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Abstract
Background Peritoneal carcinomatosis was the main reason leading to gastric cancer (GC)-related death. We aimed 
to explore the roles of dysregulated microRNAs (miRNAs) and related immune regulation activities in GC-associated 
malignant ascites.

Methods GSE126399 were downloaded from GEO database. Differentially expressed miRNAs in GC ascites samples 
was firstly screened, and critical miRNAs were further investigated by LASSO (least absolute shrinkage and selection 
operator) logistic regression and random forest (RF) algorithm. Receiver operating characteristic of critical miRNAs 
was also constructed. Moreover, functional analysis, immune cell infiltration associated with differentially expressed 
mRNAs were further analyzed. After selecting key modules by weighted gene co-expression network analysis, mRNAs 
related with survival performance and transcription factor (TF)-miRNA-mRNA network were constructed.

Results Hsa-miR-181b-5p was confirmed as critical differentially expressed miRNAs in GC ascites. Then, the tumor 
samples were divided into high- and low- expression groups divided by mean expression levels of hsa-miR-181b-5p, 
and subjects with high hsa-miR-181b-5p levels had better survival outcomes. In total, 197 differentially expressed 
mRNAs associated with hsa-miR-181b-5p levels were obtained, and these mRNAs were mainly enriched in muscle 
activity and vascular smooth muscle contraction. Hsa-miR-181b-5 was positively related with activated CD4 T cells 
and negatively related with eosinophil. 17 mRNAs were selected as mRNAs significantly related with prognosis of GC, 
such as PDK4 and RAMP1. Finally, 75 TF-miRNA-mRNA relationships were obtained, including 15 TFs, hsa-miR-181b-5p, 
and five mRNAs.

Conclusion Our data suggest that the differentially expressed hsa-miR-181b-5p in ascites samples of GC patients 
may be a valuable prognostic marker and a potential target for therapeutic intervention, which should be validated in 
the near future.
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Background
Gastric cancer (GC) is a heterogeneous and complicated 
disease with the characterization of primary stomach 
epithelial malignancy and responsible for 0.769  million 
deaths in 2020 globally [1]. The disease ranks as the fifth 
most common malignancy globally and the third mortal-
ity and incidence in China. Peritoneal carcinomatosis, as 
a terminal condition, was recognized as the reason for 
leading to 60% of all the deaths from GC. Meanwhile, the 
condition was usually related with ascites accumulation, 
which caused the poor prognosis and reduced quality of 
life [2]. According to the complicated pathogenesis, more 
attention should be paid for the better surveillance of the 
treatment strategy.

Malignant cells from primary tumor’s serosal surface 
could be detached to the peritoneal surface, which lead 
to more complex disease condition. Until to now, various 
of factors related with GC prognosis have been reported, 
such as depth of invasion, histological type, tumor loca-
tion, age, and gender [3]. As the development of molecu-
lar biological technologies, multiple studies have been 
designed to explore molecular biomarkers related with 
GC development. For example, Li et al. showed that 2371 
mRNAs and 350 long non-coding RNAs (lncRNAs) with 
differentially expressed levels in GC [4]. Moreover, tumor 
markers in blood were widely investigated in GC patients, 
such as CA 125, CA 19 − 9, carcinoembryonic antigen [5, 
6]. Currently, accurate diagnosis of GC is based on the 
cytological analysis of ascites. Thus, it is inferred that the 
tumor makers in ascites may elicit promising predictive 
performance in GC.

Accumulating evidence has demonstrated that microR-
NAs (miRNAs), as the small non-coding RNAs play criti-
cal role in various cancers, including GC [7, 8]. However, 
the role of miRNAs in ascites has not been elucidated 
fully. Therefore, in this study, we retrieved GSE126399 
dataset from GEO database, and identified the differen-
tially expressed miRNAs in ascites of GC patients. The 
key miRNAs were screened by machine learning meth-
ods. The differentially expressed mRNAs between high 
and low miRNA expression group were analyzed based 
on TCGA (The Cancer Genome Atlas) -STAD (stomach 
adenocarcinomas) dataset, followed by function enrich-
ment analysis, immune infiltration analysis, weighted 
gene co expression network analysis (WGCNA) and 
transcription factor (TF)-miRNA-mRNA network con-
struction. The flow chart of this study is illustrated in 
Supplementary Fig. 1. In the present study, we aimed to 
explore the ascites-derived miRNA biomarker for the 
diagnosis and prognosis of GC.

Methods
Data source
GSE126399 was downloaded from Gene expression 
omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/), which included 10 liver cirrhosis-associ-
ated benign ascites and 12 malignant ascites from 
GC. Controls showed matched age, gender and gen-
der with GC patients (Supplemental Table 1). The data 
were sequenced based on GPL18402 Agilent-046064 
Unrestricted_Human_miRNA_V19.0_Microarray.

Gene RNA sequencing (RNAseq) expression matrix 
data of stomach adenocarcinoma (STAD), as well as 
survival information, and clinical information were all 
obtained from the University of California Santa Cruz 
(UCSC) database (https://xena.ucsc.edu/welcome-
to-ucsc-xena/). Totally, 375 tumor samples and 32 nor-
mal samples were involved in the mRNA expression 
matrix, and 434 tumor samples and 41 normal samples 
were involved in the microRNA (miRNA) expression 
matrix. The patients and controls matched on age and 
gender in TCGA cohorts (Supplemental Tables 2 and 
Table 3). Among them, 405 tumor samples supplemented 
with additional information including clinical and sur-
vival data were obtained.

Screening differentially expressed miRNAs
Differentially expressed miRNAs in GC were screened 
using “limma” in R package [9]. Then, the results were 
visualized using ggplot2 in R package [10]. P < 0.05 and 
|log2 fold change (FC)| >0.5 were defined as thresholds 
for screening differentially expressed miRNAs.

Prediction of critical miRNAs in GC-associated ascites
LASSO (least absolute shrinkage and selection opera-
tor) logistic regression was designed to predict sample 
classification based on expression values of differentially 
expressed miRNAs in each sample in the GSE126399 
dataset combined with the grouping information of 
samples [11]. Ten-fold cross validation was performed 
to reduce feature dimensions using R software “glmnet” 
package (version 4.0–2), and the parameters were set as 
follows: family="binary”, type. measure="class”, nfold = 10. 
The error rate under different features were calculated 
using ten-fold cross validation and selected strong cor-
relation features. Furthermore, the error graph of cross 
validation and the graph of gene coefficient were both 
constructed to screen critical differentially expressed 
miRNAs.

Random forest (RF) is a compositional supervised 
learning method and an extension of decision tree [12]. 
The prediction model was constructed via RF by classify-
ing objects and using multiple decision trees. Finally, the 
classification results of each decision tree were summa-
rized. RF algorithm was performed using random forest 
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method in the R package randomForest to screen critical 
miRNAs related with GC [13]. Subsequently, the criti-
cal miRNAs were sorted by the RF algorithm according 
to “Mean DecreaseAccuracy” and “Mean DecreaseGini” 
respectively.

Finally, critical miRNAs were selected by intersecting 
the critical miRNAs selected by LASSO logistic regres-
sion algorithm and RF algorithm.

Diagnostic ability analysis of critical miRNAs in 
GC-associated ascites
In order to evaluate the diagnostic value of critical miR-
NAs, the R package “pROC” was used to construct 
receiver operating characteristic (ROC) of critical miR-
NAs in GSE126399 [14].

Differentially expressed miRNAs in GC-associated ascites 
and its relationship with clinical features
In order to clarify the correlation between critical miR-
NAs levels and clinical characteristics, the clinical infor-
mation of included subjects was selected, including 
age, gender, neoplasm_histologic_grade, pathologic_M, 
pathologic_N, pathologic_T, tumor_stage, and overall 
survival in the dataset TCGA -STAD.

Combined with the levels of critical differentially 
expressed miRNAs, the clinical characteristics signifi-
cantly different between the high and low expression 
groups were screened through Chi-squared test. Cluster-
ing heatmaps of clinical features in patients with differ-
ent critical miRNAs levels was visualized using R package 
“ComplexHetmap”.

Differentially expressed mRNA selection and functional 
analysis
The subjects were divided into high- and low- 
expressed groups by the levels of critical differentially 
expressed miRNAs. Subsequently, limma was used to 
screen mRNAs with different levels in TCGA-STAD 
between high- and low- expressed groups [9]. Mul-
tiple test correction was further performed using the 
Benjamin&Hochberg method. The threshold for select-
ing differentially expressed mRNA was set as follows: adj. 
P.Value < 0.05 and |log2FC (fold change)|>1.

The Gene Ontology (GO) system includes biologi-
cal process (BP), molecular functions (MF), and cel-
lular components (CC) [15]. Functional enrichment 
analysis, including GO and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway were both performed 
to screen the potential function of different expressed 
mRNAs, and the enrichment threshold was set as P < 0.05 
and enrichment count ≥ 2.

Immune cell infiltration
To investigate the status of immune cell associated 
with critical miRNA levels, the abundance of 28 types 
of immune cell infiltration in the high and low expres-
sion group samples was calculated using ssGSEA (single 
sample gene set enrichment analysis) algorithm based 
on GSVA (gene set variation analysis) in R package [16]. 
To further screen out immune cells with different infil-
tration levels between high and low expression groups, a 
box plot was drawn using the R package “ggplot2” based 
on the wilcox.test test. Then, the spearman method was 
used to calculate the correlation between the levels of 
critical miRNAs and the infiltration levels of immune 

Fig. 1 Volcano plot and heatmap of differentially expressed miRNA between gastric cancer and normal controls. A: volcano plot of differentially ex-
pressed miRNA in gastric cancer; B: heatmap of differentially expressed miRNA in gastric cancer. Each small square represents each miRNA, and its color 
represents the expression level of miRNA, and the darker color represents the higher expression level
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cells. The correlation lollipop map was visualized using 
ggplot2 in R package.

Key modules selected by WGCNA
WGCNA is a tool for identifying gene expression pat-
terns of multiple samples [17], which can analyze the 

Fig. 2 The critical miRNAs selected by machine learning algorithms. A: gene coefficient variation graph in LASSO model. Each curve in the graph repre-
sents the variation trajectory of each independent variable coefficient, with the y-axis representing the coefficient value and the upper x-axis representing 
the number of non-zero coefficients in the model; B: penalty graph of LASSO logic coefficient; C: top 5 critical miRNAs. “Mean Decrease Accuracy” and 
“Mean Decrease Gini” are two important indicators in random forest models. Among them, “mean Decrease accuracy “indicates the degree of decrease 
in the accuracy of random forest prediction, and the larger value represents the greater importance of the variable; Mean decrease Gini “calculates the 
impact of each variable on the heterogeneity of observations at each node of the classification tree to compare the importance of the variables. The 
higher value represents greater importance of variables. D: Lollipop chart of top 5 miRNAs. E: Venn diagram of critical miRNAs
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association between the module and specific traits or 
phenotypes and cluster genes with similar expression 
patterns. Therefore, it is widely used in the research of 
disease and gene association analysis.

In order to find genes highly related with clinical char-
acteristics, WGCNA was performed using WGCNA 
in R package. The samples were clustered, and the soft 
threshold of the data was determined. In order to screen 
out key modules related to sample traits, p < 0.05 and cor-
relation coefficient > 0.3 were defined as thresholds for 
selecting modules. The modules closely related with six 
types of immune cells at least with differential distribu-
tion were set as key modules.

Subsequently, the intersection of mRNAs involved in 
key modules and differentially expressed mRNAs was 
selected using VennDiagram in R package [18].

mRNAs related with survival performance
High and low expression groups were divided by the 
median expression value of intersection miRNA. Kaplan-
Meier (K-M) survival analysis was performed on the high 
and low expression groups using R-package survival to 
screen out key mRNAs related to prognosis [19]. Pear-
son correlation between critical miRNAs and mRNAs 
was calculated. Finally, the results were visualized using 
ggplot2 in R-package.

Transcription factors (TF)-miRNA-mRNA network
The mRNAs-miRNAs pairs were investigated by tools of 
miRwalk3.0 [20] and ENCORI (The encyclopedia of RNA 
interactomes, https://starbase.sysu.edu.cn/index.php). 
The thresholds for miRwalk3.0 was set as follows: bind-
ing probability ≥ 0.95; binding site position: 3UTR. The 
thresholds for ENCORI was set as follows: CLIP-Data ≥ 1, 
Degradome-Data ≥ 0, pan-Cancer ≥ 0, programNum ≥ 1. 
Finally, miRNA-mRNA interaction pairs of the two data-
bases were selected.

TFs of miRNAs were further explored using the tool of 
TransmiR v2.0 (http://www.cuilab.cn/transmir). Finally, 
TF-miRNA-mRNA network was constructed using Cyto-
cape software.

Results
Differentially expressed miRNA in GC- associated 
malignant ascites
Volcano plot of differentially expressed miRNA in GC-
associated malignant ascites was shown in Fig. 1A, which 
revealed that eight miRNAs had significantly lower lev-
els in GC, including has-miR-574-3p, has-miR-197-3p, 
has-miR-623, has-miR-1587, has-miR-4701-3p, has-
miR-4481, has-miR-181b-5p, and has-miR-181d-5p. 
Furthermore, Fig. 1B shows that differentially expressed 
miRNAs in GC-associated malignant ascites and liver 

Fig. 3 Evaluation of diagnostic value of critical miRNAs. A: receiver operating characteristic (ROC) curve of hsa-miR-181b-5p; B: Expressing cloud and Rain 
maps of hsa-miR-181b-5p in tumor and controls. * versus controls, *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001; C: Kaplan-Meier curve of hsa-miR-
181b-5p. D: univariate regression analysis; E: multivariate regression analysis
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cirrhosis-associated benign ascites has obviously differ-
ent expression levels.

Critical miRNAs based on machine learning
Critical miRNAs were firstly selected by LASSO logis-
tic regression analysis. The graph of gene coefficients 
(Fig. 2A) and the error plot of cross validation (Fig. 2B) 
were both constructed. Minimum error rate reached 
the lowest when lambda. min was 0.1200739. Four criti-
cal miRNAs were selected by LASSO logistic regression 
analysis, including hsa-miR-4701-3p, hsa-miR-1587, hsa-
miR-574-3p, and hsa-miR-181b-5p.

Meanwhile, critical miRNAs were also selected by RF 
model analysis. The selected miRNAs were sorted by 
“Mean DecreaseAccuracy” and “Mean Decrease Gini” 
(Fig. 2C). The top five miRNAs were selected, including 

hsa-miR-4481, hsa-miR-181d-5p, hsa-miR-623, hsa-miR-
181b-5p, and hsa-miR-197-3p (Fig. 2D).

Finally, hsa-miR-181b-5p was confirmed as the only 
one intersection of LASSO algorithm and RF algorithm 
(Fig. 2E).

The diagnostic and prognostic role of hsa-miR-181b-5p
As shown in Fig.  3A, the AUC of hsa-miR-181b-5p for 
diagnosing GC was 0.767, suggesting the good predic-
tive ability of hsa-miR-181b-5p for identifying GC from 
controls.

Expressing cloud and rain maps of hsa-miR-181b-5p 
showed the expression level of hsa-miR-181b-5p in 
tumor was significantly higher than that in normal 
controls (Fig.  3B). Furthermore, based on R Package 
Surveyor, the optimal threshold of miRNA was cal-
culated as 5.868633. Then, the tumor samples were 
divided into high and low expressed groups based on 
the optimal threshold. Then, K-M curves of the high 
and low expressed groups were analyzed based on 
logrank test (Fig.  3C). Subjects with high expressed 
levels of hsa-miR-181b-5p had better survival out-
comes (P = 0.047). Furthermore, univariate and mul-
tivariate regression analyses were performed for 
hsa-miR-181b-5p and various clinical features. Results 
indicated that hsa-miR-181b-5p was an independent 
prognostic factor (all p < 0.05, Fig. 3D and E).

The relationship between miRNAs and clinical 
characteristics
The effect of hsa-miR-181b-5p on clinical charac-
teristics was explored, including age, gender, neo-
plasm-histologic-grade, pathologic-M, pathologic-N, 
pathologic-T, tumor stage, and OS. The comparison of 
clinical characteristics between high and low expres-
sion group was performed in Table  1. Notably, OS 
could be significantly affected by the level of hsa-miR-
181b-5p (P = 0.04016).

Differentially expressed mRNAs in high and low expression 
groups
In total, 197 differentially expressed mRNAs were 
related with miRNAs levels, including 161 up-regu-
lated mRNAs and 36 down-regulated mRNAs. Fur-
thermore, volcano plot (Fig. 4A) and heatmap (Fig. 4B) 
showed the relative levels of mRNAs in high and low 
expression groups.

Functional enrichment analysis
Top 10 GO items were shown in Fig. 4C, including mus-
cle contraction, muscle organ development, regulation 
of heart contraction. Meanwhile, top 10 enriched KEGG 
pathways were shown in Fig.  4D, including vascular 

Table 1 The comparison of clinical characteristics between high 
and low expression groups
features High.exp

(hsa-miR-181b-
5p, n = 346)

Low.exp
(hsa-miR-181b-
5p, n = 59)

pvalue

OS 0.04016
 Alive 211 27
 Dead 135 32
age 0.0531
 < 60 101 25
 ≥ 60 243 33
gender 0.5624
 female 118 23
 male 228 36
neoplasm_histologic
_grade

0.8232

 G1 7 1
 G2 124 18
 G3 209 37
pathologic_M 0.7811
 M0 308 54
 M1 23 3
pathologic_N 0.7714
 N0 102 19
 N1 92 18
 N2 69 10
 N3 74 10
pathologic_T 0.1402
 T1 15 4
 T2 68 18
 T3 162 21
 T4 98 14
tumor_stage 0.1089
 stage i 38 13
 stage ii 110 17
 stage iii 151 22
 stage iv 34 4
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smooth muscle contraction, cGMP-PKG signaling path-
way, and dilated cardiomyopathy.

Immune microenvironment associated with hsa-miR-
181b-5p
The abundance of 28 immune cell infiltration of samples 
in TCGA-STAD was shown in Fig. 5A. Furthermore, the 
infiltration of 28 immune cells in high and low expres-
sion groups was compared, and the infiltration of nine 
immune cells had significant difference between high 
and low expression groups, including activated CD4 T 
cell, activated dendritic cell, CD56 bright natural killer 

cell, CD56 dim natural killer cell, effector memory CD4 
T cell, eosinophil, gamma delta T cell, natural killer cell, 
and type 17 T helper cell (Fig. 5B). Then, the association 
between hsa-miR-181b-5 and nine immune cells was 
investigated (Fig. 5C), and hsa-miR-181b-5 was positively 
related with activated CD4 T cells and negatively related 
with eosinophil.

WGCNA analysis
As shown in Fig. 6A, the overall clustering of the data-
set samples achieves good performance, so we did not 
exclude the samples. Subsequently, the characteristics 

Fig. 4 Differentially expressed mRNA between high- and low-expression groups and its functional enrichment. A: volcano plot of differentially expressed 
mRNA in gastric cancer; B: heatmap of differentially expressed mRNA in gastric cancer. Each small square represents each miRNA, and its color repre-
sents the expression level of miRNA, and the darker color represents the higher expression level; C: top 10 functional GO items enriched by differentially 
expressed mRNA; D: Top 10 KEGG pathways enriched by differentially expressed mRNA. The left side represents the differential mRNA enriched by the 
pathway, the right side represents the top 10 pathway, and the horizontal axis in the bubble diagram on the right side represents the number of dif-
ferential mRNA enriched by the pathway. The larger the bubble represents the more enriched the differential mRNA. The color of the bubble represents 
significant p value, and the redder represents the smaller p value
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of the samples were sorted out and added to the clus-
tering graph to construct the sample clustering and 
clinical trait heatmap (Fig.  6B). When power was 
selected as 5, the value of signed R^2 was more than 
0.85, suggesting the network was close to scale-free 
networks. Meanwhile, the mean of the adjacency func-
tion in the middle was gradually approaching 0 with a 
gentle trend (Fig. 6C).

Co-expression network and their association with immune 
cells
The minimum number of genes for each gene mod-
ule was set as 70 under the standard hybrid dynamic 
tree cutting algorithm. Then, a total of 13 modules were 
obtained. To merge similar modules based on the results 
of the dynamic pruning tree algorithm, MEDisThres was 
set as 0.3. After merging, a total of 11 modules were clus-
tered (Fig. 7A).

The cluster tree of modules was shown in Fig.  7B. 
Meanwhile, the association of the 11 modules was shown 
in the heatmap (Fig. 7C). Moreover, MEpink, MEyellow, 
and MEturquoise were significantly related with most 
of immune cells (Fig.  7D). In MEpink, 649 genes were 
involved, 1743 genes were included in MEyellow, and 
5472 genes were involved in MEturquoise. Totally, 7864 
genes were defined as hub genes.

mRNAs related with immune cells
In order to select mRNAs related with immune cells, 
7681 hub genes and differentially expressed mRNAs were 
taken the intersection. Finally, 183 mRNAs were recog-
nized as mRNAs related with immune cells (Fig. 8A).

The prognosis role of immune cells-related mRNAs.
In total, 17 mRNAs were selected as mRNAs signifi-

cantly related with prognosis of GC (Table 2). Then, K-M 
curves based on expression levels of PDK4 and RAMP1 
were constructed, respectively (Fig.  8B). The curves 
showed that low levels of PDK4 and RAMP1 had better 
overall survival time.

Then, the association between hsa-miR-181b-5p and 
selected mRNAs was calculated, and we found that hsa-
miR-181b-5p was negatively related with all 17 mRNAs 
(Fig. 8C). Among them, hsa-miR-181b-5p had the stron-
gest negative correlation with PNCK.

TF-miRNA-mRNA network
Based on miRwalk3.0 and ENCORI databases, 3438 
miRNA-mRNA pairs were obtained. Among them, 
five mRNAs were related with prognosis of COAD. 
Then, TF related with hsa-miR-181b-5p was further 
explored using TransmiR v2.0. Finally, 75 TF-miRNA-
mRNA relationships were obtained. In the network, 15 

Fig. 5 Immune microenvironment analysis of gastric cancer. A: boxplot of 28 types of immune cell infiltration in TCGA-STAD; B: comparison of 28 types 
of immune cell infiltration between subjects in high- and low-expression groups. * versus controls, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; C: 
Correlation lollipop chart of hsa-miR-181b-5p and immune cells with different infiltration levels
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TFs, hsa-miR-181b-5p, and five mRNAs (DMD, PDK4, 
MSRB3, PALLD, and NTN1) were involved (Fig. 8D).

Discussion
Although chemotherapy could improve the survival 
performance of GC patients with peritoneal carcinoma-
tosis, potential ascites tumor markers are still needed 
to be investigated to improve the limited efficacies for 
treating GC. In the present study, hsa-miR-181b-5p was 
confirmed as characteristic miRNAs in GC-associated 
malignant ascites. The tumor samples were divided into 
high and low expression groups divided by mean expres-
sion levels of hsa-miR-181b-5p, and patients with high 
hsa-miR-181b-5p expression level had better survival 
outcomes. In total, 197 mRNAs related with hsa-miR-
181b-5p were mainly enriched in muscle activity and 
vascular smooth muscle contraction. Meanwhile, hsa-
miR-181b-5p was positively related with activated CD4 
T cells and negatively related with eosinophil. Finally, 
we proposed that hsa-miR-181b-5p might be benefit for 
improving the survival of GC by the regulation of muscle 

activity and the infiltration of CD4 T cells and eosinophil 
(Supplementary Fig. 2).

MiRNAs are widely expressed in living organisms, 
hsa-miR-181b-5p was demonstrated as miRNA differ-
entially expressed in GC. Meanwhile, our data showed 
GC with higher hsa-miR-181b-5p had better survival 
outcomes. Hsa-miR-181b-5p was significantly down-
regulated in Ang II-treated cells, and the plasma levels of 
miR-181b-5p may serve as novel biomarkers for vascular 
remodeling [21]. To elucidate the mechanisms associ-
ated with hsa-miR-181b-5p responsible for GC develop-
ment, our data further showed that mRNAs related with 
hsa-miR-181b-5p were significantly enriched in muscle 
activity and vascular smooth muscle contraction. In 
cancer patients, defective skeletal muscle regeneration 
would lead to muscle wasting, and the progressive mus-
cle wasting was demonstrated as one of main reasons for 
cancer-related deaths, including GC [22]. Therefore, we 
speculated that hsa-miR-181b-5p might been proposed 
as a valuable prognosis biomarker for GC by participat-
ing in muscle wasting.

Fig. 6 Sample clustering and soft threshold determination by weighted gene co-expression network analysis (WGCNA). A: sample clustering of TCGA-
STAD; B: data sample clustering and phenotypic information. The upper half shows the sample clustering situation, and the lower half shows nine im-
mune cell traits; C: Scale free soft threshold distribution. The horizontal axis represents the weight parameter power value. The vertical axis in the left 
image represents the Scale Free Topology Model Fit, that is, signed R ^ 2. The square of the correlation coefficient reaches 0.85 or more, indicating that 
the network is approaching a scale-free distribution. The vertical axis in the right image represents the average value of all gene adjacency functions in 
the corresponding gene module
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Tumor microenvironment can mediate immune 
response in various kinds of cancers, and immuno-
therapy has been focused as a new era for cancer treat-
ment in recent years [23]. Previous evidence showed 
that tumor infiltrating lymphocytes, such as NK cells, 
intratumoral T-cell, and CD11c + cells, were related 
with improved survival performance [24, 25], and 
CD206 + and CXCL8 + macrophages correlated with 
poor survival outcomes [26]. Our data showed that 
hsa-miR-181b-5 was positively related with activated 
CD4 T cells and negatively related with eosinophil. 
Similarly, Yuan et al. demonstrated that, as com-
pared with matched paraneoplastic tissue, the ratio 

of CD4 + T-cells in GC was significantly higher [27]. 
Furthermore, the critical roles of T cells for elimina-
tion and recognition of GC have also been confirmed 
[28]. Eosinophils are also accepted as one of critical 
components of the immune microenvironment modu-
lating the progression and initiation of tumor, which 
are a source of protumorigenic molecules mediated 
by pro-angiogenic factors and anti-tumorigenic medi-
ated by various kinds of cytokines, including IL-18 
and TNF-α [29]. Thus, the benefit of hsa-miR-181b-5p 
for GC improvement might be mediated by modu-
lating immune regulation, such as CD4 T cells and 
eosinophil.

Fig. 7 Co-expression network. A: module clustering tree. Genes are divided into various modules through hierarchical clustering, with different colors 
representing different modules; B: cluster tree of modules; C: heatmap of modules; D: heatmap of module and clinical trait. The vertical axis represents 
different modules, and the horizontal axis represents different traits. Each block represents the correlation coefficient and significance P-value between 
a certain module and a certain trait
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Great efforts have been made to improve the diagnosis 
and treatment of cancers [30–34]. Circulating tumor cells 
(CTCs) play key roles in the occurrence and metastasis 
of tumors, and the development of CTC detections may 
improve the early diagnosis and cancer control [35]. A 
novel microfluidic device is developed to capture CTCs 
to detect the residual disease in acute leukemia [36]. It is 
reported that cancer stem-like cells (CSC) showed rescue 
effect to nonstem-like cancer cells under radiation ther-
apy and the resistance of CSC was associated with lyso-
some-mediated autophagy, which help us to understand 
the mechanism of radiotherapy resistance [37, 38]. Our 
findings of the biological significance of hsa-miR-181b-5p 
in GC help us to deeply understand the pathogenesis of 
GC and the clinical application of hsa-miR-181b-5p as 
the diagnosis and prognosis biomarker for GC needs a 
long way to go.

In addition, there are some limitations in the current 
study. First, the sample size in the discovery dataset 
GSE126399 was relatively small. Secondly, the control 
samples in GSE126399 dataset were liver cirrhosis-
associated ascites, but not normal peritoneal fluids. 
Liver cirrhosis may also be associated with the altera-
tion of miRNA and mRNAs expression. Thus, the bio-
logical significance of hsa-miR-181b-5p warrants a 
large amount of validation experiments in vivo and in 
vitro.

Conclusion
In conclusion, our data suggest that hsa-miR-181b-5p 
was aberrantly expressed in GC ascites. hsa-miR-
181b-5p showed promising diagnostic value for the risk 
of GC. Patients with high expression of hsa-miR-181b-5p 
showed better prognosis than those with low expression. 
hsa-miR-181b-5p was associated with the regulation of 

Fig. 8 MRNAs related with immune roles, Kaplan-Meier survival analysis, and transcription factor (TF)-miRNA-mRNA regulation network. A: Venn diagram 
of intersecting genes; B: Kaplan-Meier curve of PDK4 and RAMP1; C: lollipop chart of critical mRNAs and hsa-miR-181b-5p. D: The red circle represents 
mRNA; Yellow diamond represents TF; The blue triangle represents miRNA; The pink arrow line represents TF competitive binding miRNA, and the blue 
T-shaped line represents miRNA mRNA regulatory relationship
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muscle activity and the infiltration of CD4 T cells and 
eosinophil. The aberrant expression of hsa-miR-181b-5p 
may be used as the biomarker in clinical practice to pre-
dict prognosis and outcome in hospitalized GC patients 
and facilitate personalized treatment. hsa-miR-181b-5p 
may influence the survival rate of patients by regulating 
muscle activity and immune microenvironment. Tar-
geting hsa-miR-181b-5p may be a candidate treatment 
regimen for GC patients. However, lacking functional 
verification of hsa-miR-181b-5p in GC by the clinical 
studies was a limitation. Thus, more prospective studies 
with larger sample sizes should be designed to confirm 
the above conclusion.

Abbreviations
GC  gastric cancer
STAD  stomach adenocarcinoma
RF  Random forest
ROC  receiver operating characteristic
GO  Gene Ontology
BP  biological process
MF  molecular functions
CC  cellular components
KEGG  Kyoto Encyclopedia of Genes and Genomes
WGCNA  weighted gene co expression network analysis
K-M  Kaplan-Meier
TF  Transcription factors

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-024-10359-2.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Acknowledgements
None.

Author contributions
YY contributed to the conception, performed study concept, design and 
wrote the manuscript. JZ acquired the data, helped with data analysis and 
revised the manuscript. All authors contributed to the article and approved 
the submitted version.

Funding
None.

Data availability
The data used to support the findings of this study are available from the 
corresponding author upon request.

Declarations

Ethics approval
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 26 February 2024 / Accepted: 29 April 2024

References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray 

F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
2021;71(3):209–49.

2. Yarema R, capital O CcEMC, Hyrya P, Kovalchuk Y, Safiyan V, Karelin I, Ferneza 
S, Fetsych M, Matusyak M, Oliynyk Y, et al. Gastric cancer with peritoneal 
metastases: efficiency of standard treatment methods. World J Gastrointest 
Oncol. 2020;12(5):569–81.

3. Yang WJ, Zhao HP, Yu Y, Wang JH, Guo L, Liu JY, Pu J, Lv J. Updates on global 
epidemiology, risk and prognostic factors of gastric cancer. World J Gastroen-
terol. 2023;29(16):2452–68.

4. Li H, Yu B, Li J, Su L, Yan M, Zhang J, Li C, Zhu Z, Liu B. Characterization of 
differentially expressed genes involved in pathways associated with gastric 
cancer. PLoS ONE. 2015;10(4):e0125013.

5. Cainap C, Nagy V, Gherman A, Cetean S, Laszlo I, Constantin AM, Cainap S. 
Classic tumor markers in gastric cancer. Current standards and limitations. 
Clujul Med. 2015;88(2):111–5.

6. Liang Y, Wang W, Fang C, Raj SS, Hu WM, Li QW, Zhou ZW. Clinical significance 
and diagnostic value of serum CEA, CA19-9 and CA72-4 in patients with 
gastric cancer. Oncotarget. 2016;7(31):49565–73.

7. Shrestha S, Hsu SD, Huang WY, Huang HY, Chen W, Weng SL, Huang HD. A 
systematic review of microRNA expression profiling studies in human gastric 
cancer. Cancer Med. 2014;3(4):878–88.

8. Liu X, Ma R, Yi B, Riker AI, Xi Y. MicroRNAs are involved in the development 
and progression of gastric cancer. Acta Pharmacol Sin. 2021;42(7):1018–26.

9. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers 
differential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):e47.

10. Ito K, Murphy D. Application of ggplot2 to Pharmacometric graphics. CPT 
Pharmacometrics Syst Pharmacol. 2013;2(10):e79.

11. Garcia-Magarinos M, Antoniadis A, Cao R, Gonzalez-Manteiga W. Lasso logis-
tic regression, GSoft and the cyclic coordinate descent algorithm: application 
to gene expression data. Stat Appl Genet Mol Biol. 2010;9:Article30.

12. Liu ZP, Wu LY, Wang Y, Zhang XS, Chen L. Prediction of protein-RNA binding 
sites by a random forest method with combined features. Bioinformatics. 
2010;26(13):1616–22.

Table 2 mRNAs related with prognostic of gastric cancer
mRNA pvalue High.number Low.number
PDK4 0.000595952 173 172
RAMP1 0.004402854 173 172
APOD 0.01527292 173 172
MSRB3 0.016481641 173 172
PDZRN3 0.020938397 173 172
NTN1 0.023905938 173 172
CALD1 0.024431804 173 172
OGN 0.025474369 173 172
DPT 0.02744154 173 172
PPP1R14A 0.027695212 173 172
CLMP 0.02900008 173 172
PNCK 0.036473881 173 172
LIMS2 0.038730822 173 172
DMD 0.042339273 173 172
RBPMS2 0.043804455 173 172
PALLD 0.044257273 173 172
SDPR 0.048025518 173 172

https://doi.org/10.1186/s12864-024-10359-2
https://doi.org/10.1186/s12864-024-10359-2


Page 13 of 13Yang and Zhang BMC Genomics          (2024) 25:628 

13. Rajagopal N, Xie W, Li Y, Wagner U, Wang W, Stamatoyannopoulos J, Ernst J, 
Kellis M, Ren B. RFECS: a random-forest based algorithm for enhancer identifi-
cation from chromatin state. PLoS Comput Biol. 2013;9(3):e1002968.

14. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M. pROC: 
an open-source package for R and S + to analyze and compare ROC curves. 
BMC Bioinformatics. 2011;12:77.

15. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, 
Lewis S, Marshall B, Mungall C, et al. The gene ontology (GO) database and 
informatics resource. Nucleic Acids Res. 2004;32(Database issue):D258–261.

16. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

17. Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted 
gene coexpression network analysis: state of the art. J Biopharm Stat. 
2010;20(2):281–300.

18. Chen H, Boutros PC. VennDiagram: a package for the generation of highly-
customizable Venn and Euler diagrams in R. BMC Bioinformatics. 2011;12:35.

19. Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier 
estimate. Int J Ayurveda Res. 2010;1(4):274–8.

20. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for 
prediction of microRNA binding sites. PLoS ONE. 2018;13(10):e0206239.

21. Li FJ, Zhang CL, Luo XJ, Peng J, Yang TL. Involvement of the MiR-181b-5p/
HMGB1 pathway in Ang II-induced phenotypic Transformation of smooth 
muscle cells in hypertension. Aging Dis. 2019;10(2):231–48.

22. Bossola M, Muscaritoli M, Costelli P, Grieco G, Bonelli G, Pacelli F, Rossi Fanelli 
F, Doglietto GB, Baccino FM. Increased muscle proteasome activity correlates 
with disease severity in gastric cancer patients. Ann Surg. 2003;237(3):384–9.

23. Xu X, Chen J, Li W, Feng C, Liu Q, Gao W, He M. Immunology and immuno-
therapy in gastric cancer. Clin Exp Med 2023.

24. Zhang N, Cao M, Duan Y, Bai H, Li X, Wang Y. Prognostic role of tumor-
infiltrating lymphocytes in gastric cancer: a meta-analysis and experimental 
validation. Arch Med Sci. 2020;16(5):1092–103.

25. Li F, Sun Y, Huang J, Xu W, Liu J, Yuan Z. CD4/CD8 + T cells, DC subsets, Foxp3, 
and IDO expression are predictive indictors of gastric cancer prognosis. 
Cancer Med. 2019;8(17):7330–44.

26. Lin C, He H, Liu H, Li R, Chen Y, Qi Y, Jiang Q, Chen L, Zhang P, Zhang H, et 
al. Tumour-associated macrophages-derived CXCL8 determines immune 
evasion through autonomous PD-L1 expression in gastric cancer. Gut. 
2019;68(10):1764–73.

27. Yuan L, Xu B, Yuan P, Zhou J, Qin P, Han L, Chen G, Wang Z, Run Z, Zhao P, et 
al. Tumor-infiltrating CD4(+) T cells in patients with gastric cancer. Cancer Cell 
Int. 2017;17:114.

28. Amedei A, Della Bella C, Silvestri E, Prisco D, D’Elios MM. T cells in gastric 
cancer: friends or foes. Clin Dev Immunol. 2012;2012:690571.

29. Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G, Mattei F, Marone G, 
Schiavoni G. Eosinophils: the unsung heroes in cancer? Oncoimmunology. 
2018;7(2):e1393134.

30. Han J, Mei Z, Lu C, Qian J, Liang Y, Sun X, Pan Z, Kong D, Xu S, Liu Z, et al. 
Ultra-high dose rate FLASH irradiation induced radio-resistance of normal 
fibroblast cells can be enhanced by hypoxia and mitochondrial dysfunction 
resulting from loss of cytochrome C. Front Cell Dev Biol. 2021;9:672929.

31. Liu Y, Kobayashi A, Maeda T, Fu Q, Oikawa M, Yang G, Konishi T, Uchihori Y, Hei 
TK, Wang Y. Target irradiation induced bystander effects between stem-like 
and non stem-like cancer cells. Mutat Res. 2015;773:43–7.

32. Zhu L, Han W, Chen S, Zhao Y, Jiang E, Bao L, Pei B, Yang G, Zhao G, Wang 
J, et al. Radiation-induced bystander effects enhanced by elevated 
sodium chloride through sensitizing cells to bystander factors. Mutat Res. 
2008;644(1–2):43–7.

33. Wang W, Quan Y, Fu Q, Liu Y, Liang Y, Wu J, Yang G, Luo C, Ouyang Q, Wang Y. 
Dynamics between cancer cell subpopulations reveals a model coordinating 
with both hierarchical and stochastic concepts. PLoS ONE. 2014;9(1):e84654.

34. Quan Y, Yan Y, Wang X, Fu Q, Wang W, Wu J, Yang G, Ren J, Wang Y. Impact of 
cell dissociation on identification of breast cancer stem cells. Cancer Biomark 
A. 2012;12(3):125–33.

35. Lu C, Han J, Sun X, Yang G. Electrochemical detection and point-of-care 
testing for circulating tumor cells: current techniques and future potentials. 
Sensors. 2020;20(21).

36. Cai Z, Fan S, Sun X, Mo X, Yang G. Novel microfluidic device for measurable 
residual disease detection in acute leukemia. Innov (Cambridge (Mass). 
2023;4(3):100408.

37. Liu Y, Kobayashi A, Fu Q, Yang G, Konishi T, Uchihori Y, Hei TK, Wang Y. Rescue 
of targeted nonstem-like cells from bystander stem-like cells in human 
fibrosarcoma HT1080. Radiat Res. 2015;184(3):334–40.

38. Yang G, Lu C, Mei Z, Sun X, Han J, Qian J, Liang Y, Pan Z, Kong D, Xu S, et al. 
Association of cancer stem cell radio-resistance under ultra-high dose rate 
FLASH irradiation with lysosome-mediated autophagy. Front Cell Dev Biol. 
2021;9:672693.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Ascites-derived hsa-miR-181a-5p serves as a prognostic marker for gastric cancer-associated malignant ascites
	Abstract
	Background
	Methods
	Data source
	Screening differentially expressed miRNAs
	Prediction of critical miRNAs in GC-associated ascites
	Diagnostic ability analysis of critical miRNAs in GC-associated ascites
	Differentially expressed miRNAs in GC-associated ascites and its relationship with clinical features
	Differentially expressed mRNA selection and functional analysis
	Immune cell infiltration
	Key modules selected by WGCNA
	mRNAs related with survival performance
	Transcription factors (TF)-miRNA-mRNA network

	Results
	Differentially expressed miRNA in GC- associated malignant ascites
	Critical miRNAs based on machine learning
	The diagnostic and prognostic role of hsa-miR-181b-5p
	The relationship between miRNAs and clinical characteristics
	Differentially expressed mRNAs in high and low expression groups
	Functional enrichment analysis
	Immune microenvironment associated with hsa-miR-181b-5p
	WGCNA analysis
	Co-expression network and their association with immune cells
	mRNAs related with immune cells
	TF-miRNA-mRNA network

	Discussion
	Conclusion
	References


