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Abstract
Background Characterization of regulatory variants (e.g., gene expression quantitative trait loci, eQTL; gene splicing 
QTL, sQTL) is crucial for biologically interpreting molecular mechanisms underlying loci associated with complex traits. 
However, regulatory variants in dairy cattle, particularly in specific biological contexts (e.g., distinct lactation stages), 
remain largely unknown. In this study, we explored regulatory variants in whole blood samples collected during 
early to mid-lactation (22–150 days after calving) of 101 Holstein cows and analyzed them to decipher the regulatory 
mechanisms underlying complex traits in dairy cattle.

Results We identified 14,303 genes and 227,705 intron clusters expressed in the white blood cells of 101 cattle. The 
average heritability of gene expression and intron excision ratio explained by cis-SNPs is 0.28 ± 0.13 and 0.25 ± 0.13, 
respectively. We identified 23,485 SNP-gene expression pairs and 18,166 SNP-intron cluster pairs in dairy cattle 
during early to mid-lactation. Compared with the 2,380,457 cis-eQTLs reported to be present in blood in the Cattle 
Genotype-Tissue Expression atlas (CattleGTEx), only 6,114 cis-eQTLs (P < 0.05) were detected in the present study. By 
conducting colocalization analysis between cis-e/sQTL and the results of genome-wide association studies (GWAS) 
from four traits, we identified a cis-e/sQTL (rs109421300) of the DGAT1 gene that might be a key marker in early to 
mid-lactation for milk yield, fat yield, protein yield, and somatic cell score (PP4 > 0.6). Finally, transcriptome-wide 
association studies (TWAS) revealed certain genes (e.g., FAM83H and TBC1D17) whose expression in white blood cells 
was significantly (P < 0.05) associated with complex traits.

Conclusions This study investigated the genetic regulation of gene expression and alternative splicing in dairy cows 
during early to mid-lactation and provided new insights into the regulatory mechanisms underlying complex traits of 
economic importance.
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Background
Thousands of genetic variants were discovered to be 
associated with complex traits in cattle through genome-
wide association studies (GWAS) [1]. However, most of 
these variants are not coding variants; therefore, under-
standing the molecular mechanisms behind these GWAS 
loci is challenging [2]. Previous studies have shown that 
genetic variation can affect gene expression and splic-
ing, often termed gene expression quantitative trait loci 
(eQTL) and splicing QTL (sQTL). This has led to a focus 
on two important classes of regulatory variants [3]. Iden-
tification of eQTL and sQTL is important for under-
standing the relationship between regulatory variants 
and complex traits and has acquired progress in bovine 
studies. FarmGTEx consortium built a Cattle Genotype-
Tissue Expression atlas (CattleGTEx) which included 
numerous eQTLs and sQTLs associated with complex 
traits in different tissues [4]. Additionally, the eQTL and 
sQTL explained a large proportion of the heritability 
of complex traits in cattle [5]. However, little is known 
about how allelic variation affects regulatory interactions 
during early to mid-lactation in dairy cattle.

Critically, the genetic effect of regulatory variants is 
highly context-dependent [6, 7], consistent with tran-
scriptional surveys of dairy cow lactation that show 
prominent temporal changes in gene expression [8, 9]. 
Early to mid-lactation is the key period in the dynamic 
lactation process of dairy cows, and determines milk 
production and health performance [10, 11], thus high-
lighting the need to identify regulatory variation within 
this critical time point. As whole blood is the most eas-
ily obtained specimen, it is widely used to comprehen-
sively study the mechanisms of complex traits. Whole 
blood can reflect the physiological conditions of cows as 
it is responsible for transporting various substances used 
in milk production [12]. Some studies have shown that 
individuals with different milk production performances 
have different gene expression levels, and potential 
molecular biomarkers in the blood transcriptome related 
to milk performance traits have been identified [12, 13]. 
In addition, blood leukocytes are widely used as immune 
cells in transcriptional surveys of health traits, such as 
mastitis [14] and ketosis [15]. Notably, the identification 
of regulatory QTLs using whole blood has also revealed 
a correlation between the genetic effects of blood and 
other tissues [2, 16]. The genetic effect of some regulatory 
QTLs is shared among different tissues [3, 17–19].

Therefore, the aim of this study was to identify eQTL 
and sQTL in the early to mid-lactation period of dairy 
cows using whole blood and to explore their association 
with complex traits. We hope that this study will pro-
vide insight into changes observed in the effects of genes 
on complex traits during lactation from the perspective 

of the regulatory roles that some variants play in gene 
expression and splicing.

Results
Identification of factors affecting gene expression and 
intron excision ratio
In this study, whole blood leukocytes from 104 Holstein 
cattle in early to mid-lactation (22–150 days after calv-
ing) were genotyped and RNA-Seq was performed. After 
quality control and normalization of gene expression and 
genotypes, 95,799 SNPs, 14,303 genes and 227,705 intron 
clusters from 101 individuals were obtained for eQTL 
and sQTL identification and characterization [Additional 
file 2, Figure S1].

As an intermediate molecular phenotype, transcripts 
are affected by confounding factors such as batch 
effects and biological and technical factors [4, 6]. The 
results suggested that the week of lactation, parity and 
RIN showed stronger correlations with gene expres-
sion principal components (EPCs) and intron exci-
sion ratio principal components (SPCs) than blood cell 
counts [Additional file 2, Figure S2]. In addition to the 
above-mentioned known factors affecting transcription 
level changes, the PEER software was used to identify 
unknown confounding factors (PEER factors) [4, 20]. 
The factor weight variances near zero when the number 
of hidden PEER factors inferred from gene expression 
and intron cluster expression reached 10 and 8, respec-
tively [Additional file 2, Figure S3]. Therefore, the top ten 
PEER factors were removed from the eQTL discovery, 
and the top eight PEER factors were removed from sQTL 
discovery.

Heritability of gene expression and intron excision ratios
Gene expression and intron excision ratios with herita-
bility (h2) > 0 and P < 0.05, respectively, were considered 
heritable. There are 4,604 genes whose expression with 
heritability that can be explained by cis-SNPs (h2 > 0, 
P < 0.05), and the heritability was 0.28 ± 0.13 (mean ±stan-
dard deviations). Meanwhile, there are 21,983 intron 
excision ratios with heritability that can be explained 
by cis-SNPs (h2 > 0, P < 0.05), and the heritability was 
0.25 ± 0.13 [Additional file 2, Figure S4].

Identification of cis-eQTLs and cis-sQTLs during early to 
mid-lactation of dairy cows
FastQTL was used to identify cis-eQTL and cis-sQTL, 
adjusting for known (week of lactation, parity, RIN, 
and genotype PCs) and inferred covariates (PEER fac-
tors). This resulted in 23,485 SNP-gene expression pairs 
(FDR < 0.05) [Additional file 1, Table S1] and 18,166 SNP-
intron cluster pairs (FDR < 0.05) [Additional file 1, Table 
S2]. Among them, 3,419 genes had significant eQTL and 
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3,127 genes had significant sQTL, hereafter referred to as 
eGenes and sGenes respectively.

Differences in genomic features between eQTLs and sQTLs
The overlap of eQTLs with sQTLs was further analyzed, 
as well as for eGenes and sGenes. The results suggested 
that nearly half of the sQTLs (approximately 49.1%) 
were not eQTL and approximately 62.5% of the eQTLs 
were independent (Fig.  1a). In addition, only 34.4% of 
the eGenes were also sGenes and 37.6% of the sGenes 
were also eGenes (Fig.  1b). Even when the eGene was 
also an sGene, the lead QTL SNPs distances were mostly 
between 10  kb and 1  Mb [Additional file 2, Figure S5a] 
and in low linkage disequilibrium (LD) r2 [Additional file 
2, Figure S5b].

Next, the results suggest that most of the eQTLs were 
located near the TSS and were more significant than oth-
ers (Fig. 1c), whereas the sQTLs tended to be located near 
the splice junction (Fig. 1d). Therefore, the results suggest 
that genetic variation near the TSS (promoter, etc.) has a 
large effect on cognate gene expression, whereas genetic 
variation near the splice junction is more likely to affect 
gene alternative splicing. Furthermore, enrichment anal-
ysis (Fisher’s exact test) was conducted comparing the 13 
chromatin states of cow spleen with eQTLs and sQTLs. 
It was found that eQTLs tend to be more enriched 
in transcriptional regulatory elements such as active 
enhancer and TSS compared to sQTLs (Fig. 1e). Addi-
tionally, enrichment analysis (Fisher’s exact test) was sep-
arately performed on eQTLs and sQTLs using Ensembl 

Fig. 1 Comparison of cis-eQTLs and cis-sQTLs characterization. (a) Overlap of eQTLs and sQTLs. (b) Overlap of eGenes and sGenes. (c) Distance of eQTL 
in early-mid lactation dairy cows relative to TSS of eGene. Each point represents an eVariant-eGene pair (FDR < 0.05). (d) Distance of sQTL relative to splice 
junction of targeted intron cluster. Each point represents an sVariant-sGene pair. (FDR < 0.05). (e) Enrichment (Fisher’s exact test) of eQTLs and sQTLs with 
13 chromatin states in the spleen, respectively. The point and error bars indicate the odds ratio and 95% CI. (f) Enrichment (Fisher’s exact test) of eQTLs 
and sQTLs with Ensembl VEP-predicted SNP effects, respectively. The point and error bars indicate the odds ratio and 95% CI
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VEP-predicted SNP effects, revealing that sQTLs tend to 
be more enriched in splicing-related regions compared to 
eQTLs (Fig. 1f ).

Specificity of eQTL during early to mid-lactation of dairy 
cows
To identify eQTLs and eGenes specific for early to mid-
lactation in Holstein cows, the cis-eQTLs and eGenes 
were compared with the population in cGTEx. The 
results suggested that there were 24,075 common eQTLs 
and 6,114 specific eQTLs in the early to mid-lactation 
(P < 0.05; Fig. 2a). In terms of eGenes, the shared number 
of eGenes is 10,974, and the number of specific eGenes 

in early-mid lactation is 286 (P < 0.05; Fig. 2b). These 286 
genes were enriched in metabolic pathways related to 
sodium, calcium and glucose transport (P < 0.01; Fig. 2c).

Gene co-expression network of eGenes during early to 
mid-lactation cows
To explore the biological functions of all eGenes during 
early to mid-lactation cows in this study, 3,419 eGenes 
(Fig.  1e, FDR < 0.05) were used to construct a gene co-
expression network, and 18 co-expression modules of 
eGenes in early to mid-lactation blood were identified 
(Fig.  3a). Next, 18 modules were tested for association 
with phenotypic traits (parity, somatic cell count, somatic 

Fig. 2 Comparison of eQTLs and eGenes in this study and GTEx. (a) Comparison of cis-eQTLs in early-mid lactation and cGTEx (P < 0.05). (b) Comparison 
of eGenes in early-mid lactation and cGTEx. (c) GO enrichment analysis of eGenes specific to early-mid lactation in this study
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Fig. 3 Characterizing the function of gene expression modules. (a) Association between eGene co-expression module and individual phenotype of trait. 
(b) GO analysis of phenotype of trait significant association module genes. GO terms of modules related to function of immune (module 17,2,16,13 and 
11), metabolic (module 7), parity (module 10) and gene regulation (module 5,6 and 10). SCC: somatic cell counts. SCS: somatic cell score

 



Page 6 of 13Tang et al. BMC Genomics          (2024) 25:445 

cell score, milk production, percentage of milk fat, per-
centage of milk protein, urea nitrogen, percentage of 
lactose, leukocyte count, and neutrophil, lymphocyte, 
monocyte, eosinophil, and basophil ratios). The results 
suggested that different modules were significantly asso-
ciated with known phenotypes (P < 0.05; Fig. 3a).

Genes in the identified modules were enriched in GO 
terms corresponding to the biological features of the 
phenotype (Fig. 3b). Five modules (modules 2, 11, 13, 16, 
and 17) that were significantly correlated with SCC, SCS, 
and blood parameters were enriched for immune-rele-
vant GO terms, such as response to acute inflammatory 
response, lipopolysaccharide binding, and regulation of 
autophagy (Fig. 3b). One module (module 7) was signifi-
cantly correlated with the milk fat rate and lactose rate, 
which is enriched for metabolism relevant GO terms, 
such as tricarboxylic acid cycle and response to glucose 
(Fig. 3b). One module (module 10) was significantly cor-
related with parity and was enriched for longevity and 
development-relevant GO terms, such as replicative 
senescence (Fig.  3b). In addition, modules 5, 6, and 12 
were not found to be significantly associated with known 
phenotypes, but these modules play a role in regulating 
functions such as sequence-specific mRNA (Fig. 3b).

Colocalization analysis of eQTL and sQTL with GWAS locus
The eQTL and sQTL identified in this study were co-
localized with three production traits (milk yield, milk 
protein yield, and milk fat yield) and one health trait 
(somatic cell score) GWAS loci in 27,214 dairy cows [21]. 
The results suggest that SNP rs109421300, which was sig-
nificantly associated with milk yield, milk protein yield, 
milk fat yield, and somatic cell score, was also an eQTL 
and sQTL of DGAT1 (Fig. 4). The DGAT1 gene is known to 
be an important gene for production traits in dairy cows 
and plays a key role in regulating milk fat production. 
Previous study has reported the known K232A coding 
mutation (rs109234250 and rs109326954) in DGAT1 [22]. 
Through linkage disequilibrium analysis, it was found 
that rs109421300 is highly linked with the K232A coding 
mutation (Figure S6a). Meanwhile, conditional analysis of 
DGAT1 gene expression with rs109421300 as a covariate 
still revealed an independent eQTL (Figure S6b). There-
fore, the biological effects of SNPs related to the DGAT1 
gene need further validation. SNP rs109421300 may be a 
key marker related to DGAT1 gene expression, alternative 
splicing, and individual phenotypic traits.

TWAS
To explore the association between gene expression 
and complex traits, we integrated the SNP genotyp-
ing, gene expression, and GWAS summary data. These 
results suggest that FAM83H gene expression was sig-
nificantly associated with milk fat yield, milk yield, milk 

protein yield, and SCS traits (P < 0.05; Fig. 5a) [Additional 
file 1, Table S3]. The effect of FAM83H gene expression 
level on milk fat yield was the opposite of that on milk 
yield, milk protein yield, and somatic cell count (Fig. 5b). 
Genes TBC1D17 associated with sire calving ease, and 
CRACR2B associated with sire stillbirth, were also identi-
fied (P < 0.05).

Discussion
Here, we reveal a part of the genetic control pattern of 
gene expression and splicing in dairy cows during early 
to mid-lactation, and highlight the impact of regulatory 
variation on complex traits.

Transcripts, as molecular phenotypes, are susceptible 
to confounding factors, such as biological and technical 
factors [23]. Therefore, this study systematically evalu-
ated the influence of confounding factors to ensure the 
robustness and reproducibility of the eQTLs and sQTLs. 
Previous studies have showed that the lactation stage [9] 
and parity [24] of dairy cattle, as well as RIN [25] and 
cell type composition [26], affect transcript expression. 
Similarly, this study also found that lactation stage, parity, 
and RIN value need to be considered as covariates in the 
association analysis of blood.

In this study, most of the eQTLs and sQTLs identified 
during early to mid-lactation of dairy cows, as well as the 
eGenes and sGenes, were independent. This indicates 
that there are similarities and differences in the regula-
tion of gene expression and alternative splicing mecha-
nisms by molecular QTL. A recent study showed that the 
overlap ratio of detected eGenes and sGenes positively 
correlated with the number of samples [27]. However, 
even if a gene is both an eGene and sGene, most of the 
corresponding eQTLs and sQTLs are far away from each 
other and have a low degree of linkage. It is worth noting 
that limited to the short read length of next-generation 
sequencing, we do not have effective analysis methods to 
completely identify each alternatively spliced isoform and 
to understand the regulatory mechanism of sQTL.

Early to mid-lactation is an important period for dairy 
cattle production. By comparing eQTLs and eGenes 
in early-mid lactation with cGTEx, some eQTLs and 
eGenes with specific effects during early to mid lactation 
were found. GO terms enriched by these specific eGenes 
are interesting, for example, glucose can affect milk pro-
tein synthesis [28], and calcium is essential for milk syn-
thesis [29]. However, it should be noted that the number 
of SNPs, sample size, composition of breeds, and other 
information used in this study and in cGTEx for eQTL 
identification differ. Therefore, this study focuses on the 
specific eQTLs and eGenes in the early and mid-lactation 
periods of Holstein cows. In addition, WGCNA analy-
sis of eGenes in early to mid-lactation showed that the 
eGene expression module was enriched in the biological 
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function module, corresponding to the individual phe-
notype. Although blood may not be the main tissue for 
functions other than immunity, it potentially contains 
genetic regulatory information on various tissues and 
organs in an individual [30, 31]. Because the effects of 
eQTLs detected in blood may be shared across multiple 
tissues, the contribution of these eQTLs to the pheno-
type of complex traits is completed through gene expres-
sion control in multiple tissues [3, 4, 32].

Colocalization is an effective method for integrat-
ing molecular QTLs with GWAS signals of complex 
traits to identify possible causal mutations. In this study, 
rs109421300 was a key marker obtained by co localiza-
tion of eQTL and sQTL of DGAT1 with GWAS signals. 

Meanwhile, rs109421300 is also a cis-eQTL for DGAT1 in 
the blood, liver, macrophages, mammary glands, mono-
cytes, pituitary glands, and uterus of the cGTEx atlas 
but not cis-sQTL [4]. This indicated that the eQTL effect 
of rs109421300 may not be limited to early-mid lacta-
tion, but that the sQTL effect may be specific to early-
mid lactation. DGAT1 is important for lactation in dairy 
cows [33, 34]. Knockdown of DGAT1 expression in mam-
mary epithelial cells significantly reduced intracellular 
triglyceride content [35]. Regarding for the SNP effect, 
among the A and G alleles of rs109421300, the G allele 
resulted in extreme antagonistic pleiotropy between pos-
itive milk fat yield, negative milk yield, and milk protein 
yield [36]. However, the effect of rs109421300 is based 

Fig. 4 GWAS signals of DGAT1 gene co-localized with eQTL and sQTL in four traits. (a-d) are GWAS Manhattan plots of milk yield, somatic cell score, milk 
fat and milk protein respectively. (e) Manhattan plot of eQTL. (f) The allele of eQTL rs109421300 corresponds to the expression level of DGAT1 gene. The 
selected genome range of Manhattan plot is consistent: Chr14:1.4-2.4 Mb. The reference genome is UMD3.1
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Fig. 5 TWAS. (a) Gene-level Manhattan plot showing P-value results from TWAS. (b) Z-scores showing the direction of genetic effect for the genotype-
inferred expression of transcripts. Sire_Calv_Ease: Sire calving ease; Sire_Still_Birth: Sire stillbirth. The reference genome is ARS.UCD.1.2
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on association analysis, which could potentially be influ-
enced by linkage disequilibrium. As a result, further vali-
dation through FLGA [37] and dual-luciferase reporter 
assay systems is needed to confirm its biological effects.

It is worth noting that rs109421300 is located 1,149 bp 
upstream of the reported K232A causal mutation of 
DGAT1. K232A affects the activity of DGAT1 enzyme and 
alternative splicing of DGAT1 [22, 38], while rs109421300 
is located in a non-coding region, which is mainly 
observed to be associated with gene expression and alter-
native splicing. We hypothesize that non-coding variants 
and K232A coding mutation may be different biological 
factors affecting DGAT1 gene. However, due to the limi-
tation of the SNP beadchip lacking information on the 
K232A coding mutation, further study is needed to inves-
tigate the differential impact of both rs109421300 and 
K232A on DGAT1 gene expression and alternative splic-
ing. Given the high linkage of SNPs around the DGAT1 
gene and the complexity of its regulatory network, as 
well as the importance of DGAT1 in dairy cow produc-
tion, future studies should systematically analyze the 
regulation of genomic variations on target genes through 
epigenetic regulatory elements, three-dimensional 
genomics, luciferase reporter gene assays, and gene edit-
ing (e.g. CRISPR-Cas9) [39].

The TWAS is an important method for inferring the 
causal relationship between gene expression and the phe-
notypes of complex traits [40]. We found that FAM83H 
was significantly associated with milk fat yield, milk yield, 
milk protein yield, and SCS. FAM83H was also found to 
be regulated by eQTL in other blood samples from dairy 
cows [4, 41]. Interestingly, the direction of the effect of 
FAM83H expression on milk fat yield, milk protein yield, 
milk yield, and SCS was similar to that of DGAT1, and 
their effects on the phenotypes of complex traits may be 
genetically linked. In addition, dairy cattle are involved 
in pregnancy events during early to mid-lactation; there-
fore, the development of early embryos and reproduc-
tive organs may be related to sire calving ease and sire 
stillbirth. TBC1D17 associated with sire calving ease is a 
member of the TBC1 domain family, and studies have 
shown that TBC1D2 can be used as a diagnostic tool for 
human endometrial receptivity [42]. TBC1D8 is expressed 
in the embryo and endometrium of Holstein cattle [43]. 
CRACR2B is related to sire stillbirths. It is a regulator of 
the calcium release activation channel and belongs to the 
calcium-ion binding signaling pathway. Abortion in dairy 
cows is closely related to the calcium signaling pathways. 
Calcium ions are important messengers involved in the 
normal development and function of the placenta [44].

As the first detailed analysis of cis-e/sQTL during early 
to mid-lactation in dairy cattle, our study has certain lim-
itations. The number of samples and the density of SNPs 
need to be increased to improve the detection power 

and number of e/sQTLs. Meanwhile, the identification 
of molecular QTLs in bulk tissue will mask the effects of 
some QTLs, and analyzing molecular QTLs at the single-
cell level will help us better understand the impact of reg-
ulatory variation on complex traits.

Conclusions
This study demonstrated the importance of considering 
the lactation stage of blood expression when using eQTL 
and sQTL data to interpret complex trait-associated vari-
ants in dairy cattle. Blood samples can help us under-
stand the regulatory mechanism of eQTL and sQTL on 
the complex traits of dairy cattle in early to mid-lactation, 
and the identified important SNPs and genes can provide 
reference for downstream molecular experimental verifi-
cation and application.

Materials and methods
Sample collection and phenotyping
A total of 104 blood samples of Holstein cows in early 
to mid-lactation (22–150 days after calving and par-
ity ≤ 3) were collected from the tail vein and stored in 
EDTA vacutainers for blood routine testing, genotyping 
and RNA-Seq. Milk was collected three times daily at a 
ratio of 4:3:3, with each collection consisting of a mixed 
sample from the four milk quarters of the cow. This was 
then stored in a tube with preservatives at 4℃ for deter-
mination of milk quality. All procedures involving experi-
mental animals were approved by the Animal Welfare 
Committee of the China Agricultural University, Beijing, 
China. All efforts were made to minimize suffering and 
discomfort of the experimental animals.

RNA extraction, sequencing, and quality control
The white blood cell layer was separated from fresh 
anticoagulated blood and centrifuged at 3,500  rpm for 
15  min. Total RNA was isolated from peripheral blood 
leukocytes using TRIzol (Thermo Fisher Scientific, 
Waltham, MA, USA) according to the manufacturer’s 
instructions. RNA quality was checked using a 1% aga-
rose gel and a NanoDrop. The integrity of RNA (RIN) was 
tested using an Agilent 2100, and quantification was per-
formed using a Qubit 2.0. Sequencing was completed on 
an Illumina NovaSeq-6000 platform, and 150-bp paired-
end reads were produced. Trimmomatic (v0.39) [45] was 
used to perform quality control of raw reads using the 
following parameters: adapters: TruSeq3-PE.fa:2:30:10 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 
MINLEN:36.

DNA genotyping and quality control
Individuals were genotyped using a GGP bovine 
150  K BeadChip (Neogen, Lansing, MI, USA). SNPs 
with a minor allele frequency < 0.05, Hardy-Weinberg 
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equilibrium exact test P-value less than 1 × 10− 5, missing 
genotype rates per-variant > 0.05 and missing genotype 
rates per-sample > 0.1 were filtered from analysis. The 
SNPs coordinates of the 150  K BeadChip were trans-
ferred from UMD3.1 to ARS.UCD.1.2, based on the SNP 
rsid. Ultimately, 101 individuals and 95,799 SNPs were 
included in the analysis.

Quantification of gene expression and alternative splicing
Qualified RNA-seq reads were aligned to the ARS.
UCD.1.2 genome [46] using STAR (v2.7.9a) [47]. Mapped 
reads were used for quantification and normalization 
of gene expression. TPM (Transcripts per million) were 
obtained using StringTie (v2.1.5) [48] and transcript 
counts were quantified using featureCounts (subread 
package v2.0.2) [49]. To improve the reliability of our 
data, we only saved genes with TPM > 0.1 in at least 20% 
of the samples, and read counts greater than 6 in at least 
20% of the samples were retained. EdgeR (v3.34.1) [50] 
was used to perform Trimmed Mean of M-values (TMM) 
and Counts per million (CPM) normalization on these 
genes. Inverse normal transformed values of gene expres-
sion were obtained for downstream analysis.

LeafCutter (v.0.2.9) [51] was used to identify and quan-
tify the variable alternative splicing events of the genes. 
First, the bam files obtained from STAR alignment is 
converted into junction files using the script ‘bam2junc.
sh’. Then, the script ‘leafcutter_cluster.py’ was used to 
performed intron clustering with default settings of 50 
reads per cluster and a maximum intron length of 500 kb. 
Afterward, we conducted the ‘prepare_genotype_table.
py’ script in LeafCutter to calculate intron excision ratios 
and to remove introns used in fewer than 40% of indi-
viduals or with no variation. Finally, the standardized and 
quantile-normalized intron excision ratios were used as 
the percent spliced-in (PSI) values across samples.

Covariate analysis for QTL discovery
To remove the effects of hidden batch effects and other 
biological sources of transcriptome-wide variation in 
gene expression and intron excision ratios, we applied 
the PEER method (probabilistic estimation of expres-
sion residuals) [20] to identify and account for additional 
covariates based on the matrix of gene expression and 
intron excision ratio, respectively. The top five geno-
type principal components (PCs) were calculated using 
SNPRelate (v1.26.0) [52] to account for the effects of pop-
ulation genetic structure. Pearson correlations between 
the top ten gene expression PCs (EPC), intron excision 
ratio PCs (SPC), and known phenotypes (week of lacta-
tion, parity, RIN and blood cell count) were calculated 
to identify other factors that affect the expression level 
of the molecular phenotype. Week of lactation, parity, 
and the RNA integrity number (RIN) showed the highest 

correlations and were used as known covariates. Finally, 
the top five genotype PCs, week of lactation, parity, RIN, 
and PEER factors (the top 10 peer factors in cis-eQTL 
mapping and the top eight peer factors in cis-sQTL map-
ping) were removed from the QTL mapping.

Estimation of the heritability of gene expression and intron 
excision ratio
A total of 14,303 genes and 227,733 intron clusters were 
used to estimate the heritability of gene expression and 
the intron excision ratio, respectively. The cis-SNPs 
used to estimate the heritability of gene expression were 
defined as SNPs within 1 Mb of the target gene transcrip-
tion initiation site (TSS), while cis-SNPs used to estimate 
the heritability of the intron excision ratio were defined 
as SNPs within 1 Mb of the target intron clusters. GCTA 
(v1.93.3 beta2) [53] was used to generate the correspond-
ing genetic relationship matrix (GRM) based on the cis-
SNPs of target genes or intron clusters. Subsequently, 
heritability was estimated by using the restricted maxi-
mum likelihood (REML) algorithm through the “-reml” 
function in GCTA while correcting for the aforemen-
tioned covariates.

cis-eQTL mapping
We used a linear regression model in FastQTL (v2.184) 
[54] to test the associations of the expression levels of 
genes with SNPs within TSS 1 Mb of target genes, while 
adjusting for the corresponding top 10 PEER factors, 
top five genotype PCs, and the known covariates (week 
of lactation, parity and RIN). This method is consistent 
with cGTEx [4]. First, cis-eQTL mapping was performed 
in permutation mode to identify genes (eGene) with at 
least one significant cis-eQTL. The cis-eQTLs FDR ≤ 0.05 
were considered as significant, calculated using the Ben-
jamini–Hochberg method based on the beta distribu-
tion-extrapolated empirical P-values from FastQTL. To 
identify a list of significant eQTL-eGene pairs, the nomi-
nal mode was applied to FastQTL. The genome-wide 
empirical P-value threshold pt for each gene was defined 
as the empirical P-value of the gene closest to an 0.05 
FDR threshold. We then calculated the nominal thresh-
old as F− 1(pt) for each gene using the permutation mode 
of FastQTL (v2.184), where F− 1 is the binominal inverse 
cumulative distribution. Variants with nominal P-values 
below the nominal threshold as significant and included 
in the list of eGene–eVariant pairs.

cis-sQTL mapping
The cis-sQTL mapping was performed with FastQTL, 
testing for associations with SNP within ± 1  Mb of tar-
get intron clusters and their corresponding intron exci-
sion ratio. The covariates used were the same as cis-eQTL 
mapping, except that the top eight PEER factors were 
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used in cis-sQTL mapping. Unlike cis-eQTL mapping, 
grouped permutations were used to jointly compute 
empirical P-value for all intron clusters. The top nominal 
cis-sQTL for a gene was defined as the highest associa-
tion among all assigned clusters and introns. The 1,000–
10,000 permutations were applied in FastQTL to obtain 
beta-approximated permutation P-values. The sQTL–
intron pairs FDR ≤ 0.05 were considered as significant, 
and defined cis-sGene as genes containing any introns 
with a significant cis-sQTL. To identify cis-sGenes, simi-
lar to cis-eQTLs, computation of an sGene-level nominal 
P-value threshold was used to identify all significant vari-
ant-intron pairs.

Enrichment analysis of eQTL and sQTL
Ensembl Variant Effect Predictor (VEP) was used to 
annotate the effects of variants. Additionally, annotations 
of genomic chromatin states in cow spleen were used for 
enrichment analysis [55]. Compared to all SNP loci on 
the beadchip, Fisher’s exact test is conducted on eQTLs 
and sQTLs to determine whether they are significantly 
enriched at these loci or regions.

Comparison of blood cis-eQTL between Holstein in early-
mid lactation and cGTEx cattle
To determine the specific cis-eQTLs and eGenes in the 
early to mid-lactation period of Holsteins, the SNPs 
detected exclusively in this study and not in cGTEx were 
firstly removed. Subsequently, the cis-eQTLs (P <  0.05) 
and eGenes identified in this study were compared with 
the cis-eQTLs (P < 0.05) and eGenes of cGTEx [4] for 
SNP overlap analysis.

WGCNA (weighted gene co-expression network analysis) 
and enrichment analysis of eGenes
Co-expression modules of 3,419 eGenes (P < 0.05; this 
study) were built with a soft threshold of 5 to explore 
the relationship between underlying modules and some 
phenotypes, including six blood counts from routine 
blood tests (leukocyte count, neutrophil ratio, lympho-
cyte ratio, monocyte ratio, eosinophil ratio, and basophil 
ratio) and milk composition records. The eGenes of mod-
ules associated with at least one phenotype were used 
for GO (Gene Ontology) enrichment analysis using the 
online website KOBAS-i [56].

Colocalization analysis and transcriptome-wide association 
study (TWAS)
To test whether eQTL and sQTL co-localized with 
GWAS signals of complex traits in dairy cows, we used 
the GWAS summary statistics of milk yield, milk fat 
yield, milk protein yield, and somatic cell score from 
27,214 bulls for colocalization analysis [21]. The Bayes-
ian based software Coloc (v5.1.0) [57] was used for the 

analysis. PP4 (posterior probability of colocalization 
hypothesis) > 0.60 in eQTL and sQTL, was used to deter-
mine colocalization.

TWAS was performed to estimate the association 
between gene expression levels and complex traits using 
S-PrediXcan (v0.6.11) [58]. In this study a nested cross-
validated Elastic Net prediction model was first trained 
based on the genotype and normalized gene expression 
data of 101 individuals in this study. In addition to the 
GWAS summary statistics used for colocalization [21], 
retained placenta, productive life, metritis, mastitis, liv-
ability, ketosis, hypocalcemia, sire calving ease, and sire 
stillbirth were used for TWAS [59]. Genes with P <0.05 
were considered to be significantly correlated with these 
traits.
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