as input to Funannotate::predict 
[41] to train ab-initio gene predictors and generate con-
sensus gene models.

Funannotate::predict [41] identified an initial 32,280 
gene models from Evidence Modeler (EVM), which was 
reduced to 28,663 mRNA gene models after filtering (too 
short: 5, transposable elements: 3,612). tRNAscan-SE [42] 
identified 6,033 valid non-overlapping models, result-
ing in a total of 34,496 (EVM + tRNA-scan) gene models 
(Supplementary File 3). Refinement of gene models and 
untranscribed regions (UTRs), using funannotate::update 
[41], resulted in 1,881 new gene models with this com-
prising 32,172 protein coding genes, 5,762 tRNAs, and 
an average gene length of 5977.66  bp (Supplementary 
File 3). UTRs were also successfully updated for 14,722 
gene models. BUSCO [37] analysis of the protein cod-
ing genes (database metazoa_odb10) identified complete 
orthologs of 95.1% (single copy 88.7%, duplicated 6.4%), 
fragmented as 2.5%, and missing as 2.4% (Supplementary 

Fig.  1A). For comparison of our protein coding genes 
to other long-read coral genomes, an Orthofinder [43] 
analysis was undertaken using the protein fasta files 
from other publicly available long-read coral genomes 
[5–10]. Ortholog analysis of the protein coding genes, 
using Orthofinder [43], identified 29,917 (93%) of genes 
present in orthogroups, 2,255 (7%) genes not assigned 
orthogroups, 18,199 (55.7%) genes shared between the 
coral species s, and 1,903 (5.9%) of genes only present in 
a single species (Supplementary Fig. 1B, and Supplemen-
tary File 4).

Comparison to previous O. faveolata reference genome 
and other long-read coral genomes
Comparison of BUSCO [37] and Quast [35, 36] metrics 
demonstrated improvement of our de-novo assembly in 
comparison to the current O. faveolata reference assem-
bly (NCBI accession GCA_002042975.1) generated using 
short-read technology [31]. Scaffold number decreased 
from 1933 to 51, N50 increased from 4,771,691  bp to 
40,246,328 bp, and L50 decreased from 124 to 7 (Fig. 3A). 
There was also an 8.3% increase of BUSCO [37] com-
pleteness (single and duplicated) from 85.3 to 93.6% 
(Fig. 3B). Alignment of the previous reference genome to 
our de-novo assembly resulted in 99.48% of contigs map-
ping to our new de-novo assembly.

Fig. 3 Quast and BUSCO analysis results of long-read stony coral genomes. A. Results from Quast analysis of our de-novo assembly, previous short read Or-
bicella faveolata assembly, and all publicly available long-read stony coral genomes. B. Results of BUSCO analysis using our O. faveolata de-novo assembly, 
the previous short read O. faveolata assembly, and all publicly available long-read stony coral genomes with the metazoa_odb10 database. Completeness 
is split into single copy (light blue) and duplicated (dark blue). Fragmented = yellow, missing = red. Percentages for each metric are present in each bar: 
Csc = complete and single copy, Cd = complete and duplicated, Fr = fragmented, M = missing. For both (A) and (B) “Orbicella faveolata (short-read)” is the 
previously assembled short-read genome, and “Orbicella faveolata (long-read)” is the de-novo assembly using PacBio HiFi reads
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When comparing coding genes, the short-read assem-
bly housed 32,587, while the de-novo assembly housed 
32,172 (a decrease of 415). Using the protein coding 
genes, there was also an increase of complete (single copy 
and duplicated) BUSCOs of 7.9% between the short-read 
assembly (87.2%) and our de-novo genome assembly 
(95.1%) (Supplementary Fig. 1A).

Comparison of our de-novo assembled genome to other 
coral long-read genomes [5–10] identified comparable 
BUSCO completeness (single and duplicated) of > 90% 
(Fig.  3B). Interestingly, Quast [35, 36] identified that 
our assembly showed lower scaffold count than other 
long-read assemblies, with the next most contiguous 
assembly comprising 212 scaffolds compared with the 

Fig. 4 Visualization of scaffolded genome assembly of Orbicella faveolata. A. GC content calculated with a sliding window of 50,000 base pairs (bp). Y-axis 
shows the percentage calculated for GC content over each 50,000 bp sliding window. B. Repeat content plotted using a sliding window of 50,000 base 
pairs and the gff output file from RepeatMasker. Y-axis shows counts of repetitive regions for each sliding window of 50,000 base pairs. C. Telomeric re-
peats generated with a sliding window of 50,000 base pairs and the repeat pattern of “TTAGGG”. Y-axis shows the counts of the telomeric repeat for each 
sliding window of 50,000 base pairs. Telomeric repeats can be identified by peaks at either the start or end of each scaffold. D. Gene density calculated 
with a sliding window of 50,000 base pairs and the “gene” identifiers from the gff file generated from funannotate::annotate. Y-axis shows the counts of 
genes for each sliding window of 50,000 base pairs
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present studies 51 scaffolds (Fig.  3A). When comparing 
the longest contig and N50 with other publicly available 
genomes, our de-novo assembly was second to the Mon-
tipora capitata V3 [9] genome resource (Fig. 3A). Com-
parison of protein coding genes identified comparable 
BUSCO [37] completion of > 90% between our de-novo 

assembly and other long-read coral genomes (Supple-
mentary Fig.  1A). Once taking into account the total 
starting number of protein coding genes (Supplementary 
Fig.  1B), ortholog analysis between the other available 
long-read coral genomes identified comparable statistics, 
with > 92% of genes present in all the coral species, and 
< 7.5% remaining unassigned (Supplementary Fig.  1C). 
The percentage of orthogroups between species ranged 
between 50 and 60%, with the percentage of genes in spe-
cies-specific orthogroups ranging from 2 to 12% (Supple-
mentary Fig. 1C).

Mitochondrial genome
MitoHiFi [44] identified a complete mitochondrial 
genome sequence present in the raw HiFi reads with a 
length of 17,083  bp, successful circulation, and the fol-
lowing genes: two transfer RNAs (tRNAs), 13 protein 
coding genes, and two ribosomal RNAs (rRNAs). Phy-
logenetic comparison against all available coral mito 
genomes on the NCBI identified our O. faveolata mito-
chondrial genome to be placed ‘sister’ to the previous O. 
faveolata mitochondrial genome [45] and other Orbi-
cella species (Supplementary Fig.  2). This is most likely 
due to inherent differences between long and short read 
sequencing technologies [46, 47].

Discussion
Long-read sequencing provides a highly contiguous 
reference genome resource for Orbicella faveolata
In the present study we have demonstrated that long-
read PacBio CCS sequencing dramatically improves 
the genome resource of Orbicella faveolata. The pre-
vious reference assembly for O. faveolata [31] utilized 
short-read sequencing methodologies on HiSeq 2500 
and MiSeq machines, which pose computational chal-
lenges for the construction of a highly contiguous assem-
bly [1–4]. Long-read technology, such as PacBio Sequel 
sequencing, can span repetitive regions of the genome, 
resulting in fewer contigs. This advantage is clearly dem-
onstrated in our final assembly which consisted of 51 
scaffolds, nearly 40 times fewer than the 1,932 scaffolds 
in the previous short-read O. faveolata reference assem-
bly [31]. This increase in contiguity is further reflected 
in improved N50 (40,246,328 versus 4,771,691), L50 (7 
versus 124), and BUSCO completeness (single copy and 
duplicated, 85.3% versus 93.6%, Fig. 3B) metrics. Despite 
these improvements, our new de-novo assembly identi-
fied similarities for GC content (de-novo: 39.49%, short-
read: 38.5%, Fig.  3A), overall genome length (de-novo: 
494,730,336 bp, short-read: 485,548,939 bp, Fig. 3A) with 
the short-read O. faveolata genome resource [31], as well 
as a ploidy of two (Fig. 2A). Comparison between protein 
coding genes also identified an improvement between 
our de-novo assembly and the previous O. faveolata 

Table 1 Summary of abiotic and biotic exposure treatments 
used for fragments of Orbicella faveolata to generate as full as 
possible transcriptional snapshot for annotated transcriptome 
generation. Ten samples were successfully extracted, clean 
and concentrated, equally pooled and sent for ISO-seq library 
preparation and sequencing on one flow cell of a Pacbio Sequel 
II.
Sample ID Name Treatment Nano-

drop 
260/280

Nano-
drop 
260/230

Qubit 
(ng/
ul)

ofav_rna_1 cold stress Fragment 
placed at 
20ºC for 2 h

2.11 2.01 195

ofav_rna_2 fed Fragment 
fed with 
Reef Roids 
(PolypLab) 
for 1 h

2.11 2.09 87.6

ofav_rna_3 heat stress Fragment 
placed at 
33ºC for 2 h

2.07 1.93 55.3

ofav_rna_4 fighting Fragment 
with 
mesente-
rial filament 
extension 
when next 
to a differ-
ent genot 
of O. fav

1.92 1.92 186

ofav_rna_5 night Fragment 
sampled at 
11pm local 
time

2.13 1.89 121

ofav_rna_6 day Fragment 
sampled at 
11am local 
time

2.13 2.13 117

ofav_rna_7 sperm Preserved 
sperm used 
for HMW 
DNA

2.17 2.16 35

ofav_rna_8 hypersalinity Fragment 
placed in 
45ppt for 
2 h

2.07 1.96 59.6

ofav_rna_9 disease Fragment 
with vis-
ible SCTLD 
lesion

2.09 2 189

ofav_rna_10 hyposalinity Fragment 
placed in 
20ppt for 
2 h

2.11 2.01 63.6
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reference, with this identified through an increase of 
BUSCO completeness (single copy and duplicated) from 
87.2 to 95.1% (Supplementary Fig.  1B). These results 
highlight how long-read methodologies can improve 
upon older genomic resources that used short-read 
methodologies.

We also compared our assembly to other publicly avail-
able long-read stony coral genome assemblies [5–10]. 
Despite only using HiFi reads for our assembly and scaf-
folding, our assembly attains approximately equal com-
pleteness and contiguity as measured by Quast [35, 36] 
(Fig.  3A) and BUSCO [37] (Fig.  3B) when compared to 
assemblies that incorporated auxiliary scaffolding tech-
niques [7, 9]. With continued improvement and cost 
reduction of long-read sequencing methodologies, the 
results of our study show that the generation of a high 
quality reference genome for stony corals can be achieved 
without additional methods such as Hi-C, optical map-
ping, or supplemental short-read sequencing. Using 
these additional methods are still advantageous, allowing 
additional decreases in contig number, as well as genera-
tion of chromosomal level assemblies. BUSCO comple-
tion (single copy and duplicated) of the protein coding 
genes were also comparable between our de-novo assem-
bly and the other coral long-read genomes, indicating 
it is of comparable quality despite only using HiFi reads 
(Supplementary Fig. 1A). Orthofinder [43] analysis iden-
tified 93% of protein coding genes from our O. faveolata 
de-novo assembly to be assigned to orthogroups when 
analyzed with other long-read coral genome resources 
[5–10], with 5.9% of these genes being species specific to 
O. faveolata (Supplementary 4). This suggests our gene 
prediction and annotation pipeline is of comparable qual-
ity to other coral long-read genome assemblies. As more 
long-read coral genomes become available, an in depth 
analysis of orthologs and paralogs should be undertaken 
to identify core coral gene function, and potential pro-
cesses which could be species specific.

Potential chromosomes are recovered from HiFi reads 
without additional sequencing information
Previous work has suggested that the potential karyotype 
of O. faveolata is 16 chromosomes [48]. In our study, 
telomeric repeat analysis identified regions at either one 
(telocentric, 12 scaffolds) or both (metacentric, seven 
scaffolds) ends of 19 of the 51 scaffolds (TeloScafs) 
(Fig. 4). Telomeric repeats are indicative of chromosome 
ends, suggesting several scaffolds in our assembly repre-
sent complete, telomere-to-telomere sequences, and thus 
that we may have captured some full chromosomes in 
our assembly. BUSCO [37] analysis also identified 90.2% 
of metazoan universal single copy orthologs as com-
plete in telomere containing scaffolds, as compared to 
94.86% in the entire scaffold set (Fig. 3A). With the high 

percentage BUSCO completion of the telomere contain-
ing scaffolds, this further suggests that several scaffolds 
likely represent complete chromosomes. The number of 
identified TeloScafs is however larger than the potential 
karyotype of 16 for O. faveolata [48] suggesting that we 
missed some repetitive sections of the genome such as 
centromeric repeats. This may also be due to only utiliz-
ing HiFi reads for our assembly. Future work should re-
assemble our HiFi reads using additional methodologies 
such as optical mapping [49, 50] or Hi-C sequencing [51, 
52] to achieve a true telomere-to-telomere chromosome 
scale assembly and resolve any discrepancies in the num-
ber of telomere-containing scaffolds. Additionally, the 
karyotype of O. faveolata, as well as other coral species, 
should be defined experimentally rather than relying on 
bioinformatic methods to infer karyotype. Historically, 
working with coral gametes has been difficult due to 
them only spawning once a year. With developments in 
ex-situ spawning, there is now higher availability of coral 
gametes throughout the year [53–55] making gamete 
based research easier and more accessible for coral spe-
cies. This, paired with new karyotyping methodologies 
for non-model invertebrate organisms [56], will allow 
experimental identification of coral species karyotype to 
occur, paving the way for improved genome assemblies 
due to known chromosome number.

Future directions and conclusions
In this study we provide an updated genome resource for 
the endangered coral species O. faveolata at near-chro-
mosome scale using only PacBio HiFi long reads. Despite 
improvements in completeness and contiguity over the 
current O. faveolata reference assembly [31], our assem-
bly may yet be improved to a bonafide chromosomal level 
with additional sequencing (specifically Hi-C). Use of this 
updated resource will also assist efforts to functionally 
characterize genes, an area of research that is just start-
ing to occur within coral species [57]. Additionally, we 
hope that this resource will facilitate more in-depth ‘omic 
analyses utilizing O. faveolata as the focal species. As this 
species continues to be integrated into reef restoration 
activities [19–21], a thorough understanding of its popu-
lation structure and response to anthropogenic stressors 
will be key to its preservation.

Methods
Tissue collection, nucleic acid extractions, library 
preparation, and sequencing
To generate high molecular weight (HMW) DNA for de-
novo genome assembly, gamete bundles (sperm and eggs) 
were collected from one spawning colony of Orbicella 
faveolata (Fig.  1A) on the 18th August 2022 at roughly 
00:15 local time at Horseshoe Reef (Key Largo, FL, USA; 
25.1388°N, 80.2950°W). Gamete bundles were collected 



Page 8 of 12Young et al. BMC Genomics          (2024) 25:226 

in a conical mesh net with a 50  ml conical centrifuge 
tube at the apex (Fig.  1B), then capped and brought to 
the boat. Onboard the vessel, as gamete bundles started 
to break apart, they were diluted with filtered seawater to 
reach a sperm concentration of ~ 108 cells/ml [58]. After 
transport to the University of Miami Rosenstiel School, 
eggs were separated from sperm using a Corning 70 μm 
sterile cell strainer. Eggs caught on the filter were dis-
carded, and filtrate was inspected under a microscope to 
remove any residual eggs. Six 1.5 ml tubes with 1 ml of 
the sperm filtrate, in seawater, were then centrifuged at 
3,000 g for five minutes. The supernatant was removed, 
and 1 ml of additional sperm filtrate was added to each 
tube and repeated 8x. Each tube had a total of 8 ml of fil-
trate processed. Pelleted sperm was then resuspended in 
1x PBS (pH 7.2) using a wide pipette tip, and centrifuged 
at 3,000 g for five minutes. The supernatant was removed 
without disturbing the pellet, and each tube was then 
flash frozen in liquid nitrogen and stored at -80ºC. Frozen 
sperm was then shipped to the University of California 
(UC) Davis Genome Center for HMW DNA extractions, 
library preparation, and sequencing on one flow cell of a 
PacBio Sequel II. For detailed methods, please see Sup-
plementary File 5.

To generate a high quality and complete annotated 
transcriptome, the largest transcriptional snapshot of 
mRNA was desired to capture all transcripts that are 
present within the O. faveolata genome. As such, we 
exposed fragments (~ 5 cm2) from one genet of O. fave-
olata to different biotic and abiotic stimuli to maxi-
mize the range of mRNA expression (Table  1). This O. 
faveolata genet was a rescue coral that had been housed 
in the Experimental Reef Lab (Miami, FL) for three 
months prior to use in the biotic and abiotic exposures 
for RNA expression profiles. Following stimuli expo-
sure, coral fragments were sampled using a hammer and 
chisel and placed in a 2 ml bead beating tube filled with 
0.1 and 0.5  mm beads, and 1.2  ml of DNA/RNA shield 
(Zymo, Irvine). Bead beating tubes were then bead beat 
for 30 min on a VortexGenie at max speed before being 
centrifuged at 16,000 rpm for 1 min. A total of 400 µl of 
supernatant was transferred to a new tube and total RNA 
was extracted with the Quick RNA Miniprep kit (Zymo, 
Irvine) including the fifteen minute DNase I digestion 
step. Total RNA was eluted with 80 µL of pre-heated (60 
o C) RNase-free water, with a three minute incubation on 
the spin column matrix. Eluted total RNA was cleaned 
and concentrated with the Clean and Concentrate − 5 
RNA kit (Zymo, Irvine), with an elution volume of 25 µl 
of pre-heated (60 oC) RNase-free water. The purity and 
concentration of the RNA was assessed using a Nano-
drop and a Qubit V4 (Invitrogen), respectively. RNA was 
then sent to UC Davis DNA Technology Core (Davis 
CA) for additional QC (TapeStation), library prep, and 

sequencing on one flow cell of a PacBio Sequel II. For 
detailed methods, please see Supplementary File 5.

Mitochondrial genome assembly
The mitochondrial genome was assembled from the HiFi 
reads, prior to contaminant removal, using MitoHiFi 
[44, 59] with key parameters -o 5 (invertebrate param-
eter). Due to unsuccessful circulation using the publicly 
available O. faveolata mitochondrial genome [45], Mito-
HiFi was run using closely related stony coral species 
mitochondrial genomes available on the NCBI (Supple-
mentary File 5). For our final mitochondrial genome 
assembly, we used Platygrya carnosa (Nucleotide acces-
sion = NC_020049.1) [60] as the reference in MitoHiFi 
which allowed successful circulation. Phylogenetic analy-
sis was undertaken with our O. faveolata mitochondrial 
genome and all available Scleractinia coral mitochondrial 
genomes on the NCBI (Supplementary File 6). Briefly, 
all reference genomes were concatenated into one fasta 
and run through trimal [61] with the following param-
eters: -gt 0.3, -st 0.001, -cons 30. Circulator [62] was 
used to orient all mitochondrial genomes in the same 
order, before multi-sequence alignment with mafft [63]. 
RAxML [64] was then used to generate the phylogenetic 
tree (-x 10, -p 10, -#100, -m GTRCAT) with the default 
value of 100 bootstraps. The phylogenetic tree was visu-
alized with figtree (http://tree.bio.ed.ac.uk/software/fig-
tree/), ggplot [65] and ggtree [66] in R [67] and RStudio.

De-novo genome assembly
A schematic of the bioinformatic pipeline used for de-
novo genome assembly can be found in Supplementary 
Fig.  3. Raw HiFi reads first underwent a contamina-
tion screening, following the methodology in [68], using 
BLASTn [32, 68] against the assembled mitochondrial 
O. faveolata genome and the following databases: com-
mon eukaryote contaminant sequences (ftp.ncbi.nlm.nih.
gov/pub/kitts/contam_in_euks.fa.gz), NCBI viral (ref_
viruses_rep_genomes) and prokaryote (ref_prok_rep_
genomes) representative genome sets downloaded with 
blast::update_blastdb.pl. All raw HiFi reads with a bit 
score > 1000 were removed. Prior to assembly, the kmer 
profile of cleaned raw HiFi reads was generated with 
Meryl [34], and used for genome profiling with Genome-
Scope2 [69] to estimate genome size, repetitiveness, het-
erozygosity, and ploidy. The cleaned raw HiFi reads were 
then assembled with HiFiasm [33] (key parameters:–pri-
mary, -s 0.55,–purge-max 150) into a primary and alter-
native assembly. Assembly statistics were obtained using 
Quast [35, 36], BUSCO [37] (organism metazoa_odb10), 
and Merqury [34]. A subsequent BLASTn [32] was run 
to identify additional contaminants using the previously 
mentioned databases. Scaffolding of the primary assem-
bly was done using the clean raw HiFi reads and nt-links 

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://ftp.ncbi.nlm.nih.gov/pub/kitts/contam_in_euks.fa.gz
http://ftp.ncbi.nlm.nih.gov/pub/kitts/contam_in_euks.fa.gz
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(key parameters: g 100, rounds 5) [38, 70] resulting in the 
scaffolded assembly. Final assembly statistics were gener-
ated with BUSCO [37] and Quast [36].

The scaffolded assembly was then analyzed with 
RepeatModeler2 [71] to generate a de-novo library of 
repetitive elements. RepeatModeler2 [71] results were 
uploaded to the Dfam database (https://www.dfam.org/
home) as requested in the user documentation. Output 
from RepeatModeler2 [71] was then used in Repeat-
Masker (https://github.com/rmhubley/RepeatMasker) 
to generate hard masked (default parameters) and soft 
masked (-xsmall) versions of the scaffolded assembly 
with accompanying gff files.

Identification of telomeric repeats in the scaffolded contigs
To identify potential telomeres in our scaffolded contigs 
(TeloScafs), the Telomere Identification Toolkit (tidk; 
https://github.com/tolkit/telomeric-identifier) with the 
coral telomeric repeat “TTAGGG” [72, 73] was used 
with following parameters: search,–window 50,000. Scaf-
folded contigs with telomeric repeats at either one (telo-
centric) or both (metacentric) ends were then used in a 
BUSCO [37] (database = metazoa_odb10) analysis as to 
allow comparison of BUSCO completeness between the 
set of TeloScafs, and the scaffolded de-novo assembly.

Annotation of de-novo genome and transcriptome 
assemblies
A combination of PASA [39] and funannotate [41] were 
used to annotate the de-novo assembled genome. PASA 
[39] was used to model gene structures using the scaf-
folded genome assembly and the high quality (hq) tran-
scripts. The hq transcripts were cleaned using seqClean 
[40] before being used for transcript alignment and align-
ment assembly with the scaffolded genome assembly 
(pasa::Launch_PASA_pipeline.py, key parameters: -R, 
-T,–ALIGNERS blat,minimap2,–TRANSDECODER,–
ALT_SPLICE). A high quality dataset for downstream 
ab initio gene prediction containing gene models with 
coordinates based on the genome sequences was gener-
ated from PASA transcript assemblies with pasa::pasa_
asmbls_to_training_set.dbi. The soft masked scaffolded 
genome and transcript based gene models from PASA 
[39] were then input into funannotate::predict [41] (key 
parameters:--organism other,–repeats2evm,–keep_
evm,–optimize_augustus) to train the ab-initio gene 
predictors (Augustus [74], GeneMark-ES/ET [75], snap 
[76], glimmerhmm [77]), before running Evidence Mod-
eler [78, 79] to generate consensus gene models. Trans-
fer RNA’s (tRNAs) were identified using tRNAscan-SE 
[42]. Gene model predictions and untranscribed regions 
(UTRs) were then refined using funannotate::update 
[41] using the hq transcripts and a de-novo assembled 
transcriptome of O.faveolata (from [80]) using Trinity 

[81] with key parameter:–trimmomatic. InterproScan 
[82] was then run on the updated gene models to clas-
sify proteins into families, and predict domains. Inter-
proscan [82] results were then incorporated with the 
results from funannotate::update [41] and used in 
funannotate::annotate [41] to assign functional annota-
tion to the protein-coding genes, with the optional addi-
tion of eggNOG-mapper [83–85].

Comparisons to other coral genome resources
To compare our final de-novo assembly to the previous 
Orbicella faveolata reference genome [31] BUSCO [37] 
(database = metazoa_odb10) and QUAST [35, 36] were 
used. Percentage mapping of reads between the two 
genomes was done using Minimap2 [86, 87] (key param-
eters: -ax asm5) and samtools [88] (key parameter: flag-
stat). Comparison of coding genes was done using the 
protein fasta files in BUSCO [37] using the proteins flag 
(-m) and database metazo_odb10.

Our final de-novo assembly was compared against all 
other publicly available long-read coral genomes [5–10] 
using QUAST [35, 36] and BUSCO [37] (database = meta-
zoa_odb10). An additional analysis of coding genes 
was run using the protein fasta files from the long-read 
assemblies in BUSCO [37] with key parameters -m pro-
tein and database metazo_odb10. Finally, Orthofinder 
[43] was used to identify ortholog groups between all the 
long-read coral genomes with results visualized using 
ggplot2 [65].

Summary circos plot generation
Circos [89] was used to generate a circular summary 
figure of the de-novo assembled genome. For visualiza-
tion, all contigs less than 1 mb were combined. Addi-
tional quality metrics were calculated as follows, with 
outputs formatted for Circos using tidyverse [90] and 
SeqinR [91] in Rstudio. GC content and skew were iden-
tified using GCcalc (https://github.com/WenchaoLin/
GCcalc) with key parameters: -w 50,000, and -s 250,000. 
For repeat content, the GFF from repeatmasker (https://
github.com/rmhubley/RepeatMasker) was first con-
verted to a bed file using Bedops [92] before being used 
in deepStats::dsComputerBEDdensity [93] with a sliding 
window of 50,000 (-w 50,000). For gene content, the GFF 
file from funannotate::update [41] was processed in the 
same manner as repeat content above. The output from 
the telomere analysis, using tidk (https://github.com/
tolkit/telomeric-identifier), was also incorporated in the 
final Circos [89] summary figure.
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