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Abstract 

Background DNA storage has the advantages of large capacity, long-term stability, and low power consumption 
relative to other storage mediums, making it a promising new storage medium for multimedia information such 
as images. However, DNA storage has a low coding density and weak error correction ability.

Results To achieve more efficient DNA storage image reconstruction, we propose DNA-QLC (QRes-VAE and Leven-
shtein code (LC)), which uses the quantized ResNet VAE (QRes-VAE) model and LC for image compression and DNA 
sequence error correction, thus improving both the coding density and error correction ability. Experimental results 
show that the DNA-QLC encoding method can not only obtain DNA sequences that meet the combinatorial con-
straints, but also have a net information density that is 2.4 times higher than DNA Fountain. Furthermore, at a higher 
error rate (2%), DNA-QLC achieved image reconstruction with an SSIM value of 0.917.

Conclusions The results indicate that the DNA-QLC encoding scheme guarantees the efficiency and reliability 
of the DNA storage system and improves the application potential of DNA storage for multimedia information such 
as images.
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Introduction
With the rapid development of emerging technologies 
such as artificial intelligence, big data and blockchain, 
massive image data continues to emerge, and traditional 
storage media can no longer meet such huge storage 
needs. With the advantages of high storage density, long 
storage time, and low energy consumption, DNA stor-
age has become one of the potential media to solve the 
future data storage crisis. The quality of DNA encoding 
and error correction methods will directly affect the cost 

of synthesis, sequencing and the integrity of data reading 
and writing, so it has attracted widespread attention from 
many researchers.

Early encoding methods [1–4] primarily relied on spe-
cific mapping rules to convert data into DNA sequences. 
To minimize the risk of errors in the DNA sequences dur-
ing storage, it was essential to design DNA sequences that 
adhered to constraints like GC content and homopoly-
mers. However, this approach often resulted in reduced 
information density. Subsequent research introduced 
alternative encoding methods, such as DNA Fountain [5] 
and the Yin-Yang codec system [6], which explored new 
solutions without compromising information density. 
However, the fountain code encoding method requires 
sufficient redundancy to ensure successful decoding. To 
address this issue, the Yin-Yang codec system has been 
proposed, which not only reduces decoding redundancy 
but also yields highly robust DNA encoding sequences. 
In addition, in view of the high correlation of image data, 
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a variety of coding methods have emerged. These include 
coding solutions based on biological constraints [7], 
lossy/lossless hybrid coding schemes [8], and BO-DNA 
medical image coding models [9].

Although the aforementioned encoding methods have 
been designed to maximize information density while 
meeting GC content and homopolymer constraints in 
DNA sequences, thereby enhancing the stability and 
robustness of DNA storage systems, they do not entirely 
ensure data recovery. This is due to the high susceptibil-
ity of DNA storage systems to errors, primarily intra-
sequence and inter-sequence errors. Intra-sequence 
errors typically occur during data writing (synthesis) and 
reading (sequencing) phases, leading to potential issues 
such as substitution, deletion, and insertion [10–12]. On 
the other hand, inter-sequence errors refer to the loss of 
sequences [13, 14]. In order to deal with this challenge, 
various error correction methods are designed. Currently, 
to address sequence loss issues, the primary approach 
involves adding redundant sequences [5, 15]. In the early 
stage, error correction codes were mainly used to correct 
base errors in sequences, such as RS (Reed-Solomon) 
codes [3, 16–18], BCH (Bose-Chaudhuri-Hocqueng-
hem) codes [19], LDPC (low-density parity-check) codes 
[20, 21], HEDGES (Hash Encoded, Decoded by Greedy 
Exhaustive Search) error-correcting code [22], and DNA-
Aeon [23]. Besides, there are also methods available that 
achieve error correction based on specific constraints 
[24] and particular rules [25]. Given the extensive explo-
ration and research conducted by researchers in the field 
of encoding and error correction within DNA storage, 
the current systems still confront issues concerning low 
encoding density and relatively weak error correction 
capabilities.

In order to address these challenges, we propose a 
DNA-QLC encoding scheme. First, to improve the 
coding density for DNA storage systems, the scheme 
applies QRes-VAE (for quantized ResNet VAE) to com-
press images into several bitstreams. After that, the LC 

(Levenshtein code) is used to add check bits to the bit-
streams to realize the correction of substitution, dele-
tion, and insertion errors during DNA storage, which 
can solve the problem of weak error correction ability. 
Finally, mapping rules are used to encode bitstreams into 
the DNA sequence that meet combinational constraints 
(local GC content of 50% and homopolymers with a size 
of less than 2) and to avoid the occurrence of undesired 
motifs (GAA TTC  and GGC) in DNA sequences, thus 
improving the robustness of DNA sequences.

Results
This study proposes DNA-QLC to enhance the perfor-
mance of DNA storage systems by increasing the coding 
density and error correction capability. DNA-QLC was 
compared with previous representative works [1–6] in 
terms of coding results, error correction performance, 
and synthesis cost. The experimental results show that 
the DNA sequences encoded by DNA-QLC meet con-
straints such as local GC content and homopolymers 
and also avoid the occurrence of two undesired motifs, 
improving the robustness of DNA sequences. Moreover, 
given the compression ability achieved by DNA-QLC 
when storing images, the net information density reached 
by the scheme is 2.90 bits/nt, reducing the synthesis cost. 
In particular, at a high error rate, the SSIM value of the 
image before and after encoding by DNA-QLC is close to 
1, indicating that the scheme has excellent error correc-
tion performance.

Encoding result
To prove the advantages of the DNA-QLC coding 
scheme, we compared it with representative coding 
schemes [1–6] for the same image encoding results. As 
shown in Table  1, in terms of net information density, 
DNA-QLC breaks through the limit of 2 bits per base 
and reaches 2.90 bits/nt, which makes it the maximum 
among these encoding schemes. In terms of biologi-
cal constraints, the previous encoding scheme can only 

Table 1 Comparison of encoding schemes

Method/Reference Error correction 
strategy

Number of 
oligos

Net information 
density (bits/nt)

GC content (%) Maximum 
homopolymer length 
(nt)

Avoidance 
of undesired 
motifs

Church/ [1] No 4064 0.94 39–61 3 No

Goldman/ [2] Repetition 3251 1.48 39–60 1 Yes

Grass/ [3] RS 2787 1.56 36–62 3 No

Blawat/ [4] RS 2787 1.40 24–60 3 No

Erlich/ [5] Fountain 2927 1.23 39–62 4 No

Yin-Yang/ [6] RS 3125 1.36 40–60 4 No

DNA-QLC LC 1293 2.90 50 2 Yes
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maintain the GC content between 40 and 60%, while 
DNA-QLC can control the local GC content at 50%. 
Similar to encoding schemes, considering the limita-
tions of biotechnology, DNA-QLC controls the length 
of the homopolymer within 2 bases, which can signifi-
cantly decrease the probability of errors in the process of 
reading and writing. In addition, the DNA-QLC encod-
ing scheme can avoid the occurrence of two undesired 
motifs (GAA TTC  and GGC) and reduce the probabil-
ity of sequence loss and the reading error rate. We used 
a histogram (Fig.  1) to show the situation of undesired 
motifs in different encoding schemes. It can be seen 
more intuitively that only Goldman and DNA-QLC are 
free from undesired motifs. In sum, besides maintaining 
a high information density, DNA-QLC makes the DNA 
sequence more highly adaptable to the process of “writ-
ing” and “reading” in the DNA storage system, improving 
the stability and reliability of DNA storage.

To assess the reconstructed image’s quality, we meas-
ured the degree of distortion of the image and the simi-
larity of the two images before and after encoding by 
SSIM [26]. SSIM is a perceptual model that correlates 
well with the visual experience of human eyes and con-
siders three crucial aspects of an image: luminance, con-
trast, and structure. The maximum SSIM value is 1, and 
the minimum SSIM value is − 1. A higher SSIM value 
indicates a higher similarity between the original and 
the reconstructed image, while a lower value suggests 

a greater difference between the two images. The data 
source for SSIM value calculation was the ILSVRC2012 
dataset [27], and Fig. 2 displays the results of the image 
comparison. The figure shows that the image obtained 
using DNA-QLC is visually similar to the original image 
and that the main objects in these images are accurately 
captured. For different images, DNA-QLC has a different 
SSIM (S) and net information density (N), but both the 
SSIM and the net information density are competitive. 
This is because the QRes-VAE model has a certain com-
pression function that enables DNA-QLC to significantly 
increase the net information density while guaranteeing 
image quality.

Error correction performance evaluation
To assess how effectively DNA-QLC corrects errors, we 
compared SSIM values with those of previous representa-
tive encoding schemes (Grass [3] and Yin-Yang [6]) under 
different error rates, as shown in Fig.  3. Three kinds 
of encoding schemes were used to encode the Mona 
Lisa image, and then we randomly added three types of 
errors: substitution, deletion, and insertion. Since sub-
stitution errors are more likely to occur than the other 
two types of errors, definition substitution errors account 
for half of the total errors when simulating errors. Here, 
the three encoding schemes were run 10 times under the 
same error rate (the error rate was maintained at 0.1–2%) 
to calculate the mean value and standard error. In Fig. 3, 

Fig. 1 The case of undesired motifs in each encoding scheme
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when the error rate is 0.1%, the Yin-Yang code has a 
higher SSIM value, which is equal to the optimal value 1, 
indicating that the images before and after encoding are 
completely consistent. However, with the increase in the 

error rate, the SSIM value of the encoding scheme drops 
sharply. As the error rate increases, the SSIM value of the 
Grass encoding scheme decreases clearly. However, the 
SSIM value of the DNA-QLC encoding scheme remains 

Fig. 2 Graphic view before and after different image encoding. a, c, e and g are original image examples. b, d, f and h are based on the DNA-QLC 
with the results of SSIM (S) and Net information density (N, bits/nt)

Fig. 3 Comparison of the error correction performance of different encoding schemes under different error rates
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stable at 0.917 with the increase in the error rate, indi-
cating that the scheme has a stronger error correction 
ability in the case of a high error rate. The shorter error 
bars also exclude sampling errors. Compared with the RS 
error correction code (Yin-Yang and Grass), DNA-QLC 
corrects all errors by inserting check bits into the binary 
stream, and it overcomes the defect that the RS error cor-
rection code has a positive correlation between the error 
correction performance and redundancy. Moreover, the 
error correction result of DNA-QLC does not fluctuate, 
because this scheme generates multiple DNA sequence 
files during the error correction process and then selects 
a correct sequence file from them to achieve error-free 
image reconstruction. Figure  4 shows the image recon-
structions with error rates of 0.5% and 1.5%. DNA-QLC 
achieves the best visual results, further illustrating the 
significant advantages of the encoding scheme’s error 
correction capability.

Costs of synthesizing analysis
Owing to the limitations of current biotechnology, it is 
expensive to synthesize DNA sequences. Therefore, the 
encoding scheme should achieve a good error correction 
performance and also improve the utilization rate of the 
base to reduce the synthesis cost. To assess the cost, we 

compared DNA-QLC with four published open-source 
encoding schemes, including DNA Fountain [5] and 
Yin-Yang [6]. The Mona Lisa image data were encoded 
using five encoding schemes, and the oligonucleotide 
pool pricing table from Twist Bioscience [28] was used to 
approximate the synthesis cost of the encoding sequence, 
as shown in Fig.  5. Church’s encoding scheme requires 
4064 sequences of 204 bases each, for a total of 829,056 
bases to decode to obtain the Mona Lisa image. Grass’ 
encoding scheme requires 2787 sequences of 180 bases 
each. DNA Fountain requires 2927 sequences, each with 
216 bases. Yin-Yang requires 3125 sequences of 184 bases 
each. DNA-QLC requires 1293 sequences of 208 bases 
each. As can be seen from Fig. 5, when a 95.2-KB image 
(Mona Lisa.jpg) is stored, the synthesis cost required by 
the DNA-QLC encoding scheme is the lowest. The DNA-
QLC is 33.3% cheaper than the most widely used DNA 
Fountain encoding scheme and 11.6% cheaper than the 
latest Yin-Yang encoding scheme.

Conclusion
In this study, aiming at the problems of low cod-
ing density and weak error-correcting ability in DNA 
storage, we proposed a DNA-QLC encoding scheme 
that uses the QRes-VAE model and the LC algorithm 

Fig. 4 Graphic view of one example. a, b and c are the reconstruction of the image when the error rate of the three coding schemes is 0.5%. e, f 
and g are the reconstruction of the image when the error rate of the three coding schemes is 1.5%
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to compress images and correct mistakes. Compar-
ing DNA-QLC with representative encoding schemes 
encoding the same image, the net information density 
reached by DNA-QLC is 2.90 bits/nt, 2.4 times that 
of DNA fountain codes (Table 1). The results in Fig. 2 
show that when the input image contains significant 
amounts of redundant information, the net informa-
tion density of DNA-QLC is 15.72 bits/nt. Clearly, the 
introduction of the QRes-VAE model can significantly 
improve the encoding density, greatly reducing the cost 
of DNA storage. The DNA-QLC only uses simple map-
ping rules to encode bitstreams into DNA sequences 
that meet the local GC content level of 50%, the 
homopolymer length of no more than 2, and no unde-
sired motifs, effectively reducing the DNA probability 
of errors during DNA storage. In addition, DNA-QLC 
can also detect and correct multiple errors of the same 
type through the LC. Based on the experimental find-
ings, we can conclude that the DNA-QLC encoding 
scheme can overcome the problem of the positive cor-
relation between the error correction performance and 
the redundancy of other encoding schemes. And with 
the increase of the error rate, the image SSIM value will 
not decrease. In addition, when the error rate is high, 
the DNA-QLC encoding scheme can still maintain the 
integrity and clarity of the image, and they do not cause 
serious distortion or the failure to recognize the main 
object (Fig. 4).

Although DNA-QLC has high encoding and error cor-
rection performance, DNA-QLC has a defect in correct-
ing the substitution error, that is, it can only correct the 
errors of purine mutation to pyrimidine or pyrimidine 
mutation to purine. We will attempt to resolve this issue 
in future research work as well as study the molecular 
characteristics of DNA, construct a DNA storage self-
error correction model based on deep learning, reduce 
the overhead of unnecessary error correction redun-
dancy, further improve the net information density and 
capacity of DNA storage, reduce its cost, and promote 
DNA storage practical applications in storing cold data.

Methods
To improve the coding density and error correction 
performance in the DNA storage system, we propose a 
DNA-QLC encoding scheme, which is primarily divided 
into QRes-VAE compression model and LC encoding 
algorithm. First, the input image is compressed using 
the QRes-VAE model to obtain compressed binary data, 
which are segmented and indexed. Then, the LC is used 
to add check bits to the binary data. Finally, the bit-
streams are mapped to DNA sequences that comply with 
the combinatorial constraints through mapping rules. 
The flowchart and pseudocode of DNA-QLC are shown 
in Fig. 6 and Algorithm.

Fig. 5 Cost evaluation of different encoding schemes
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Algorithm 1. The pseudocode of DNA-QLC

Fig. 6 Flowchart of the DNA-QLC encoding scheme
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Image compression with QRes‑VAE
Compression technology is critical for DNA storage. An 
efficient compression method can improve the utiliza-
tion rate of the base while ensuring the integrity of data, 
increasing the coding density, and reducing the synthesis 
cost. However, the performance of current compression 
techniques in DNA storage is lacking, such as Huffman 
coding [2] and discrete wavelet decomposition [7]. In this 
paper, images are compressed by the QRes-VAE model, 
and the compression process of this model [29] is described 
in detail in this subsection.

Network architecture
The QRes-VAE model is based on ResNet (residual net-
work) VAE [30], using quantization-aware posteriors 
and priors to redesign latent variables. It consists of a 
bottom-up path and a top-down path. When an image is 
inputted, the bottom-up path produces some determinis-
tic features, which are then transmitted to the top-down 
path for inference, after which the image is reconstructed 
by up-sampling.

Loss function
The loss function of the QRes-VAE model [29] is shown 
as follows:

where Z ∼ qZ|x represents the estimation of samples 
extracted in each training step, � is the hyperparam-
eter that can be set manually, x is the input image, x is 
the reconstruction image, and d(x, x) is the mean square 
error of the input image and reconstruction image.

Compression
First, features are extracted from the input image and 
quantized into N potential variables ( Z1,Z2, . . . ,ZN ). 
Then, potential variables are encoded into bits by using 
the probability quality function (PMF) [31]. Finally, 
entropy encoding is performed by the range-based asym-
metric numeral systems (rANS) [32]. The quantization 
formula [29] during compression is as follows:

where ⌊·⌉ is the nearest integer function, and vi is quan-
tified as its nearest neighbor in the set vi + n|n ∈ Z  , 
denoted by Zi.

The formula for the PMF Pi(·) [29] is given below.

(1)

L = DKL

(
qZ|x �pz

)
+ EqZ|x

[
log 1

PX |Z ( x|Z)

]
,

= EqZ|x

[
N∑

i=l

log 1
Pi(Zi|Z<i )

+ � · d
(
x, x̂

)]
+ constant,

(2)z ← v̂i + ⌊vi − v̂i⌉,

(3)Pi(n) � pi
(
v̂i + n|Z<i

)
, n ∈ Z

Decompression is the inverse process of compression. 
It first uses rANS to decode each bitstream and transform 
Zi using convolution layers before adding it to the fea-
ture. Finally, it obtains the reconstructed image through 
the final up-sampling layer in the top-down decoder. The 
QRes-VAE model is used to compress images so that a 
small number of DNA sequences can be used to store 
image information. This approach improves the coding 
density of the DNA storage system and reduces the cost.

Levenshtein code algorithm
In the process of DNA synthesis, PCR amplification and 
DNA sequencing, substitution, deletion and insertion 
errors are easy to occur. Previous studies have reported 
that chemistry synthesis and second-generation sequenc-
ing result in an error rate of about 1% per base [15] and 
that third-generation sequencing has an error rate of up 
to 10% [33]. Moreover, the error rate of DNA sequences 
varies among different motifs. DNA sequences with 
homopolymers and abnormal GC content are difficult to 
synthesize [6], thus generally having a higher error rate 
during the synthesize process. Therefore, constraints 
are crucial to avoiding errors in DNA storage, and more 
new constraints are being widely explored and studied. 
For example, DNA sequences with restriction sites were 
easily cleaved by restriction enzymes (“GAA TTC ” for 
“EcoRI”) during in  vivo storage, leading to information 
loss [34]. For the replication process, local GC content 
balance was explored to improve the success rate of PCR 
amplification technology [35]. During the sequencing 
process, the Illumina sequencing platform had a higher 
error probability for DNA sequences containing “GGC” 
fragments [36].

Most current encoding schemes can only meet the two 
basic constraints of a global GC content and homopoly-
mer and cannot satisfy the abovementioned new con-
straints. Therefore, a novel mapping rules was designed, 
whose central idea is to map three binary numbers to two 
bases (e.g., 000 → TC, 001 → TG, 010 → AC, 011 → AG, 
100 → CT, 101 → CA, 110 → GT, 111 → GA). The map-
ping rules, which sets purine and pyrimidine in series, 
can well control the local GC content to 50% and simul-
taneously set keep the maximum limit of homopolymers 
2 and exclude the occurrence of two undesired motifs 
(GAA TTC  and GGC). However, constraint encoding can 
only reduce the error probability, but can not completely 
avoid it. To further ensure the read–write integrity of 
data, LC [37] is used to correct substitution, deletion, and 
insertion errors that occur within the sequence.

LC
This is a binary algebraic code whose binary codeword of 
length n satisfies Eq. (4) [37].
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For any integer U ≥ 2m , 0 ≤ r ≤ U − 1 , in this study, 
let r = 0 and U = 2m . In sum, an l bits binary sequence 
is processed into a codeword of length m , and the condi-
tions below should be satisfied.

The central idea of the LC is actually to insert parity 
bits at  2i-th positions to ensure that the codeword has a 
desired syndrome. Note that the last position is always 
a parity bit and that the second-to-last position is the 
message bit. When the length of the binary data is l , the 
length of the codeword processed by the is m , and the 
calculation equation is as below.

Example
The binary data are 101,000,011,110, and the length 
l = 12 , which is calculated by Eqs.  (6) and (7) to obtain 
U = 36 . To meet the conditions of Eq.  (5), we must use 
an additional 6 check bits.

Calculate the syndrome of the bits using 
m∑

k=1

xk ∗ k =

3+ 6+ 12+ 13+ 14 + 15 = 63 . Through 2U − 63 , the syn-
drome can be calculated to be equal to 9, we can convert 
it into binary (001001) and obtain 6 check bits, then we 
insert that value into the binary data stream and obtain 
the code word 101,001,010,001,111,000 processed by LC. 
Then, according to the mapping rules, the code word 
101,001,010,001,111,000 can be encoded into the DNA 
sequence CAT GAC TGG ATC , which satisfies the local 
GC content of 50%, the homopolymer length not exceed-
ing 2, and no GAA TTC  and GGC two undesired motifs. 
In addition, if the sequence has substitution, deletion, 
and insertion errors during the DNA storage process, the 
added syndrome can be used to correct the sequence to 
obtain the correct original information.
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