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Abstract 

While single-cell RNA sequencing (scRNA-seq) allows researchers to analyze gene expression in individual cells, 
its unique characteristics like over-dispersion, zero-inflation, high gene-gene correlation, and large data volume 
with many features pose challenges for most existing feature selection methods. In this paper, we present a feature 
selection method based on neural network (scFSNN) to solve classification problem for the scRNA-seq data. scFSNN 
is an embedded method that can automatically select features (genes) during model training, control the false dis-
covery rate of selected features and adaptively determine the number of features to be eliminated. Extensive simula-
tion and real data studies demonstrate its excellent feature selection ability and predictive performance.

Keywords Feature selection, Deep neural network, FDR control

Introduction
Single-cell RNA sequencing (scRNA-seq) can reveal 
heterogeneity and diversity across tissues, organs, and 
systems at single cell level and has helped researchers 
improve their understanding of complex biological ques-
tions [1, 2]. However, the analysis of scRNA-seq data is 
challenging. First, scRNA-seq data are over-dispersion. 
The heterogeneity of gene expression levels in a cell pop-
ulation results in higher variability for scRNA-seq data 
compared to bulk RNA-seq data [3]. Second, scRNA-seq 
data are zero-inflated, i.e., excess zeros are observed in 
typical scRNA-seq data. There are two types of zeros in 
scRNA-seq data: biological zeros (due to the high het-
erogeneity between cells, expression levels of some genes 
are genuinely zero in some cells) and technical zeros 

(referred to as dropout, some transcripts are missed dur-
ing the RNA-seq procedure, such as reverse transcription 
or cDNA amplification steps). Third, features (genes) in 
scRNA-seq data may be highly correlated [4]. Fourth, 
with the rapid development of high-throughput sequenc-
ing technologies, the sample size of scRNA-seq data 
increases dramatically [5, 6]. Fifth, scRNA-seq data con-
tains a vast number of features, each representing a gene 
in the sample cell. As is well-known, the human genome 
comprises approximately 30,000 genes, and there is typi-
cally a small subset of features that genuinely correlates 
with the response. Together, these characteristics make 
classification a particularly challenging task for scRNA-
seq data.

Currently, there is a large number of approaches that 
can possibly be applied to classify cells from different 
conditions in scRNA-seq data. For example, generic 
classifiers, such as support vector machines and ran-
dom forest, are potential candidates [7, 8]. And there 
are some approaches that are specifically designed for 
RNA-seq data. These approaches mainly rely on the 
assumption that expression level of each gene follows the 
zero-inflated negative binomial (ZINB) distribution. The 
Poisson, the zero-inflated Poisson (ZIP), and the negative 

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

*Correspondence:
Bingqing Lin
bqlin@szu.edu.cn
1 School of Mathematical Sciences, Shenzhen University, Nanshan, 
Shenzhen 518060, Guangdong, China
2 School of Mathematics and Statistics and KLAS, Northeast Normal 
University, Renmin Street, Changchun 130000, Jilin, China
3 Experimental Center, The First Affiliated Hospital of Guangzhou 
University of Chinese Medicine, Guangzhou, Guangdong 510405, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-10160-1&domain=pdf


Page 2 of 11Peng et al. BMC Genomics          (2024) 25:264 

binomial (NB) distributions are three special cases of the 
ZINB distribution. For example, PLDA assumes Poisson 
distribution for the discrete count data of RNA-seq data 
[9] and ZIPLDA uses ZIP distribution for RNA-seq data 
with excess zeros [10]. These two methods apply different 
techniques to deal with the different aspects of challenges 
of RNA-seq data. Specifically, PLDA addresses the chal-
lenge of over-dispersion through a power transformation, 
while ZIPLDA models the gene count with ZIP to con-
sider the excess zeros in RNA-seq data and uses the ratio 
of the sum of squares between groups to that of within 
groups to select the genes to reduce the dimension. SINC 
[7], on the other hand, performs classification based on 
deep neural network. To reduce the dimension of data, 
SINC conducts an F-test on each gene to test whether 
means of different classes are significantly different 
and selects top 1500 genes after ranking the p-values in 
increasing order.

Deep neural network (DNN) is a highly flexible 
machine-learning technique and has demonstrated supe-
rior performance in various scientific problems. Since 
DNN enables the capturing of complexity and nonlin-
earity in scRNA-seq data and is highly scalable, it has 
the potential to overcome the first four challenges of 
scRNA-seq data, namely, over-dispersion, zero-inflation, 
high gene-gene correlation and large sample size [7, 11, 
12]. To further boost predictive accuracy and interpret-
ability, employing feature selection within a DNN frame-
work is crucial. Although there are thousands of genes 
in scRNA-seq data, most of genes are irrelevant to the 
output and useful information is concentrated in a small 
number of genes. The main goal of feature selection is to 
find a subset of the input features that explains the out-
put well. This not only reduces computational resources, 
but also reduces noise and improves the model gener-
alization on unseen data [13]. Feature selection can also 
reduce experimental costs since researchers can collect 
the expression levels of small set of features when mak-
ing prediction [14]. Additionally, feature selection can 
enhance interpretability by selecting a subset of features 
with significant predictive power on the output [11].

The feature selection methods are usually classified 
into three categories: filter, wrapper and embedded 
methods [15]. Filter methods select features based on 
certain criteria which measures the relevance between 
the features and output, and the selection procedure 
does not involve the model training. This makes filter 
methods overlook the interactions among features. 
On the other hand, wrapper and embedded methods 
attempt to select features that optimize the perfor-
mance of a specific learning algorithm. Specifically, 
wrapper methods evaluate subsets of features based on 
learning algorithms’ predictive power, while embedded 

methods select features during the training of the 
learning algorithm. One type of widely used embed-
ded method involves the regularization of parameters 
of learning algorithms [16, 17]. For example, spare 
group Lasso is used to penalize the set of outgoing 
weights from the same input node in neural networks 
to impose group-level sparsity on the network’s con-
nections [18, 19]. Another line of research, which is 
relevant, uses backward elimination procedure to elim-
inate one or several least irrelevant features among all 
remaining features. For example, SurvNet, based on 
newly proposed measure of feature importance and an 
elimination procedure with FDR control, can adaptively 
eliminate features and estimate the false discovery rate 
at each step [11].

In this paper, we propose a feature selection method 
based on framework of deep neural network for 
scRNA-seq data. Our method is an embedded method 
that selects features during model training. The pro-
cedure starts with all input features, and sequentially 
deletes features that have least impact on the fit. Fea-
tures with the smallest importance scores are candi-
dates for removal. At each step, false discovery rate is 
estimated to control the quality of remaining features. 
Due to the inherent advantages of DNN, scFSNN 
does not impose an assumption of specific statistical 
distributions for gene expression levels and enables 
the capturing of the complexity and non-linearity in 
scRNA-seq data. Furthermore, the implementation of 
scFSNN procedure that is based on popular deep learn-
ing framework, PyTorch, is highly scalable and can be 
applied to large data sets.

Methods
Let X

′
= x

′

ij denote an n× p count matrix of scRNA-seq 
data with n cells and p genes, where x′

ij is the expression 
level for gene j in cell i, i = 1, . . . , n and j = 1, . . . , p . Let 
yi denote the output, yi can be one-dimensional or multi-
dimensional. The tuple (x′

i., yi) represents the ith sample. 
We first normalize X

′
 with total counts for each cell. To 

train the neural network more efficiently and stably, we 
also take the logarithm and standardize the normalized 
data. Let X = (xij)i=1,...,n;j=1,...,p be the normalized, log-
transformed and standardized data, that is,

where d0 is the median of total numbers of counts, di is 
the total counts of ith cell, i = 1, . . . , n , mj and sj are the 
mean and standard deviation of each gene for normalized 
and log-transformed data.

(1)xij =
log x

′

ijd0/di + 1 −mj

sj
,
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An overview of scFSNN is shown in Fig. 1. The archi-
tecture of deep neural network of scFSNN is given 
below:

where B, E and O represent the first hidden, second hid-
den and output layers. The two hidden layers have 256 
and 128 nodes, and all layers are fully connected. Addi-
tionally, we use batch normalization [20] and dropout 
method [21] on each hidden layer, with a dropout rate set 
to 0.5. The loss function L is cross entropy, and an Adam 
optimizer with a learning rate 0.001 is used for training 
the model. The batch size is set to 32.

To select truly relevant features with the output, scF-
SNN starts with all input features and deletes features 
that have the smallest importance scores at each step. 
Additionally, we introduce a number of surrogate fea-
tures known to be irrelevant to the output to estimate 
the false discovery rate. Similar to SurvNet [11], we 

B = ReLU(XWXB)

E = ReLU(BWBE)

O = Softmax(EWEO),

define the importance score of jth feature as the average 
of absolute values of ∂L(yi ,Oi)

∂xij

where Oi is the output of the network for the ith sample. 
The term ∂L(yi ,Oi)

∂xij
 describes how the loss changes with jth 

feature in the ith sample, thus Sj measures the average of 
loss changes with respect to jth feature. Therefore, a 
larger Sj indicates a larger impact of jth feature on the 
loss function.

In order to determine when we should stop the feature 
selection procedure and how many features to discard at 
each step, we need to estimate false discovery rate (FDR) 
after each training step. Assume that in the original data 
there are p features among which there are p0 irrelevant 
(null) ones. We introduce q known null features to the 
original data by random sampling from the original data 
matrix without replacement. Therefore, scFSNN starts 
with p+ q features, at each step, it deletes a number of 
features with the smallest important scores, which may 

(2)Sj =
1

n

n
∑

i=1

∣

∣

∣

∣

∂L(yi,Oi)

∂xij

∣

∣

∣

∣

,

Fig. 1 The flow chart of scFSNN. The scFSNN model consists of two parts: model initialization and feature selection. The model initialization process 
begins with data augmentation and generating surrogate features. It then initializes the model to obtain the estimated value of p0 . The second 
part is the feature selection process. This process initially calculates the importance scores of features and eliminates one or some least important 
features based on the importance scores. Subsequently, it estimates the False Discovery Rate (FDR) of the remaining features. If the estimated FDR 
is greater than the given cutoff, the feature selection process continues; otherwise, the feature selection process stops, and the remaining original 
variables are used to train the final model
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be original features or surrogate features. Suppose, after 
several training steps, there are r features retained in the 
neural network, among which there are r0 surrogate fea-
tures. Thus, the proportion of surrogate features that 
have not been deleted is r0/q . If we assume the distribu-
tions of importance scores for null features from original 
data and the surrogate features are similar, then the num-
ber of null features from original data that still retain in 
the network is r0q × p0 . The estimate of FDR of r − r0 
original features is given by

In practice, p0 is usually unknown, and in order to esti-
mate FDR, we need to first estimate p0.

In scFSNN, we initially train the neural network with 
all features for 30 epochs, and p0 is estimated as

where Sm is the median importance score of surrogate 
features. If we assume the distributions of importance 
scores for null features from original data and the surro-
gate features are similar, the features from original data 
with importance scores less than Sm are most likely to be 
null ones and the number of null features from original 
data is twice of #{Sj < Sm}.

Finally, we can estimate the FDR as

In practice, it is also a common strategy to replace p0 
by p [11, 22]. However, this strategy is too conservative 
if p0 is much less than p, which may be a common situ-
ation for scRNA-seq data. Our estimate of p0 can make 
the estimate of FDR more accurate.

In order to improve the efficiency of the procedure, we 
delete 

⌈

ε ×
(

1− η∗

η̂

)

× r0

⌉

 features each time as [11], 
where ε is a constant between 0 and 1, η∗ is a user-defined 
threshold. In all experiments in this paper, we set 
q =

⌊ p
2

⌋

 , η∗ = 0.1 and ε = 0.1 . In numerical experiments, 
we randomly divided the cells in each dataset without 
replacement into three sets. The first set, containing 64% 
of the cells, was used for training the deep learning 
model. The second set, comprising 16% of the cells, 
served as the validation set for calculating the impor-
tance scores and subsequently estimating the FDR. The 
remaining 20% of cells formed the test set, untouched 
until the feature selection procedure and parameter esti-
mation were completed.

Though the sample size of scRNA-seq data is often 
high, certain situations present limitations in obtaining 

(3)
r0
q × p0

r − r0
.

(4)p̂0 = min(#{Sj < Sm} × 2, p),

(5)η̂ =

r0
q × p̂0

r − r0
=

r0

r − r0
×

p̂0

q
.

sufficient samples due to factors like limited bioresources, 
prohibitive costs, or ethical considerations [23]. To fur-
ther improve predictive performance in small datasets, 
we augment data based on convex pseudodata (CPD) 
[24, 25]. Typically, a prediction algorithm performs bet-
ter if given a large enough sample from the underlying 
distribution. Data augmentation, which artificially gener-
ates additional data from the existing data is a commonly 
used technique in DNN, especially in computer vision. 
CPD is a relatively simple and nonparametric data aug-
mentation method and depends only on a single param-
eter, d, 0 < d < 1 . The additional sample is generated in 
steps as follows. 

1. Randomly select two samples (xi., yi) and (xj., yj) from 
the original data.

2. Select a random number α from a uniform distribu-
tion on the interval (0, d).

3. The new generated sample is (x∗, y∗) , where 
x∗ = (1− α)xi. + αxj. and y∗ = yi.

In the preprocessing stage, we use the CPD procedure to 
randomly generate new data X∗ and use samples from 
both X and X∗ to train the model. In all experiments, we 
set d = 0.2.

Results
Simulation evaluation of scFSNN
To evaluate the feature selection performance of scFSNN 
in classification analysis of scRNA-seq, we designed the 
following simulations under extensive settings approxi-
mating different biological scenarios. Specifically, we 
applied the R package Splatter [26] to simulate scRNA-
seq read count data. We simulated datasets with two 
classes, each dataset contains 10000 genes. Here, we 
consider two studies. In Study 1, we fix the proportion 
of DE genes as 0.05, and vary the number of cells from 
1000 to 5000. In Study 2, we fix the number of cells as 
2000, and vary the proportion of DE genes from 0.02 to 
0.3. We compared scFSNN with five other classifiers, 
including SurvNet and four variants of penalized meth-
ods. Four variants of penalized methods penalize first 
hidden layers’ parameters of neural networks by L1 , L2 , 
GL (group Lasso) and SGL (sparse group Lasso) [18]. We 
ran the penalized methods by setting � in the exponential 
range 10−j , with j going from 1 to 5 on eight real datasets 
(Supplementary Figs. S1, S2). We can see that from 10−3 
onwards, their accuracies are basically indistinguishable 
as shown in [18]. Hence, in all numerical experiments, 
we report the results for penalized methods with fixed 
tuning parameter 10−3.5 to reduce the computational 
complexity.
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Since the predictive accuracy of all methods is close to 
1 in these relatively simple binary classification settings, 
here we mainly use FDR to evaluate the feature selection 
ability of scFSNN. We repeat the simulation 20 times for 
each setting. Study 1 examines the effect of sample sizes 
on the classification. It is shown that the FDRs of scFSNN 
and SurvNet are less than the prespecified threshold in 
all settings with different sample sizes, and the FDRs of L1 
and SGL decrease with an increasing number of sample 
sizes (Table 1). This indicates that scFSNN and SurvNet 
perform significantly better than penalized methods, 
even when the sample size is small. Study 2 explores the 
effect of the number of differentially expressed genes on 
the binary classification. It is shown that the FDR of all 
methods decreases with the increasing number of differ-
entially expressed genes (Table 2). scFSNN also demon-
strates its superiority over the other methods in Study 2.

Application to real data
We apply scFSNN and several other classifiers to eight 
scRNA-seq datasets generated by different experimental 
protocols (Drop-seq, Smart-Seq2, CEL-Seq, inDrop and 
10x-genomics). An overview of these datasets is given 
in Table  3. We filter out genes that have zero counts in 
more than 80% of cells. The numbers of remaining genes 
are shown in Table 3. Here, we use the last name of the 
publication’s first author to denote each dataset. Adam 
[27] applied the cold protease scRNA-seq procedure 
to the newborn postnatal day 1 (P1) mouse kidney and 
clustered the isolated cells into nine classes(Cap Mes-
enchyme, Distal Tubule, Endothelial, Loop of Henle, 
Nephron Progenitor, Podocytes, Proximal Tubule, Stro-
mal and Ureteric Bud). We use all nine cell types with a 
sample size of 4853 in the dataset. Dong [28] conducted 
scRNA-seq analysis of 1916 individual cells from eight 

Table 1 FDRs of scFSNN and five other classifiers on five simulated scRNA-seq datasets with different sample sizes. False Discovery 
Rate (FDR) represents the proportion of features identified as statistically significant but actually irrelevant to the response, among all 
discovered features. Here, we report the average FDR across 20 replicate experiments. Standard errors are shown in parentheses

Sample size scFSNN SurvNet L1 L2 GL SGL

1000 0.0437 0.0757 0.6897 0.9505 0.4619 0.4816

(0.0300) (0.0205) (0.2789) (0.0030) (0.4238) (0.4527)

2000 0.0359 0.0775 0.6357 0.9505 0.5329 0.2795

(0.0201) (0.0336) (0.3315) (0.0032) (0.4261) (0.4181)

3000 0.0381 0.0620 0.6328 0.9505 0.5817 0.3005

(0.0277) (0.0291) (0.3207) (0.0031) (0.3898) (0.4175)

4000 0.0451 0.0748 0.6671 0.9505 0.5093 0.2617

(0.0290) (0.0317) (0.2503) (0.0031) (0.4179) (0.3898)

5000 0.0334 0.0686 0.6611 0.9505 0.4942 0.3759

(0.0299) (0.0307) (0.3265) (0.0031) (0.4417) (0.4064)

Table 2 FDRs of scFSNN and five other classifiers on six simulated scRNA-seq datasets with different proportions of DE genes. False 
Discovery Rate (FDR) represents the proportion of features identified as statistically significant but actually irrelevant to the response, 
among all discovered features. Here, we report the average FDR across 20 replicate experiments. Standard errors are shown in 
parentheses

DE scFSNN SurvNet L1 L2 GL SGL

0.02 0.1281 0.0901 0.8962 0.9800 0.5579 0.5137

(0.0753) (0.0523) (0.1432) (0.0015) (0.4372) (0.3881)

0.03 0.0537 0.0733 0.7996 0.9698 0.3956 0.3358

(0.0394) (0.0381) (0.2211) (0.0019) (0.4145) (0.4077)

0.05 0.0368 0.0727 0.6859 0.9506 0.3738 0.1879

(0.0157) (0.0279) (0.2884) (0.0032) (0.4192) (0.3518)

0.1 0.0283 0.0881 0.6944 0.8993 0.3039 0.1190

(0.0160) (0.0223) (0.2705) (0.0039) (0.4110) (0.2934)

0.2 0.0267 0.0846 0.5507 0.8074 0.2664 0.0868

(0.0181) (0.0194) (0.2008) (0.0057) (0.3535) (0.2413)

0.3 0.0281 0.0727 0.4791 0.7201 0.1698 0.1192

(0.0149) (0.0112) (0.2202) (0.0048) (0.2760) (0.2567)
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organs and tissues of E9.5 to E11.5 mouse embryos. Here, 
we select 332 liver cells with three classes(E9.5, E10.5, 
E11.5) in our dataset. Bacher [29] investigated the low-
avidity CD4+ T cell responses to SARS-CoV-2 in both 
unexposed individuals and patients with COVID-19. 
The cells, derived from 6 unexposed individuals and 14 
COVID-19 patients, were classified as healthy, non-hos-
pitalized, mild-moderate, or severe based on the donor’s 
health status and disease severity. We randomly selected 
15,957 cells from these four categories for our classifica-
tion task. Enge [30] contains 2282 pancreas cells from 
eight donors spanning six decades of life and compris-
ing six categories: A cells, acinar cells, D cells, B cells, 
duct cells, and stellate cells. To identify rare cell types, 
Grun [31] sequenced the transcriptome of hundreds 
of randomly selected cells from mouse intestinal orga-
noids. We use the count data from 1547 cells across 3 
classes, including Reg4-positive cells, YFP-positive cells 
and Lgr5-positive cell, for classification analysis. Baron 
[32] unveiled the pancreas population structure with 
the transcriptomes of over 12000 pancreatic cells from 
four human donors and two mice. The dataset Baron 
includes all major cell groups from the human donors, 
excluding those with less than 200 cells. The cell types 
in Baron are acinar, activated stellate, alpha, beta, delta, 
ductal, endothelial and gamma. Chen [33] profiled tran-
scriptomes of more than 14000 single cells and identi-
fied 45 transcriptionally distinct cell subtypes in the adult 
mouse hypothalamus. Based on the expression of the 
pan neuronal makers Snap25 and Syt1, the 45 cell clus-
ters were divided into 34 neuronal(Snap25/Syt1-high) 
and 11 non-neuronal clusters(Snap25/Syt1-negative or 
low). We selected 7930 cells with 6 clusters (Astro, Tany, 
MO, OPC, Micro and Macro) out of the 11 non-neuronal 
clusters for the classification task. Alzheimer’s disease 
(AD) is the most common form of dementia but has no 
effective treatment. Lau [34] performed single-nucleus 
transcriptome analysis on 179392 nuclei from prefron-
tal cortical samples of twelve Alzheimer’s disease (AD) 

patients and nine normal control (NC) subjects. The data 
are categorized into AD group and NC groups based on 
disease status. For this dataset, we filtered out genes with 
zero counts in over 90% of cells, resulting in 6569 genes 
for analysis. Due to the large dataset size, data augmenta-
tion was not utilized.

To assess the predictive performance of scFSNN and 
other classifiers, we employ a two-step procedure for 
splitting the dataset into training, validation, and test 
subsets. We first split the dataset into two non-overlap-
ping portions: a training set for model training ( 80% ) and 
a test set ( 20% ) for performance evaluation. For meth-
ods that don’t require a validation set, we directly train 
the model on the training set and assess its accuracy on 
the test set. For methods like ours that require a valida-
tion set, we further split the training set into separate 
training and validation sets using an 8:2 ratio. The train-
ing set, containing 64% of the cells, is used to update the 
deep learning model’s parameters, while the validation 
set,containing 16% of the cells, help calculate feature 
importance scores and estimate the false discovery rate 
(FDR). The random split is repeated 20 times for each 
dataset, and average test accuracies are reported.

We compared scFSNN with nine other classifiers, 
including SurvNet, four variants of penalized methods, 
two generic classifiers and two classifiers specifically 
designed for RNA-seq dataset. The two generic classifiers 
are RF (Random Forest) and All-Feature (deep learning 
algorithm using all features in the datasets as input). In 
All-Feature network, the number of nodes in input layer 
is the number of genes and there are 256 and 128 nodes 
in two hidden layers, respectively. Batch normalization 
[20] and dropout [21] with a rate of 0.5 are used to accel-
erate deep network training and control overfitting. The 
loss function is cross entropy and Adam optimizer [35] 
with learning rate 0.001 is used to train the model.

The two classifiers designed for RNA-seq data are 
ZIPLDA [10] and SINC [7]. ZIPLDA is based on zero-
inflated Poisson distribution and designed for bulk 

Table 3 Overview of datasets

Dataset No. of samples No. of genes Platform No. of cell types References

Adam 4853 2710 Drop-seq 9 [27]

Dong 332 9627 Smart-Seq2 3 [28]

Bacher 15957 1944 10x-genomics 4 [29]

Enge 2282 6117 Smart-Seq2 6 [30]

Grun 1547 2821 CEL-Seq 3 [31]

Baron 8278 2988 inDrop 8 [32]

Chen 7930 1629 Drop-seq 6 [33]

Lau 179392 6569 Drop-seq 2 [34]
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RNA-seq datasets. ZIPLDA ranks genes by the ratio of 
sum of squares between groups to within groups for each 
gene and selects first K genes. Here, we set K = 1000 as 
recommended [10]. SINC is also a deep learning based 
algorithm. In data-preprocessing, SINC conducts an 
F-test on each gene to test whether different classes have 
significantly different mean expression levels and selects 
the top 1500 genes with smallest P−values as the input 
for deep learning neural network.

The results are summarized in Fig. 2 and Supplemen-
tary Tables S3 and S4. Overall, we find that scFSNN gives 
the highest predictive accuracies on seven out of the 
eight datasets, and its predictive accuracies are very close 
to the best on the other dataset (0.9897 versus 0.9907 for 
SINC on Chen). We also note that both SINC and All-
Feature perform quite well in terms of predictive accu-
racy, and these two methods consistently outperform 
non-deep learning based methods RF and ZIPLDA. This 
indicates that deep learning can capture more compli-
cated relationship between input and target than other 
generic and model-based classifiers.

To evaluate the sparsity of the model input, we also 
consider the number of selected features for scFSNN 
and five other classifiers which include feature selection 
in the procedures. In real datasets, we can not assess 
how many selected features are truly relevant to the tar-
get. In classification, our primary goals are twofold: first, 
to build a highly accurate model for predicting future 
observations, and second, to unveil the underlying rela-
tionships between features and the response variable, 
enriching our scientific understanding. In deep learn-
ing based methods, we do not expect to gain a concise 

relationship between each feature and the target. How-
ever, it is important to know which features are truly used 
in the model to make predictions. Therefore, we expect 
the final model to achieve high predictive accuracy with 
a small input size.

Figure  3, Supplementary Tables S3 and S5 show the 
number of selected features and predictive accuracy for 
six methods on the eight datasets. Note that we can not 
adaptively determine the number of features for SINC 
and ZIPLDA and fix them as 1500 and 1000, respectively. 
We can see that SINC achieves comparable predictive 
accuracy as scFSNN in many datasets, and it commonly 
uses many more features, except for Lau. SINC’s pre-
dictive accuracy is 82.3% for the Lau dataset, indicating 
that it uses too few genes in the model. Notably, SurvNet 
selects smallest number of features in all datasets, but its 
predictive accuracy is also much smaller compared to 
scFSNN. This indicates that SurvNet may be too conserv-
ative and miss some important features. For the penal-
ized methods, GL and SGL, they select a larger number 
of features than scFSNN, but the predictive accuracies 
are significantly smaller in all datasets.

To evaluate performance of scFSNN in terms of 
marker gene selection in a real dataset, we use the sub-
data of Baron dataset including cells from three healthy 
human donors with six types of cells (alpha, beta, 
gamma, delta, acinar and ductal). Baron dataset pro-
vides a list of 62 known marker genes for related cell 
types in pancreatic islets [32]. After filtering out genes 
with zero counts in more than 80% cells, there are 50 
marker genes remain. Both scFSNN and SINC achieve 
the highest predictive accuracy (98.86%), but scFSNN 

Fig. 2 Predictive accuracies of scFSNN and nine other classifiers on eight scRNA-seq datasets. Results of different classifiers are shown in different 
colors
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selects more marker genes (42 vs 25) while retaining 
fewer features (624 vs 1500) than SINC (Table 4). Sur-
vNet has a slightly smaller predictive accuracy with 26 
selected marker genes out of 134 genes in the model.

Effects of p0 and data augmentation
When estimating FDR, it is a common strategy to set 
p0 as p for simplicity [11]. When the number of truly 
relevant features is small, which means p0 is close to p, 

Fig. 3 The number of selected features and predictive accuracy of scFSNN and five other classifiers with feature selection procedure on eight 
scRNA-seq datasets. A Adam. B Dong. C Lau. D Bacher. E Enge. F Grun. G Baron. H Chen. The number of selected features and predictive accuracy of 
scFSNN are shown as red dashed vertical and horizontal lines, respectively



Page 9 of 11Peng et al. BMC Genomics          (2024) 25:264  

this strategy is reasonable. However, the number of truly 
relevant features may be non-negligible in scRNA-seq 
datasets. When this happens, η̂ is overestimated and the 
procedure is too conservative. To assess the impact of 
estimates of p0 , we compare the proposed scFSNN with 
one that sets p0 as p. We perform the feature selection 
procedures 50 times for each case and report the predic-
tive accuracies.

Data augmentation is a technique that artificially cre-
ates new training data from existing training data and is 
commonly used by DNN in computer vision. To assess 
its impact on scFSNN’s performance, we compared the 
proposed scFSNN with a version without data augmenta-
tion. This experiment was repeated 50 times.

Figure  4 and Supplementary Table S6 show that set-
ting the hyperparameter p0 to min(#{Sj < Sm} × 2, p) 
leads to statistically significant improvements in accuracy 
for three datasets and comparable accuracy in others for 
scFSNN. Furthermore, Fig.  5 and Supplementary Table 
S7 reveal that data augmentation significantly enhances 

performance on the two small-scale datasets, Dong and 
Grun. For the remaining dataset, scFSNN again exhibits 
comparable predictive accuracy.

For real-world applications of scFSNN, we recommend 
considering both p0 estimation and data augmentation as 
they have the potential to improve model performance.

Influence of the normalization method
We utilized the total counts normalization method 
(TCN), wherein each cell’s counts are divided by its total 
counts and then multiplied by a scale factor (we set the 
scale factor as the median total counts across all cells). 
The resulting values are then natural-log transformed 
using log1p. This approach bears resemblance to Seurat’s 
log normalization method [36] and is a widely adopted, 
straightforward option for normalizing scRNA-seq data. 
To stabilize the training process, we further standardized 
the normalized data, making its mean and standard devi-
ation become 0 and 1, respectively.

To illustrate the influence of the normalization method 
throughout the procedure, we assessed the perfor-
mance of feature selection methods across three data-
sets, employing three different normalization methods: 
TCN, TMM [37], and SCTransform [38]. As shown in the 
Table  5, all three normalization methods perform simi-
larly on all datasets.

Conclusions
Fast and accurate feature selection is critical for large-
scale classification analysis in scRNA-seq datasets. 
Finding informative gene sets from numerous candi-
dates can greatly enhance explanatory ability, improve 
predictive accuracy, and reduce the labor and cost of 

Table 4 Predictive accuracy, the number of selected features 
and marker genes of scFSNN and five other classifiers with 
feature selection procedure on Human datasets

Methods Accuracy Selected feature Marker

scFSNN 0.9886 624 42

SurvNet 0.9837 134 26

SINC 0.9886 1500 25

ZIPLDA 0.9732 1000 8

GL 0.9827 2447 42

SGL 0.9818 2247 41

Fig. 4 Predictive accuracies of the proposed scFSNN and scFSNN with p0 = p on seven scRNA-seq datasets. The box represents the interquartile 
range, the horizontal line in the box is the median, the rhombus represent the average, and the whiskers represent the 1.5 times interquartile range
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applying scRNA-seq to clinical tests, therapeutic discov-
ery and genetic screens. In this paper, we have proposed 
an embedded algorithm for the classification of samples 
based on the DNN framework, scFSNN, that incorporate 
a fast and simple backward feature selection procedure. 
scFSNN can adaptively choose the number of genes to be 
deleted at each step, thus accelerating the feature selec-
tion procedure. scFSNN controls the FDR by generat-
ing a set of null genes to estimate the null distribution, 
avoiding the use of methods that have highly computa-
tional burden, such as cross-validation. Furthermore, by 
using data augmentation, scFSNN can achieve high gen-
eralization predictive abilities. Our experimental results 
demonstrate that our scFSNN algorithm achieve higher 
predictive accuracy with substantially informative genes 
than other algorithms for scRNA-seq datasets. Based on 
these results, we believe that scFSNN can be fruitfully 
applied to many scRNA-seq datasets.
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