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Abstract 

Background The health and size of the testes are crucial for boar fertility. Testicular development is tightly regulated 
by epigenetics. N6-methyladenosine (m6A) modification is a prevalent internal modification on mRNA and plays 
an important role in development. The mRNA m6A methylation in boar testicular development still needs to be 
investigated.

Results Using the MeRIP-seq technique, we identify and profile m6A modification in boar testes between piglets 
and adults. The results showed 7783 distinct m6A peaks in piglets and 6590 distinct m6A peaks in adults, with 2,471 
peaks shared between the two groups. Enrichment of GO and KEGG analysis reveal dynamic m6A methylation 
in various biological processes and signalling pathways. Meanwhile, we conjointly analyzed differentially methylated 
and expressed genes in boar testes before and after sexual maturity, and reproductive related genes (TLE4, TSSK3, 
TSSK6, C11ORF94, PATZ1, PHLPP1 and PAQR7) were identified. Functional enrichment analysis showed that differential 
genes are associated with important biological functions, including regulation of growth and development, regula-
tion of metabolic processes and protein catabolic processes.

Conclusion The results demonstrate that m6A methylation, differential expression and the related signalling path-
ways are crucial for boar testicular development. These results suggest a role for m6A modification in boar testicular 
development and provided a resource for future studies on m6A function in boar testicular development.
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Background
N6-methyladenosine (m6A) modification is considered 
to be the most abundant internal post-transcriptional 
modification of RNA, especially in eukaryotic RNA [1, 2]. 
Writer/reader/eraser systems endow m6A modification 
with reversible characteristics and recognize a specific 
DRACH consensus motif where A is methylated D = A, 
G or U, R = A or G, and H = A, C or U [3]. m6A modifica-
tion can occur on most types of RNA, including mRNA, 
tRNA, rRNA, snRNA, miRNA, lncRNA [4]. Much evi-
dence suggests that m6A modification can regulate RNA 
stability, translation, export, structure and maturation 
of modified RNA [5, 6]. Single-cell sequencing data has 
demonstrated that RNA m6A regulators are expressed in 
almost all types of cells from the human testes [7]. Tran-
scriptome-wide m6A-seq during porcine spermatogen-
esis indicated SETDB1, FOXO1 and FOXO3 are crucial 
for the determination of the fate of spermatogonial stem 
cells (SSCs) [8]. A YTHDC2 mutation in mice resulted 
in male and female sterility due to impaired gametogen-
esis from four independent studies [9]. Loss of YTHDC1 
leads to extensively altered 3’ UTR length, resulting 
in massive alternative splicing defects in oocytes [10]. 
Low expression of FTO increases m6A levels, leading to 
mouse infertility [11].

The testicles play important roles in maintaining male 
characteristics, producing sperm, and secreting andro-
genic hormones. Testicles will undergo dramatic changes 
in male animals from fetus to adult. Normal testicu-
lar development is crucial for animal reproduction and 
sperm production. The adult testes contain germ cells 
and testis somatic cells, which include Sertoli cells, Ley-
dig cells, and peritubular myoid cells. Testicular develop-
ment and spermatogenic cell development is dependent 
on testis somatic cells [12]. The development of the testes 
largely determines the reproductive ability and health of 
males. In livestock breeding, the testicles are an impor-
tant aspect of optimizing breeds. The study of testicular 
development molecular mechanisms is therefore of great 
significance for reproduction and breeding.

Studies have shown that testicular development is 
accompanied by various changes in epigenetic modifica-
tions, mRNAs and noncoding RNAs [13, 14]. In human, 
significant changes in DNMT expression and global DNA 
methylation levels in spermatogenic cells might contrib-
ute to development of male infertility in patients [15]. 
H3K4me2 plays important roles in spermatogenesis and 
cellular homeostasis, whereas H3K4me3 is implicated in 
nuclear architecture, RNA metabolism, spermatogenesis, 
and embryo development [16]. Studies have also demon-
strated microRNAs mir-202-5p [17], mir-133B [18] and 
mir-202-3p [19] are critical for development of the Ser-
toli cell.

Epigenetic modifications play an important role in the 
development of the testes, and current m6A modifica-
tions are involved in the development of various tissues, 
including the testes. To further elucidate the role of m6A 
modifications, various sequencing methods have been 
developed. The first established high-throughput m6A 
sequencing method was MeRIP-seq based on m6A-
specific antibodies [20]. UV-induced RNA-antibody 
crosslinking strategies have been adapted to produce 
m6A-CLIP and miCLIP by crosslinking immunopre-
cipitation to reveal the precise position of m6A [21, 22]. 
m6A-LAIC-seq was developed to reveal the census and 
complexity of the m6A epitranscriptome [23]. Based on 
detection of ionic current changes when a nucleic acid 
strand passes through a nanopore, nanopore sequencing 
was developed which can be performed on native nucleic 
acids, thus preserving nucleic acid modifications and 
enabling their direct detection [24]. Even if new sequenc-
ing methods for m6A continue to emerge, MeRIP-seq 
detection currently remains the common approach to 
profile m6A [25]. Moreover, MeRIP-seq has been applied 
to testes development [26, 27], embryo development [28], 
spermatogenesis [8] and stem cell differentiation [29].

Utilizing the mechanism of testicular development to 
accelerate the breeding process has been considered as an 
important strategy. Here, we used MeRIP-seq technology 
to characterize and investigate the differential expression 
of m6A on mRNAs in boar testes before and after sexual 
maturity. Our study will contribute to an m6A profile for 
boar testis development and identify key m6A modifica-
tions which could be used to improve boar reproductive 
performance in the future.

Results
Overview of m6A methylation and mRNA profiles in boar 
testes
The size, weight, and tissue sections of boar testes in 
piglets and adults were as previously described [30]. 
Using the MeRIP-seq technique, we identified 7,783 
distinct m6A peaks in piglets and 6,590 distinct m6A 
peaks in adults, with 2,471 peaks shared between the 
two groups (Fig. 1A). Further, considering the m6A dis-
tribution on boar chromosomes, distribution analysis 
revealed that the m6A peaks differentially distributed 
in testes of piglets and adults (Fig.  1B). Furthermore, 
motif analysis results indicated that the two groups had 
the classic m6A DRACH consensus sequences (Fig. 1C). 
The majority of peaks were located at the start codon 
(9.04%VS11.66%), stop codon (14.79%VS13.44%), CDS 
region (39.18%VS43.48%), followed by the 3′UTR region 
(24.38%VS18.97%) and 5′UTR region (12.6%VS12.45%) 
(Fig. 1D).
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Functional analysis of differential m6A methylation 
of genes
To characterize the potential function of the m6A modi-
fication in boar testes between piglets and adults, we 
compared differentially m6A methylated peaks in the 
two samples. Distribution analysis revealed that the dif-
ferentially methylated peaks were also mainly concen-
trated in the start codon (16.22%), stop codon (24.32%), 
CDS region (32.43%), followed by the 3′UTR region 
(16.22%) and 5′UTR region (10.81%) (Fig.  2A). Further, 
compared to piglets, 100 m6A peaks were significant 
upregulated and 277 m6A peaks were significant down-
regulated in adults (Fig.  2B, Table S1). To elucidate the 
biological significance of the m6A peaks, GO and KEGG 
pathway analyses for differential methylation peaks were 
performed (Fig. 2C, D). GO annotation showed that m6A 
modifications on mRNAs were enriched in each of the 
molecular function, cellular component, and biological 
process modules. Their functions were mainly concen-
trated in aspects related to: 1) Molecular function: ATP 
binding, DNA binding, and RNA binding; 2) Cellular 
component: membrane, nucleus, and mitochondrion; 3) 

Biological process: protein phosphorylation, regulation 
of transcription, and cell differentiation (Fig. 2C). KEGG 
analysis showed that differential m6A modification was 
primarily associated with valine, leucine and isoleucine 
degradation, hedgehog signaling pathway and starch and 
sucrose metabolism (Fig. 2D).

Functional analysis of differentially expressed genes
To learn about changes in gene expression profiles 
in piglets and adults, using the RNA-seq technique, a 
total of 8,204 differentially expressed genes (DEGs) 
were detected between piglets and adults. We identi-
fied 4,730 up-regulated genes and 3,474 down regulated 
genes. A volcano plot showing the gene expression pat-
tern of the DEGs is shown in Fig.  3A and described 
in detail in Table S2. Meanwhile, we identified 7,542 
distinct genes in piglets and 7,963 distinct genes in 
adults, with 7,481 genes shared between the two 
groups (Fig.  3B). Enrichment analyses of GO terms 
and KEGG pathways were performed for differentially 
expressed genes. Enrichment analyses of GO terms 
showed results in the following processes: 1) Molecular 

Fig. 1 Overview of m6A methylation profiles in boar testes. A The number of common and specific m6A peaks in piglet and adult boar testes. B 
Distribution of m6A peaks across chromosomes in boar testes. C Top motifs with m6A peaks in boar testes. D Pie chart showing the peak in gene 
functional element region annotation (left piglets, right: adults)
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function: ubiquitin-protein transferase activity, trans-
forming growth factor beta binding, and phosphati-
dylinositol 3-kinase binding; 2) Cellular component: 
sperm principal piece, acrosomal vesicle, and male 
germ cell nucleus; 3) Biological process: spermatogen-
esis, spermatid development, and flagellated sperm 
motility (Fig.  3C). KEGG analysis indicated the differ-
entially expressed genes had significant enrichment in 
pathways such as phosphatidylinositol signaling, the 
adipocytokine signaling pathway, glycerophospholipid 
metabolism and protein processing in endoplasmic 
reticulum (Fig. 3D).

Joint analysis of differentially methylated and differentially 
expressed genes
To further elucidate the differences between piglet 
and adult boar testes, we investigated the relationship 
between m6A methylation and RNA expression lev-
els. By comparing m6A peaks and mRNA levels, four 
quadrant plots showed 14 mRNAs showing an up-reg-
ulation of m6A peaks and mRNA expression, 3 mRNAs 
showing an up-regulation of  m6A peaks and down-reg-
ulation of mRNA expression, 21 mRNAs with down-
regulation of m6A peaks and up-regulation of mRNA 
expression, and 7 mRNAs with down-regulation of 

Fig. 2 Functional analysis of differentially m6A methylated genes in boar testes before and after sexual maturity. A Distribution of differential 
methylation peaks on mRNA. B Statistical analysis of differential peaks. C, D GO (C) and KEGG (D) enrichment analysis of genes differentially 
expressed in piglets and adults
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both m6A peaks and mRNA expression (Fig. 4A, Table 
S3). Seven genes (TLE4, TSSK3, TSSK6, C11ORF94, 
PATZ1, PHLPP1 and PAQR7) related to reproduction 
have been identified. Furthermore, GO and KEGG 
pathway enrichment analysis of the genes with a sig-
nificant change in both m6A and mRNA levels is 
shown (Fig. 4B, C). GO enrichment results showed sig-
nificant changes in genes related to proteolysis, signal 
transduction, phosphorylation, nucleus, membrane, 
cytosol, RNA binding, DNA binding and zinc ion while 
KEGG pathway analysis highlighted cell cycle, ribo-
some, the B cell receptor signaling pathway, spliceo-
some and endocytosis as being significant.

Discussion
Testicular development is of great significance for 
livestock reproduction. Previous studies have demon-
strated testicular development undergoes changes in 
epigenetic modifications and gene expression profiles. 
Accumulating studies have focused on the role of RNA 
m6A methylation in development and diseases. Stud-
ies have shown that writer/reader/eraser proteins are 
crucial for testicular development, oogenesis, sper-
matogenesis and m6A modification on mRNA leads 
to important changes in development of the reproduc-
tive system. Knockout of ALKBH5 has been shown to 
result in disorder of spermatogenesis and infertility in 

Fig. 3 Functional analysis of differentially expressed genes in boar testes before and after sexual maturity. A Volcano plots showing the differentially 
expressed genes between the studied groups. B The number of common and specific genes in piglets and adult boar testes. C, D GO (C) and KEGG 
(D) enrichment analysis of genes differentially expressed in piglets and adults
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the male mouse [31]. Mettl3/Mettl14-mediated mRNA 
N6-Methyladenosine is known to modulate murine 
spermatogenesis [32]. In livestock, previous reports 
have shown that the dynamic role of m6A on RNA 
plays a key role in testicular development [26, 27, 33]. 
In our study, we selected the boar testis before and 
after sexual maturity to identify and profile the mRNA 
expression and m6A peaks using MeRIP-seq. Contrary 
to previous research on bovine testes [33], in our study, 
the m6A peak levels in the boar testicles decrease 
during development. However, in another study on 

bovine testes, a total of 2,351, 4,259, and 1,701 spe-
cific peaks were observed during prepuberty, puberty, 
and postpuberty stages, respectively [33]. According 
to a previous study on pig testes, 13,495, 10,552, and 
11,824 methylated peaks were detected in D1, D75, 
and D150 groups, respectively [27]. Our data showed a 
decrease in m6A methylated peaks from D30 to D210. 
These results demonstrate that dynamic m6A meth-
ylation is playing a vital role in testicular development, 
with m6A fluctuating at different stages of testicular 
development. These results conclude the necessity of 

Fig. 4 Joint analysis of differentially methylated and expressed genes in boar testes before and after sexual maturity. A Four quadrant plots 
showing differentially expressed genes with differentially methylated m6A peaks. B, C GO (B) and KEGG (C) enrichment analysis of the genes 
with a significant change in both m6A and mRNA levels
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further research into m6A during testicular develop-
ment. GO and KEGG pathway enrichment analysis 
indicate m6A peak alteration from piglets to adults in 
aspects such as cell differentiation, metabolism and the 
PI3K-Akt signaling pathway. These changes are related 
to the development of various cells in the testes.

Next, we jointly analyzed differentially methylated 
and expressed genes in boar testes, and reproduc-
tion-related genes (TLE4, TSSK3, TSSK6, C11ORF94, 
PATZ1, PHLPP1 and PAQR7) were identified. TLE4 
inhibits the dissociation of the CBF-1/RBP co-sup-
pression complex and the expression of downstream 
transcription factors following downregulation of 
Notch1 during further differentiation of primordial 
germ cells (PGCs) [34]. The testis-specific serine kinase 
(TSSK) protein family members are widely expressed 
in testis and are involved in development of the testes 
[35]. TSSK3 is crucial for phosphorylation of multiple 
infertility-related proteins and plays an essential role in 
spermiogenesis [36, 37]. TSSK6 (SSTK)-null mice were 
found to be infertile due to failure of sperm to relocate 
Izumo during the acrosome reaction [38]. C11ORF94 
plays a  critical role in sperm–egg interaction by con-
trolling Izumo1 complex assembly [39, 40]. The PATZ1 
gene also has a critical role in spermatogenesis [41]. 
PHLPP1 regulates the NRNI activity of BRAP2 to 
influence spermatogenesis [42]. PAQR7 is an inter-
mediary for progesterone to stimulate human sperm 
motility through a mechanism involving G protein 
activation [43]. GO and KEGG pathway enrichment 
analysis focused on cell cycle, ribosome, spliceosome 
and RNA transport. In summary, our results provide 
insights into m6A modification-regulated boar testicu-
lar development.

However, the development of the testes goes through 
a long-term process and various different stages [44]. 
Here, we only selected two representative stages for 
our studies. This may result in potential undetected 
changes in m6A at other developmental stages. In our 
study, we identify and  profile the mRNA m6A peak 
only, but miRNAs and lncRNAs are also known  to be 
crucial for testis development [45]. We recognize that 
we are probably missing information on m6A modifica-
tion of miRNA and lncRNA during boar testis develop-
ment in this study. The m6A modification of mRNA in 
whole boar testes tissue was measured before and after 
sexual maturity in the present study. However, the tes-
tes contain different cell types, and so we cannot distin-
guish in which cell type the m6A modification occurs. 
This hinders us from further understanding the role of 
m6A in boar testicular development. We hope to fur-
ther specify the effect of methylation in boar testicular 
development in future studies.

Conclusions
The results show that m6A methylation modifications 
are abundantly and dynamically expressed and may have 
important roles in boar testicular development. Thus, 
this study will provide a preliminary m6A profile and 
contribute to finding potential molecular markers for 
boar testicular development.

Materials and methods
Animals and tissue collection
These experiments were performed as previously 
described [30]. Briefly, Landrace boar piglets (30-day-old, 
three boars) and adult pigs (210-day-old, three boars) 
were obtained from Anhui Hoshine Agro-Pastoral Co., 
Ltd., Anhui, China and slaughtered after electric shock 
stunning. The testicular skin was removed. The testicular 
samples were immediately cut into small pieces, trans-
ferred into cryogenic vials, and stored in liquid nitrogen 
for subsequent library construction and sequencing.

RNA isolation, library construction and sequencing
According to the manufacturer’s instructions (Invitro-
gen, Carlsbad, CA, USA), total RNA was isolated from 
testicular samples using the Trizol method. Briefly, tes-
ticular samples were ground in a low-temperature envi-
ronment, and total RNA was isolated using TRIzol ™ 
Reagent. The isolated RNA was treated with DNase I to 
remove genomic DNA contamination. The total RNA 
quality and quantity were analyzed on a Bioanalyzer 2100 
and RNA 6000 Nano LabChip Kit (Agilent, CA, USA). 
Samples with RIN number > 7.0 were deemed suitable for 
further analyses.

In order to separate poly (A) RNA, according to the 
manufacturer’s (Invitrogen, USA) instructions, oligo-
meric (dT) coupled magnetic beads were used for two 
rounds of purification of the total RNA. Purified poly(A) 
mRNA fractions were fragmented into ~ 100-nt-long 
oligonucleotides using divalent cations under elevated 
temperature. Subsequently, poly (A) mRNA fragments 
were subjected to incubation with m6A-specific anti-
body (No. 202003, Synaptic Systems, Germany) in an IP 
buffer (50  mM Tris–HCl, 750  mM NaCl and 0.5% Ige-
pal CA-630, 0.5  μg /μl BSA) for 2  h at 4℃, and allowed 
to incubate with protein-A beads. The mixture was then 
washed with IP buffer three times and m6A-positive 
RNA was eluted with elution buffer (1 × IP buffer and 
6.7  mM m6A). Eluted RNA was precipitated by 75% 
ethanol. Eluted m6A-containing fragments (IP) and 
untreated input control fragments are converted to final 
cDNA library in accordance with a strand-specific library 
preparation by the dUTP method. The average insert size 
for the paired-end libraries was ~ 100 ± 50  bp. We then 
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performed the paired-end 2 × 150  bp sequencing on an 
Illumina Novaseq™ 6000 platform at LC-BIO Bio-tech ltd 
(Hangzhou, China) following the vendor’s recommended 
protocol.

Bioinformatics analysis of m6A‑seq and RNA‑seq data
Firstly, CutAdapt  (http:// pypi. python. org/ pypi/ cutad apt) 
software were used to remove the reads that contained 
adaptor contamination, low quality bases and undeter-
mined bases to obtain clean data. Then sequence qual-
ity of IP and input of all samples was verified using fastp 
software [46]. Subsequently, the high-quality clean reads 
were mapped to the to the genome of  Sus scrofa  (Ver-
sion: sus_scrofa_ensembl_V88) with HISAT2 [47]. 
Mapped reads of IP and input libraries were provided 
for the R package, exomePeak [48], which identifies m6A 
peaks with.bed or.bam format files that can be adapted 
for visualization on the UCSC genome browser or IGV 
software (http:// www. igv. org/). MEME [49] and HOMER 
[50] were used for de novo and known motif finding fol-
lowed by localization of the motif with respect to peak 
summit using in-house perl scripts. Called peaks were 
annotated by intersection with gene architecture using 
ChIPseeker [51]. StringTie [52] was then used to meas-
ure expression levels for all mRNAs from input libraries 
by calculating FPKM (FPKM = [total exon_fragments/
mapped_reads (millions) × exon_length (kB)]). The differ-
entially expressed mRNAs were selected with log2 (fold 
change) > 1 or log2 (fold change) < -1 and p-value < 0.05 by 
R package edgeR [53].

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis
Differentially expressed genes were selected for Gene 
Ontology (GO) analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis. Differential 
expression was classified into the three categories of the 
GO database: biological processes, cellular components, 
and molecular functions. The KEGG database was used 
to ascribe differential expression to biological mecha-
nisms and cellular pathways. GO and KEGG enrichment 
analysis was carried out with online tools (http:// geneo 
ntolo gy. org and http:// www. kegg. jp/ kegg).
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