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Abstract
Background Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our 
previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the 
molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity 
mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this 
phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity 
mitigation by integrated miRNA-mRNA analysis.

Results The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. 
Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 
629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air 
exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the 
target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and 
salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. 
Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating 
glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were 
novel miRNAs.

Conclusion In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small 
RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-
mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. 
nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and 
inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel 
insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.
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Introduction
Stress responses during breeding, fishing, and transpor-
tation can impact serum biochemical indexes, growth 
rate, and diminish antioxidant capacity and resistance 
in fish. Additionally, they can also disturb fluctuations 
in the concentration of glucose, lipid, and protein [1–3]. 
Air exposure is a highly stressful factor in fish. Previous 
studies have primarily concentrated on investigating the 
damage of air exposure, including oxidative stress levels 
[4], survival rates [5], energy metabolism [6], and hema-
tological characteristics [7]. Presently, the emphasis in 
research on the effects of air exposure is primarily on 
exploring the mechanisms of damage caused, while the 
strategies to mitigate them have been paid less atten-
tion [6, 8]. However, it has been observed that prop-
erly adjusting the salinity of the aquatic environment 
is an effective strategy to alleviate stress in fish. Previ-
ous studies have demonstrated that altering salinity can 
enhance immune response and reduce serum glucose, 
plasma osmotic pressure, and antioxidant activity in rain-
bow trout (Oncorhynchus mykiss), threespot gourami 
(Trichogaster trichopterus), and Labeo victorianus dur-
ing transportation stress [9–11]. Additionally, our own 
research has shown that adding 10‰ NaCl to aquatic 
water can positively alleviate stress responses to air expo-
sure in C. nasus [12]. However, the precise mechanisms 
through which salinity alleviates stress are still not fully 
understood.

MicroRNAs (miRNAs) are a class of non-coding RNA 
molecules, typically consisting of 18–22 nucleotides. 
These mature miRNAs regulate target gene expression 
via binding to the 3′ untranslated region, leading to the 
silencing of those specific genes [13]. Previous studies 
have revealed that stress-related proteins, hormones, 
and cytokines can be impacted by various stressors in 
fish [14–16]. Recently, increasing attention was concen-
trated on dynamic alteration of miRNA expression dur-
ing stress [17]. The increased expression of miR-101a was 
found in zebrafish (Danio rerio) under heat stress, and 
the induction of hsp70 was shown to impact the expres-
sion of miR-101a [18]. A total of 14 miRNAs exhib-
ited significant expression changes in medaka (Oryzias 
latipes) under hypoxic stress. The mir-204-5p negatively 
regulated homeodomain-interacting protein kinase 1 
(HIPK1), promoting apoptosis [19]. In Asian barra-
mundi (Lates calcarifer), 25 immune-related miRNAs 
were significantly up-regulated in the spleen following 
a 24-hour exposure to lipopolysaccharide (LPS), and 52 
miRNAs involved in 10 immune-related pathways [20]. 
The miR-122 was found to have pivotal roles in the meta-
bolic pathway within the liver of true whitefish (Corego-
nus lavaretus) under microcystis stress. It achieved this 
by inhibiting target genes or modulating the phenotype 
of cellular genes, thereby regulating liver function [21]. 

With the in-depth study of miRNA functions, the sig-
nificant roles played by miRNAs in stress response are 
gradually being unveiled. Exploring the functional role of 
miRNAs in stress response and mitigating stress in fish 
carries considerable scientific importance.

Coilia nasus is a rare species of Coilia known for its 
strong stress response, usually leading to high mortal-
ity. Previous studies on C. nasus have demonstrated 
that oxidative stress, apoptosis, and elevated mortality 
rates were induced by transport stress [22]. The addi-
tion of salt before and after air exposure has been found 
to have a positive effect on oxidative stress, endoplasmic 
reticulum stress, and apoptosis in C. nasus juveniles [12]. 
However, previous investigations have primarily focused 
on the transcriptional level and have not addressed the 
underlying regulatory mechanisms. Therefore, in our 
present study, we conducted microRNA sequencing and 
integrated RNA-seq analysis to elucidate the regulatory 
mechanisms in C. nasus. Our findings will propose novel 
insights to stress mitigation in fish and promote healthier 
aquaculture practices.

Results
Alteration of biochemical indexes during air exposure and 
salinity mitigation
The results of biochemical indexes in serum during air 
exposure and salinity mitigation were showed in Fig.  1. 
Compared with C group, the concentrations of glucose, 
malondialdehyde (MDA), and lipid peroxidation (LPO) 
were significantly increased in AE group (P < 0.05), while 
the catalase (CAT), superoxide dismutase (SOD), and 
glutathione peroxidase (GSH-Px) activities were sig-
nificantly decreased in AE group (P < 0.05). Moreover, 
compared with AE group, the concentrations of glucose, 
MDA, and LPO were significantly decreased in AES 
group (P < 0.05), while CAT, SOD, GSH-Px activities, and 
total antioxidant capacity (T-AOC) were significantly 
increased in AES group (P < 0.05).

miRNA expression profiles during air exposure and salinity 
mitigation
A total of 12,051,985 to 22,516,624 clean reads were 
obtained by removing adapters, filtering out low-qual-
ity sequences, and eliminating contamination (Table 
S1). The length distribution of the small RNAs in each 
library ranged from 19 to 22 nucleotides, with the peak 
distribution observed at 22 nucleotides (Figure S1). The 
obtained small RNAs were annotated using the Rfam 
database to remove known non-miRNA sequences such 
as rRNA, snoRNA, snRNA, tRNA, and others (Table S2). 
Between 87.64% and 96.39% of the filtered small RNA 
sequences from each group were successfully mapped to 
the C. nasus genome (GCA_007927625.1) (Table S3). In 
total, we identified 1,435 known miRNAs and 604 novel 
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miRNAs using Bowtie, RNAfold, and mireap based on 
the miRBase database. A total of 629 DEMs were identi-
fied between the AE group and C group, with 64 DEMs 
being up-regulated and 565 DEMs being down-regulated. 
Between the AES group and AE group, 429 DEMs were 
identified, including 294 up-regulated DEMs and 135 
down-regulated DEMs. Additionally, between the AES 
group and C group, 692 DEMs were obtained, consist-
ing of 205 up-regulated DEMs and 487 down-regulated 
DEMs.

GO and KEGG classification analysis of DEMs’ target genes
Comparing the AE group with the C group, the GO anal-
ysis demonstrated that the target genes of DEMs were 
categorized into biological process (regulation of cellular 
component organization, organelle organization) and cel-
lular component (cytoskeleton, non-membrane-bounded 
organelle, intracellular non-membrane-bounded organ-
elle) (Fig.  2A); KEGG analysis demonstrated that the 
target genes of DEMs were significantly enriched in path-
ways such as the Motor proteins, Ubiquitin mediated 
proteolysis, Wnt signaling pathway, and PPAR signaling 
pathway (Fig.  2B). In the comparison between the AES 
group and AE group, the GO analysis revealed that the 
target genes of DEMs were enriched in biological pro-
cess (regulation of cellular macromolecule biosynthetic 
process, regulation of cellular process, regulation of mac-
romolecule biosynthetic process, regulation of transcrip-
tion, DNA-templated) (Fig. 2C); KEGG analysis showed 

significant enrichment of target genes in Wnt signaling 
pathway, PPAR signaling pathway, Lysine degradation, 
and N-Glycan biosynthesis (Fig. 2D).

Transcriptomic expression profiles during air exposure and 
salinity mitigation
To investigate the genes related to air exposure and salin-
ity mitigation, a total of nine samples from the brains of 
C. nasus were used to construct three groups of cDNA 
libraries. These groups consisted of control groups (C), 
air exposure groups (AE), and salinity mitigation groups 
(AES). Initially, 46,571,410 to 51,277,748 raw reads were 
generated. 46,190,474 to 50,859,056 clean reads remained 
via removing adapters, filtering low-quality sequences, 
and eliminating contamination (Table S4). Furthermore, 
67.16–71.22% of the clean reads from each group were 
successfully mapped to the C. nasus genome (Table S5). 
A total of 791 differentially expressed genes (DEGs) were 
identified between the AE group and C group, consisting 
of 383 up regulated DEGs and 408 down regulated DEGs. 
Similarly, between the AES group and AE group, 1016 
DEGs were identified, comprising 473 up regulated DEGs 
and 543 down regulated DEGs. Additionally, between the 
AES group and C group, 1651 DEGs were identified, with 
572 up regulated DEGs and 1079 down regulated DEGs.

GO and KEGG classification analysis of DEGs
Between the AE group and C group, the GO analysis 
revealed DEGs were categorized into biological process 

Fig. 1 Effects of air exposure and salinity mitigation on glucose (A) in serum, CAT (B), SOD (C), GSH-Px (D), T-AOC (E), MDA (F), and LPO (G) in brain. The 
results were showed in means ± SD. Different letters indicate significant difference at P < 0.05
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(protein activation cascade and regulation of protein 
maturation) (Fig. 3A); KEGG analysis demonstrated that 
DEGs were enriched in metabolism (Amino acid metab-
olism and Xenobiotics biodegradation and metabolism) 
(Fig.  3B). Between the AES group and AE group, GO 
analysis showed that DEGs were enriched in biological 
process (cotranslational protein targeting to membrane 
and protein targeting to ER) and cellular component 
(cytosolic ribosome and ribosomal subunit) (Fig.  3C); 
KEGG analysis showed that the target genes of DEMs 
were enriched in metabolism (Carbohydrate metabolism 
and Amino acid metabolism) and organismal systems 
(Sensory system and Digestive system) (Fig. 3D).

Integrated analysis of the miRNA-mRNA-pathway 
regulatory network
Based on the obtained expression profiles of mRNA and 
miRNA, differentially expressed miRNAs (DEMs) were 
identified along with their target differentially expressed 
genes (DEGs) showing a significantly negative correla-
tion. The potential regulatory relationships between them 
were illustrated in Fig.  5. Through integrated analysis, 
it was determined that 20 DEGs between the AE and C 
group were negatively regulated by 22 DEMs, resulting in 
24 miRNA-mRNA pairs (Fig. 4A) (Table S6). Similarly, 33 
DEGs between the AES and AE group were found to be 
negatively regulated by 21 DEMs, generating 36 miRNA-
mRNA pairs (Fig. 4B) (Table S7).

Fig. 2 Functional enrichment of differentially expressed miRNAs (DEMs) during air exposure and salinity mitigation. GO enrichment (A) and KEGG enrich-
ment (B) of DEMs between AE and C group. GO enrichment (C) and KEGG enrichment (D) of DEMs between AES and AE group
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Taking into account comprehensive bioinformatic 
analysis, potential predictions of regulatory relation-
ships, and literature searches, a putative schematic dia-
gram was compiled to depict the essential miRNAs and 
mRNAs involved in glucose metabolism, Ca2+ transport, 
inflammation, and oxidative stress in the brains of C. 
nasus during air exposure (Fig.  5A) and salinity mitiga-
tion (Fig. 5B).

Validation of miRNA and mRNA expression level
To validate the accuracy of the small RNA-Seq and RNA-
Seq data, the expression levels of 6 differentially expressed 
miRNAs (DEMs) (novel-miR-24, novel-miR-240, novel-
miR-241, novel-miR-386, novel-miR-401, and novel-
miR-493) (Fig.  6A) and 5 differentially expressed genes 
(DEGs) (cart4, g6p, pepck, angptl7, and uqcc1) (Fig.  6B) 
from the identified miRNA-mRNA pairs between the AE 
and C group were measured using RT-qPCR. Similarly, 
the expression levels of 7 DEMs (novel-miR-107, novel-
miR-116, novel-miR-176, novel-miR-194, novel-miR-381, 
novel-miR-513, and novel-miR-24) (Fig. 6C) and 7 DEGs 
(pc1, mrtfb, fgf14, foxo1, celf1, cacna1, and dgkζ) (Fig. 6D) 

from the identified miRNA-mRNA pairs between the 
AES and AE group were also assessed using RT-qPCR. 
The results demonstrated that the expression patterns of 
these DEMs and DEGs were consistent with the findings 
of the small RNA-Seq and RNA-Seq analyses.

Discussion
MicroRNAs (miRNAs) are a group of non-coding endog-
enous small RNAs, typically 21–25 nucleotides in length, 
that play crucial roles in the response of fish to environ-
mental stress [23–25]. Through interactions with target 
genes, miRNAs modulate cellular functions and metabo-
lism by regulating gene expression levels [26]. Hence, it is 
highly significant to identify pivotal miRNAs associated 
with stress response in C. nasus and elucidate the under-
lying mechanisms involved in mediating stress response. 
MicroRNAs (miRNAs) are highly conserved molecules 
that selectively target mRNA to regulate gene expression 
[27, 28]. Previous studies have extensively documented 
the ability of miRNAs to regulate multiple target mRNAs, 
and reciprocally, mRNA can be regulated by multiple 
miRNAs [29, 30]. Numerous known miRNAs involving 

Fig. 3 Functional enrichment of differentially expressed genes (DEGs) during air exposure and salinity mitigation. GO enrichment (A) and KEGG enrich-
ment (B) of DEGs between AE and C group. GO enrichment (C) and KEGG enrichment (D) of DEGs between AES and AE group. Details of GO and KEGG 
terms were listed on Table S6
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in various processes have been identified in different fish 
species under different types of stressors [23, 24]. How-
ever, in our study, we observed that most of the DEMs 
associated with glucose metabolism (novel-miR-240, 

novel-miR-241, novel-miR-176, novel-miR-194, etc.) 
and Ca2+ transport (novel-miR-381 and novel-miR-107) 
were novel miRNAs in the brains of C. nasus during air 
exposure and salinity adjustment. The unique spatial and 

Fig. 4 miRNA-mRNA regulatory networks potentially involved in air exposure and salinity mitigation
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Fig. 6 RT-qPCR validation in the brains of C. nasus. (A) RT-qPCR validation of 6 DEMs in AE vs. C. (B) RT-qPCR validation of 5 DEGs in AE vs. C. (C) RT-qPCR 
validation of 7 DEMs in AES vs. AE. (D) RT-qPCR validation of 7 DEGs in AES vs. AE. The results were showed in means ± SD.

 

Fig. 5 Schematic diagram of predicted molecular mechanism during air exposure and salinity mitigation in brains of C. nasus. (A) key DEMs and DEGs 
engaged in brains of C. nasus during air exposure. (B) key DEMs and DEGs engaged in brains of C. nasus during salinity mitigation. The full names and 
expression profiles of genes were listed in Table S8
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temporal expression patterns of these novel miRNAs 
might be the key regulatory factors leading to stron-
ger stress response in C. nasus. Although researches on 
novel miRNAs are relatively limited, growing numbers 
of evidence suggests their crucial role in gene regulation 
and biological processes [31–33]. Future investigations 
exploring the roles and functions of these predicted novel 
miRNAs in the brains of C. nasus during air exposure 
and salinity adjustment would be of great interest.

Elevation of blood glucose levels is a common response 
in fish experiencing stress. In this study, blood glucose 
significantly increased was in C. nasus during air expo-
sure. Additionally, we identified several DEGs associated 
with glucose metabolism. Upregulated genes included 
angptl7, g6p, and pepck, while downregulated genes 
included ir, 5-ht7, sglt5, and glut4. The decreased expres-
sion of insulin receptor (ir) led to reduced cellular sen-
sitivity to insulin, resulting in insulin resistance, which 
inhibits glucose uptake and leads to elevated blood glu-
cose levels [34]. Overexpression of Angptl7 in healthy 
mice can also lead to insulin resistance-like character-
istics, resulting in inhibited glucose uptake and insu-
lin signal pathway [35]. g6p and pepck plays essential 
roles in gluconeogenesis, promoting glucose biosyn-
thesis [36]. Blood glucose in fish plays a role in regulat-
ing stress responses. It is commonly observed that stress 
leads to elevated blood glucose levels in fish, which is 
primarily achieved through enhanced gluconeogenesis 
and reduced glucose transport mechanisms [37–41], 
which were similar to our results. Previous study proved 
that 10‰NaCl could reduce blood glucose levels in fish 
under transport stress [9–11]. In our study, we observed 
a decrease in blood glucose levels in C. nasus during 
salinity mitigation. Moreover, we identified several DEGs 
associated with glucose metabolism. Upregulated genes 
included 5-ht1e, glut4, and smct1, while downregulated 
genes included gr, dgkζ, g6p, celf1, foxo1, mrtfb, and fgf14. 
Activated foxo1 inhibited glut4 transcription, leading 
to obstruction of glucose uptake [42]. smct1 involved in 
glucose transport [43]. Up regulated smct1 and glut4 and 
down regulated foxo1 in C. nasus during salinity mitiga-
tion indicated that glucose uptake was promoted. foxo1 
regulated gluconeogenesis by binding to promoter region 
of g6p [44]. dgkζ is an enzyme that phosphorylates dia-
cylglycerol (DAG) to produce phosphatidic acid (PA). 
Inhibiting or reducing the production of PA can sup-
press glucose production in the liver [45]. These findings 
suggest that glucose biosynthesis is enhanced and glu-
cose uptake is suppressed in C. nasus during air expo-
sure, while the opposite trend is observed during salinity 
mitigation.

Organisms typically enhance their cellular energy 
metabolism under stress conditions to cope with 
challenges and stressors. Glucose serves as a crucial 

metabolic substrate that generates ATP and is metabo-
lized via oxidative phosphorylation and the mitochon-
drial respiratory chain within mitochondria [46]. In our 
study, NADH dehydrogenase and uqcc1 were upregulated, 
indicating activation of the mitochondrial respiratory 
chain for ATP generation in C. nasus during air exposure. 
However, this process also led to the production of high 
levels of reactive oxygen species (ROS), causing oxidative 
stress. Our results demonstrated that the antioxidative 
system was compromised, as evidenced by increased lev-
els of MDA and LPO. Oxidative stress induced by ROS 
was triggered in fish responding to challenges and stress 
[47–49]. In contrast, during salinity mitigation, NADH 
dehydrogenase, ndh, and nadpme were upregulated, 
which activated the mitochondrial respiratory chain. This 
process also resulted in the production of plentiful ROS, 
but unlike air exposure, oxidative stress did not occur 
due to enhanced antioxidative activity. Additionally, the 
upregulation of gpx and slc23a1 facilitated the produc-
tion of GSH and transport of vitamin C, respectively. As 
common antioxidants, GSH and vitamin C can effec-
tively remove ROS and improve antioxidative activity 
[50, 51]. These findings indicate that under air exposure, 
the excessive production of ROS by the mitochondrial 
respiratory chain disrupts the antioxidant system, result-
ing in oxidative stress in C. nasus. However, during salin-
ity mitigation, the enhancement in antioxidative activity 
prevented oxidative stress in C. nasus.

Inflammatory responses are closely linked to oxida-
tive stress, and ROS generated during oxidative stress 
play a critical role in sustaining inflammation [52, 53]. In 
our study, we observed upregulation in the expression of 
inflammation-related genes (cod29, oit3, cysltr2, irak4, 
and blt1) in C. nasus during air exposure. The activation 
of cd209, oit3, irak4, cysltr2, and blt1 can modulate the 
release of inflammatory factors through the activation of 
MAPK pathways, including p38 MAPK, ERK, and JNK, 
ultimately leading to inflammation [54–58]. Neverthe-
less, we observed a downregulation in the expression of 
oit3, il-6rβ, traf6, and tnfrsf11 genes in C. nasus during 
salinity mitigation. The activation of IL-6Rβ is known 
to stimulate different members of the MAPK pathway, 
including ERK, p38 MAPK, and JNK [59–61]. In fish, 
the inflammatory response was primarily induced by the 
activation of MAPK signaling pathway, which was trig-
gered by oxidative stress [62]. These findings suggested 
that inflammation occurred in C. nasus under air expo-
sure, but is inhibited during salinity mitigation. More-
over, it is probable that the occurrence and suppression 
of inflammatory responses are regulated through the 
modulation of the MAPK signaling pathway.

The calcium signaling pathway is one of the impor-
tant intracellular signaling pathways. As an important 
second messenger, changes of Ca2+ concentration can 
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induce many physiological and pathological processes, 
which was regulated by calcium ion channels, calcium-
binding proteins, and concentration gradients [63]. In the 
present study, expression of nckx1was decreased, while 
expression of mcu was increased. nckx1 is a transmem-
brane transport protein maintaining the balance of Ca2+ 
within cells via sodium-calcium exchange mechanism 
[64]. Increasing intracellular Ca2+ concentration acti-
vated mcu, inducing the influx of Ca2+ from the cyto-
plasm into the mitochondria. These entering Ca2+ can 
participate in regulating the activity of enzymes in the 
mitochondrial respiratory chain [65]. Increasing cortisol 
levels caused by stress can rapidly stimulate the increase 
of cytosolic free Ca2+ in rainbow trout (Oncorhynchus 
mykiss) [66]. These results suggested that the obstruction 
of Ca2+ transport to the outside cell increases the intra-
cellular Ca2+ concentration, thus leading to an elevation 
in mitochondrial Ca2+ concentration in C. nasus under 
air exposure. However, expression of cacna1i, trpv5, pc1, 
and calhm3 was down regulated, indicating that intra-
cellular Ca2+ concentration was decreased via obstruc-
tion of Ca2+ transport to inside cell in C. nasus during 
salinity mitigation. Cytoplasmic Ca2+ overload may dis-
turb the normal regulation of glucose metabolism path-
ways via affecting glucose metabolic enzyme activity, the 
structure and function of glucose transport proteins, and 
interfering with insulin signaling pathway [67–69]. Ele-
vated levels of cytoplasmic Ca2+ increases mitochondrial 
Ca2+ concentration, leading to mitochondrial dysfunc-
tion. This disruption promotes the production of ROS 
within the mitochondria, inducing oxidative stress [70, 
71]. Moreover, cytoplasmic Ca2+ overload can directly 
promote inflammatory responses and involve in the syn-
thesis and release of multiple inflammatory factors [72]. 
Based on these findings, we speculate that the regulation 
of glucose metabolism, oxidative stress, and inflamma-
tion in C. nasus during air exposure could potentially be 
attributed to the cytoplasmic Ca2+ overload. Moreover, 
it is possible that the suppression of glucose metabolism, 
oxidative stress, and inflammation in C. nasus during 
salinity mitigation might be governed by the disruption 
of extracellular Ca2+ transport.

Conclusion
In this study, substantial miRNA-mRNA regulation pairs 
were predicted, and hypothesized that they involved 
in glucose metabolism, Ca2+ transport, inflammation, 
and oxidative stress in C. nasus during air exposure and 
salinity mitigation. Interestingly, most of miRNAs associ-
ated with these processes were novel miRNAs. and this 
regulatory effect may differ from conservative regulatory 
relationships in other fish. Moreover, the miRNA-mRNA 
regulatory networks constructed in this study may 
regulate the increased/decreased plasma glucose and 

inhibited/promoted antioxidant activity during air expo-
sure and salinity mitigation. Further researches on these 
novel miRNAs were necessary and would contribute to 
investigating the molecular mechanisms of response to 
air exposure and salinity mitigation in C. nasus and other 
fish.

Materials and methods
Air exposure stress
We conducted air exposure and salinity mitigation 
experiments using healthy C. nasus (11.10 ± 1.23  cm, 
5.83 ± 1.67  g) obtained from the Freshwater Fisheries 
Research Center base in Yangzhong, China. The fish used 
in this study were 10 months old. Based on their gonads 
(transparent ribbon-like filaments), males and females 
were not able to be distinguished. We set the following 
three groups: a control group (C), an air exposure group 
(AE), and a 10‰ NaCl mitigation group (AES). Each 
group was replicated in triplicate, with 30 fish per tank 
measuring 75  cm × 56  cm × 60  cm. The experimental 
procedure is illustrated in Fig. 7. Briefly, the fish in the AE 
group and AES group were acclimated to freshwater and 
10‰ NaCl (water temperature: 27.6 ± 0.7 ℃, pH: 7.8 ± 0.2, 
DO: 6.3 ± 0.9 mg/L), respectively, for two weeks prior to 
air exposure. After air exposure by netting [8, 73], the 
fish in the AE and AES groups were returned to freshwa-
ter and 10‰ NaCl, respectively, for 30 min of recovery. 
Subsequently, five fish were chosen at random and anes-
thetized using 50  mg/L MS-222. The brain tissues were 
rapidly collected and flash-frozen in liquid nitrogen, then 
stored at -80℃ until further analysis. Blood samples were 
incubated at 4℃ for 2  h, followed by centrifugation at 
3500 r/min for 10 min at 4℃ to obtain serum.

Detection of biochemical indexes
Brain tissue stored at -80 ℃ was weighed accurately. The 
brain tissue was homogenized in nine volumes of normal 
saline. The homogenate was centrifuged at 250 r/min for 
10  min. Then the supernatant (10% tissue homogenate) 
was taken for further analysis. The levels of serum glu-
cose (GLU), CAT, SOD, GSH-Px, T-AOC, MDA, and 
LPO in brain tissues were measured using kits obtained 
from Jiancheng (Nanjing, China) following the manufac-
turer’s instructions.

RNA extraction
Total RNA was isolated from 9 brain tissues using TRIzol® 
Reagent following the manufacturer’s instructions (Invit-
rogen, CA, USA), and DNase I treatment (TaKara, Tokyo, 
Japan) was employed. After ensuring quality and quantifi-
cation, high-quality RNA samples (OD260/280 = 1.8 ∼ 2.2, 
OD260/230 ≥ 2.0, RIN ≥ 6.5, 28 S:18 S ≥ 1.0, > 10 µg) were 
used for constructing the sequencing libraries.
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microRNA libraries construction and sequencing
Small RNA-seq libraries were generated using the 
TruSeq Small RNA Sample Preparation Kit from Illu-
mina (San Diego, CA). 5µg RNA was used for library 
preparation. The total RNA was subjected to polyacryl-
amide gel electrophoresis (PAGE) to separate it into dif-
ferent fragment sizes. Small RNA fragments within the 
range of 18 ∼ 30 bp were preferentially selected. To gen-
erate cDNA constructs, reverse transcription followed by 
PCR was utilized using small RNA molecules ligated with 
3’ and 5’ adapters. The cDNA was purified and recov-
ered using PAGE gel, and the resulting product was dis-
solved in EB solution for subsequent labeling. Paired-end 
libraries were sequenced on the Illumina NovaSeq 6000 
sequencing platform.

The raw single-end reads underwent trimming and 
quality control using Trimmomatic with default parame-
ters. Additionally, fastx_clipper was employed to remove 
the adaptor sequence ( T G G A A T T C T C G G G T G C C A A 
G G). To eliminate common RNA families and repeats, 
the adapter-removed small RNA sequences were aligned 
to the Rfam/RepBase database. Following that, unique 
sequences ranging from 18 to 26 bp were aligned to miR-
Base 22.0 using a BLAST search to identify known and 
novel miRNAs. Known miRNAs were identified as unique 
sequences that aligned to the hairpin arms of mature 
miRNAs from specific species. The unique sequences 
that aligned to the opposing arm of the annotated mature 
miRNAs within the precursor hairpin of specific species 
were regarded as potential candidates for novel 5p- or 
3p-derived miRNAs. Both the known miRNAs identified 
in the hairpin arms and the miRNAs determined through 
this process were classified as known miRNAs. The 
unmapped sequences were analyzed through a BLAST 

search against specific genomes, and hairpin RNA struc-
tures containing these sequences were predicted using 
the RNAfold software, with consideration of the flank-
ing 80 nt sequences. (http://rna.tbi.univie.ac.at/cgi-bin/
RNAfold.cgi). Differentially expressed analysis of miR-
NAs based on normalized deep-sequencing counts 
was performed using ANOVA. The significance set at 
P-value < 0.05. To TargetScan 5.0 and Miranda 3.3a were 
employed to identify miRNA binding sites to predict the 
genes targeted by miRNAs. Then the overlaps of predic-
tions from both algorithms were combined. Additionally, 
Gene Ontology (GO) terms and KEGG Pathway annota-
tions were assigned to the most abundant miRNAs and 
their target genes.

RNA-Seq libraries construction and sequencing
TruSeqTM RNA sample preparation Kit from Illu-
mina (San Diego, CA) was used for RNA-seq libraries 
construction. 1.0  µg of total RNA was used for library 
preparation. According to Illumina’s protocol, isolating 
mRNA, synthesizing cDNA, end repair, adding A-base, 
and ligation of the Illumina-indexed adaptors were car-
ried out. The libraries obtained were subjected to size 
selection on a 2% Low Range Ultra Agarose gel to iso-
late cDNA fragments within the range of 200 to 300 bp. 
Subsequently, PCR amplification was performed using 
Phusion DNA polymerase (NEB, Beijing, China) for 15 
PCR cycles. Quantificational paired-end libraries were 
sequenced on the Illumina NovaSeq 6000 sequencing 
platform. After trimming and quality control of raw reads 
using Trimmomatic (version 0.36), the generated clean 
reads were mapped to the C. nasus reference genome 
(GCA_007927625.1) using hisat2 software. qualimap_
v2.2.1 was used for the quality assessment of the mapped 

Fig. 7 The experimental protocol of the present study
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reads. Gene read counts were obtained using htseq. The 
R statistical package edgeR was used for differentially 
expressed analysis according to the fragments per kilo-
base of exon per million mapped reads (FPKM). Genes 
with foldchange > 2.0 and false discovery rate (FDR) < 0.05 
were considered as differentially expressed genes (DEGs). 
To gain insights into the functions of the DEGs, GO and 
KEGG enrichment were performed using Goatools and 
KOBAS. Bonferroni-corrected P-value < 0.05 was consid-
ered as significant enrichment.

Integrated analysis of the DEMs and DEGs data
TargetScan v5.0, miRanda v3.3a, and TargetFinder were 
utilized to perform prediction of the genes targeted by 
DEMs. Based on compared predicted target genes with 
the DEGs and the negative regulation of miRNA and 
mRNA, pairs of negatively correlated DEMs and target 
DEGs were identified. The pairs of negatively correlated 
DEMs and target DEGs were visualized using a Sankey 
diagram through the OmicShare Tools platform (https://
www.omicshare.com/tools/). Furthermore, considering 
the functions and negative regulation of the DEMs and 
target DEGs, a regulatory network of miRNA-mRNA 
interactions in C. nasus brains during air exposure and 
salinity mitigation was constructed and visually pre-
sented using Adobe Illustrator CS6 software (San Jose, 
USA).

RT-qPCR validation
To verify the accuracy of small RNA and transcriptome 
sequencing data, 12 DEMs and 12 DEGs were detected 
via RT-qPCR. The primers designed by Primer Premier 
5.0 software were shown in Table S9 for RT-qPCR vali-
dation. Mir-X™ miRNA First- Strand Synthesis and TB 
Green® qRT-PCR User Manual (Takara, Beijing, China) 
was employed for miRNA quantitative detection fol-
lowing the manufacturer’s instructions. RT-qPCR were 
detected on Bio-Rad CFX96 real-time PCR system (Bio-
Rad, Hercules, CA, USA) following the directions [74]. 
The relative expression of DEMs and DEGs was calcu-
lated using the log2 foldchange 2−ΔΔCt method (n = 9) [75], 
using β-actin, and U6 snRNA for the reference genes [76].

Statistical analysis
To evaluate the statistical significance, we conducted a 
one-way analysis of variance (ANOVA) with the Duncan 
test using SPSS 20 software. The data were expressed as 
mean ± standard deviation (SD). Statistical significance 
was considered at a significance level of P < 0.05.
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