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Abstract
Background The Portuguese oyster Crassostrea angulata, a bivalve of significant economic and ecological 
importance, has faced a decline in both production and natural populations due to pathologies, climate change, and 
anthropogenic factors. To safeguard its genetic diversity and improve reproductive management, cryopreservation 
emerges as a valuable strategy. However, the cryopreservation methodologies lead to some damage in structures 
and functions of the cells and tissues that can affect post-thaw quality. Transcriptomics may help to understand the 
molecular consequences related to cryopreservation steps and therefore to identify different freezability biomarkers. 
This study investigates the molecular damage induced by cryopreservation in C. angulata D-larvae, focusing on two 
critical steps: exposure to cryoprotectant solution and the freezing/thawing process.

Results Expression analysis revealed 3 differentially expressed genes between larvae exposed to cryoprotectant 
solution and fresh larvae and 611 differentially expressed genes in cryopreserved larvae against fresh larvae. The 
most significantly enriched gene ontology terms were “carbohydrate metabolic process”, “integral component of 
membrane” and “chitin binding” for biological processes, cellular components and molecular functions, respectively. 
Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified the “neuroactive ligand receptor 
interaction”, “endocytosis” and “spliceosome” as the most enriched pathways. RNA sequencing results were validate by 
quantitative RT-PCR, once both techniques presented the same gene expression tendency and a group of 11 genes 
were considered important molecular biomarkers to be used in further studies for the evaluation of cryodamage.

Conclusions The current work provided valuable insights into the molecular repercussions of cryopreservation on 
D-larvae of Crassostrea angulata, revealing that the freezing process had a more pronounced impact on larval quality 
compared to any potential cryoprotectant-induced toxicity. Additionally, was identify 11 genes serving as biomarkers 
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Background
The Portuguese oyster Crassostrea angulata, a bivalve 
of major economic value and widely distributed around 
the world [1], used to be an important resource for the 
European aquaculture industry until the 1970s. By this 
decade it suffered a great mortality mainly due to an iri-
dovirus disease [2] and since then, not only its produc-
tion but also its natural populations are endangered due 
to climate and anthropogenic factors [3]. To overcome 
this situation, there is a need to create tools and strate-
gies to preserve this species natural banks and to improve 
its production [4].

Cryopreservation presents itself as a valuable strategy 
to secure the storage of important genetic lines of endan-
gered species, preserving biodiversity, and to improve the 
management of a species reproduction [5]. Many studies 
show the possibility of cryopreserving both gametes and 
larvae of different invertebrates, including bivalve species 
such as oysters [6–8]. When compared to sperm stor-
age, the main advantage of larvae cryopreservation is the 
immediate availability of a diploid organism upon thaw-
ing [9, 10]. However, there are some challenges on the 
cryopreservation of larvae when compared to gametes, 
such as the size and complexity of a multicellular organ-
ism [10, 11].

The improvement of cryopreservation methodologies 
is imperative to obtain high post-thaw larvae quality. For 
that purpose, the evaluation of the effect of cryopreserva-
tion steps, such as cryoprotectants solutions and freezing 
process, on the biological processes and pathways of the 
organism is essential for the establishment of a reliable 
protocol [12].

The most common quality parameters used to evalu-
ate larval post-thaw quality are swimming activity, mor-
phology, and survival [8]. Information is still scarce, but 
new technologies are finding their way to become valu-
able tools in this type of studies. From a molecular point 
of view, the use of techniques such as transcriptomic and 
proteomic analysis in cryobiology [13–15], may help to 
identify different freezability biomarkers and to under-
stand the molecular consequences related to cryopreser-
vation. This will be extremely important for a species 
such C. angulata, where cryopreservation tools can be 
applied for the creation of genebanks to secure species 
preservation.

The application of transcriptome analysis technologies 
such as next-generation sequencing (NGS) is becom-
ing widespread, using tools such as RNA sequencing 

(RNA-seq) that allow gene identification and their 
respective expression [16, 17]. Gene expression have 
been successfully used in the investigation of sperm and 
larvae cryodamage in several species including bivalves 
[18–21]. There are studies in the use of RNA-seq to iden-
tify gene alterations in post-thaw sperm and embryos 
of different species [22–24]. In blue catfish (Ictalurus 
punctatus) cryopreserved sperm, authors identified an 
upregulation in genes related to sperm motility-related 
functions (cilium, motile cilium, and microtubule cyto-
skeleton) and amide (often used as a cryoprotectant in 
sperm preservation) biosynthesis pathway [23]. In kelp 
grouper cryopreserved larvae (Epinephelus moara) it 
was identified a downregulation of genes related to eye 
development, cranial nerve development, sensory light 
stimulation and neurotransmitter transport, suggesting 
an impairment of larvae central nervous system develop-
ment [22]. However, information is still scarce regarding 
invertebrate larvae and the effects are only associated to 
the last step of cryopreservation not taking into account 
the possible toxicity of cryoprotectants during exposure. 
In a previous study performed by our group in cryopre-
served C. angulata D-larvae it was identified that the use 
of different cryoprotectant solutions induced an increase 
in larvae abnormalities incidence and a reduction of lar-
vae swimming velocity after thawing [25]. However, there 
is no information about more in-depth damage resulted 
from gene alterations that can compromise further sur-
vival and development. The use of transcriptomic tools 
would be useful to investigate the molecular damage 
induced by all steps of the cryopreservation process and 
to identify putative cryodamage biomarkers on oyster´s 
larvae. This can be achieved by the full screening of the 
alterations of larvae molecular networks and biological 
processes promoted by cryopreservation. Therefore, this 
comprehensive investigation would support the selec-
tion of the most successful cryopreservation methodolo-
gies and potentially the identification of new analytical 
methods for the detection of relevant cryodamage in this 
species.

The objective of this study was to characterize the 
molecular damage promoted by cryopreservation in C. 
angulata D-larvae, using transcriptomic tools in two crit-
ical cryopreservation steps namely exposure to cryopro-
tectant solution (CPAs) and freezing/thawing process. 
Additionally, this work aims to identify putative quality 
biomarkers to understand the potential impact in larval 
structures, biological, cellular and molecular functions.

of freezability for D-larvae quality assessment. This research contributes to the development of more effective 
cryopreservation protocols and detection methods for cryodamage in this species.

Keywords Portuguese oyster, Cryoprotectant exposure, D-larvae cryopreservation, Cryodamage, RNA-seq, Gene 
expression
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Methods
Biological material
C. angulata breeders were acquired from Neptunpearl 
Lda. bivalve farm (Setúbal, Portugal) during their natu-
ral spawning period, between May and July. These indi-
viduals were transported to IPMA Experimental Station 
of Shellfish Production (Tavira, Portugal) and kept at 4 
ºC for a maximum of 24  h. Prior to gametes collection, 
the oysters were wiped to removed debris and fouling 
organisms.

Gamete collection and D-larvae production
The oysters were opened, and their sex was determined 
by microscopic observation of gametes obtained by a 
small incision in the gonad. Each breeder was indepen-
dently stripped to collect the gametes for posterior fer-
tilization. Egg suspensions were filtered at 100  μm and 
retain in 20 μm mesh screen, and spermatozoa sieved at 
20  μm, to reduce potential contaminations. Both gam-
etes were maintained in filtered and UV- sterilized sea-
water (FSW), until the fertilization. The sperm motility 
and concentration were evaluated by computer-assisted 
sperm analysis (CASA) system (Proiser R + D S.L., 
Valencia, Spain), while the oocyte sphericity and con-
centration were confirmed after 20  min of contact with 
FSW through observation via light microscopy. Only 
males with motile spermatozoa and females with spheri-
cal oocytes were used. A total of three males and three 
females were crossed to produce each larvae pool. The 
fertilization was carried out with a spermatozoon to 
oocyte proportion of 1000:1. One hour after fertilization, 
the eggs were filtered at a 20 μm mesh screen, to remove 
the remaining sperm, and incubated at 21 ± 1  °C for 24 
to 30 h until reaching the D-larvae stage. Each pool was 
incubated in a 250  L tank with FSW at a concentration 
of 100 eggs per mL, with slight aeration. The larvae were 
recovered at a 30  μm mesh screen and kept in FSW to 
determine their concentration. The total number of lar-
vae in each pool was counted in triplicates under micro-
scopic observation, using a Sedgewick Rafter counting 
chamber. Pooled D-larvae with no apparent malforma-
tions were concentrated (around 120,000 larvae per mL) 
in FSW and kept on ice (4 °C) for a maximum of 2 h. A 
total of three pools (n = 3) were obtained in this study.

Experimental design
To characterize the transcriptional changes related with 
the different steps of cryopreservation, the whole tran-
scriptome profile of fresh larvae diluted in FSW (fresh 
larvae), fresh larvae exposed to a CPAs (cryoprotectant 
exposed larvae) and post-thaw larvae (cryopreserved lar-
vae) was compared.

For this purpose, each D-larvae pool was exposed to the 
three following conditions, one control group and two 

treatments. As a control group, fresh larvae were concen-
trated in FSW as previously described. In the first treat-
ment, larvae exposed to CPAs, the concentrated D-larvae 
were diluted with a 1:1 proportion in a CPAs consisting 
in a final concentration of 10% (v/v) dimethyl sulfoxide 
(DMSO) (Sigma-Aldrich), 1% (w/v) Polyvinylpyrrol-
idone (PVP-40) 40,000  MW (Sigma-Aldrich) and 0.2  M 
Sucrose (Sigma-Aldrich) in milli-Q water. Larvae were 
incubated in the cryoprotectant solution for 3 min (equi-
librium time) at 4 ºC, since in a preliminary trial higher 
exposure time interfered with larval movement pattern. 
After incubation, the pools of D-larvae were diluted in a 
1:3 proportion in FSW to dissipate the CPAs. The second 
treatment intended to evaluate the effects of the freezing/
thawing process using a cryoprotectant solution based 
on DMSO. DMSO was chosen to see any further impli-
cations at molecular level in Crassostrea angulata lar-
val cryopreservation. Following the same procedure as 
in the first treatment, the pooled larvae were incubated 
with the same CPAs. During the equilibrium time, the 
larvae pools diluted in the CPAs were loaded to 0.5 mL 
French straws (30,000 per straw) and maintained at 4 °C 
until finishes the 3  min equilibrium time. Subsequently, 
the straws were frozen in a programable biofreezer 
(Asymptote Grant EF600, United Kingdom) according to 
[9] with the following freezing protocol: 2.5 °C/min from 
0 to -10  °C, hold for 5  min at -10  °C, 0.3  °C/min from 
− 10  °C to -20  °C and 2.5  °C/min down to -35  °C, and 
finally, plunged into liquid nitrogen (LN) and stored in a 
LN container. After two months of storage, straws were 
thawed in a water bath set at 37  °C for 10 s. Afterward, 
a recovery bath was prepared, by diluting the content of 
each straw in 2 L of FSW during a period of incubation 
of 1 h at room temperature. This procedure allowed the 
cryoprotectant dissipation. The post-thaw D-larvae were 
collected in a 30  μm mesh screen, washed and concen-
trated in 1.5 mL of FSW for further analyses.

Transcriptome analysis
RNA extraction, library preparation and sequencing
Whole transcriptome analysis was performed in tripli-
cate (n = 3) for pools of the fresh larvae, cryoprotectant 
exposed larvae and cryopreserved larvae. For this pur-
pose, pools of 30,000 D-larvae were centrifuged at 7,400 g 
for 5 min at 4 °C to remove the FSW. Larvae pellets were 
then resuspended in 1 mL of TRI Reagent® (Sigma-
Aldrich) and stored at -80 °C, until the RNA extraction.

RNA was isolated using TRI Reagent® (Sigma-Aldrich), 
according to the manufacturer’s recommendations, and 
total RNA was posteriorly purified using the NucleoSpin® 
RNA II kit (Macherey-Nagel, Germany). One treatment 
of dsDNase was performed to avoid genomic DNA con-
tamination. The concentration and purity of the total 
RNA samples were measured using a NanoDrop One 
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spectrophotometer (Thermo Fisher Scientific, USA). The 
RNA integrity was assessed on a bioanalyzer in RIN value 
(RNA integrity number ≥ 8.6), assessed by Experion RNA 
StdSens analysis kit (BIO-RAD). A total of 9 RNA sam-
ples were stored at -80 °C, for further analyses.

Whole transcriptome sequencing and respective bioin-
formatic analysis were performed by the Lifesequencing 
S.L.-ADM company (Valencia, Spain).

A total of 9 libraries were prepared starting from 1 µg 
of total RNA using a TruSeq RNA Library Preparation 
Kit v2 of Illumina (Illumina, USA). To confirm the quality 
of these libraries (library size: 276–348 bp; concentration: 
76–162 nM) a HS D5000 Kit of Agilent 4200 was used, 
in a TapeStation bioanalyzer (Agilent technologies, USA). 
The libraries were sequenced in the NovaSeq 6000 Illu-
mina instrument generating paired-end 150 bases reads.

Reads processing, mapping, and annotation
The raw reads were filtered using the BBTols v38.75 soft-
ware (Bushnell B.). The sequencing adapters, low quality 
sequences (< Q20) and short sequences (< 40 nucleotides) 
were removed. Additionally, the reads were checked 
for potential contamination of bacteria, eukaryote, or 
archaea rRNA with the SortMeRNA v2.1b program [26]. 
As C. angulata whole genome was not available [27], the 
clean reads were then aligned to the reference genome of 
Crassostrea gigas (RefSeq accession: GCF_000297895.1 
from the NCBI database). The proteins were then func-
tionally annotated with the gene ontology (GO) terms 
by Blast against the Bivalvia taxa (taxID 6544) proteins, 
using OmicsBox v1.2 program [28]. Due to the pres-
ence of many isoforms, the quantification of the expres-
sion was taken to the gene level, a step performed by the 
Salmon v1.1 software [29].

Differential expression analysis
Differences in expression were assessed using the 
DESeq2 v3.10 R package [30]. Counts were then fil-
tered to remove the unexpressed genes and those with 
an expression lower than 5 counts in at least 3 samples. 
Thresholds were set for significant differential expression 
as False Discovery Rate (FDR) < 0.05 and │log2FC│> 1.5 
(FC – Fold Change) for all the comparisons.

Gene set enrichment analysis (GSEA)
The functional enrichment analysis was carried out with 
all the genes and not only those with significant different 
expression. GO terms with 10–600 genes annotated and 
1,000 permutations were the conditions chosen for the 
GSEA. The threshold defined for the results was a FDR 
of 0.05.

RT-qPCR confirmation
To confirm our RNA-seq data and define putative cryo-
damage markers in C. angulata cryopreservation, eleven 
differentially expressed genes (DEGs) were selected 
for quantitative RT-PCR (RT-qPCR). The genes were 
selected for their relation to the oyster growth (adgre3, 
dynein beta), structure-mantle and shell formation- (mp, 
fbn2, myob3b), oxidative stress (epx, hsp70) and immune 
response (bp10, muc19, socs5, Lectin). The 18 S gene was 
used as reference gene. The primers were designed using 
Primer-Blast (NCBI) (Table  1). Eight hundred nano-
grams of total RNA were reverse-transcribed to cDNA 
using a Maxima™ First Strand cDNA Synthesis Kit for 
RT-qPCR with dsDNase (Thermo Scientific™), following 
the manufacturer instructions. The qPCR reactions were 
conducted in duplicate on a CFX96 realtime PCR Detec-
tion System (Bio-Rad Laboratories, Hercules, CA) using 
a SsoFast™ EvaGreen® Supermix. In a total volume of 15 
µL, the PCR reaction contained 7.5 µL of supermix, 0.75 
µL of each 10 µM forward and reverse primers, and 3.75 
µL of cDNA. The thermo cycling protocol used was as 
follow: 3 min at 95 ºC for an initial denaturation followed 
by 30 cycles of denaturation at 95 ºC for 30 s, annealing 
at 57 ºC for 30 s and extending at 72 ºC for 1 min. A final 
extension step was carried at 72 ºC for 5  min. To nor-
malize the data, the expression of the reference gene in 
a pool of all samples was used. The relative expression of 
transcripts was evaluated by the 2ΔΔCt method [31].

Results
RNA sequencing and mapping
A pair end sequencing of 9 libraries was performed using 
a NovaSeq 6000 Illumina instrument. After a filtering 
step, 375,187,599 total clean reads were obtained. The 
average quality of the generated reads ranged from 35.50 
to 36.18. The distribution of raw and clean reads among 
the different samples, as well as their mapping rate, are 
represented in the Table 2.

Differential expression analysis
By using the DESeq2 R package, a total of 22,787 genes 
were identified among all the samples. In Fig.  1 is 
showed two volcano plots representing the differentially 
expressed genes in the two different comparisons: cryo-
protectant exposed larvae against fresh larvae (Fig.  1A) 
and cryopreserved larvae against fresh larvae (Fig.  1B), 
along with a Venn diagram representing the distribu-
tion of DEGs between the two comparisons (Fig.  1C). 
For the first comparison, 3 DEGs were identified, 1 
downregulated and 2 upregulated. Addressing the sec-
ond comparison, a total of 611 DEGs were found, 378 of 
them were considered downregulated and the remaining 
233 upregulated. Due to the low number of genes dif-
ferentially expressed in the first condition (Fig.  1A) for 
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further analysis only the second comparison was taken in 
account.

Enrichment analysis
For a further understanding of the biological mean-
ing of the DEGs represented under cryopreservation of 
C. angulata larvae, a GO enrichment analysis was per-
formed for all the DEGs, using the Database for Anno-
tation, Visualization and Integrated Discovery (DAVID). 
The most significantly enriched GO terms in biological 
processes (BP), cellular components (CC) and molecular 
functions (MF) were “carbohydrate metabolic process” 

(GO:0005975), “integral component of membrane” 
(GO:0016021) and “chitin binding” (GO:0008061), 
respectively.

It is also important to mention the significant enrich-
ment of the “extracellular region” (GO:0005576) and the 
“oxidoreductase activity, acting on paired donors, with 
incorporation or reduction of molecular oxygen, another 
compound as one donor, and incorporation of one atom 
of oxygen” (GO:0016716) (Fig. 2).

Moreover, a Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis for all the DEGs 
was performed, to assess the most enriched pathways. 
The 10 most enriched pathways from a total of 126 are 
represented in Fig. 3. The most enriched pathways were 
the “neuroactive ligand receptor interaction”, “endocyto-
sis” and “spliceosome”. However, it is also important to 
notice the significant enrichment of protein regulation 
pathways such as “protein processing in endoplasmic 
reticulum” or “proteasome”, and other important devel-
opmental pathways as “ribosome” and “FoxO signaling 
pathway”.

RT-qPCR confirmation
Through RT-qPCR, the results from the RNA-seq anal-
ysis were confirmed using a set of 11 genes related to 
important mechanisms such as growth (adgre3, dynein 
beta), structure (mp, fbn2, myob3b), oxidative stress 
(epx, hsp70) and immune response (bp10, muc19, socs5, 

Table 1 List of forward (FW) and reverse (RV) primers used for the different transcripts analyzed through quantitative RT-PCR
Gene Primer
adhesion G protein-coupled receptor E3-like FW  G C C T G A G T A T G G C G T T G G A T

RV  T A A G C A C C C G G G A C G T T T T T
blastula protease 10 FW  T A T A T C C C T C C G C C C A G G A C

RV  C T G A G G T T T C G C A A C G G T C T
eosinophil peroxidase FW  C C C A G G A G A C T G T A C G G A G A

RV  T C G G G A G G C A G T C A A C T C T A
heat shock protein 70 B2 FW  G C G C A C T C A A A C G A C G A A A A

RV  C C G T G T C T G T G A A T G C A A C G
mucin-19 FW  G A G G T G C C G G A A T A G C T C C A

RV  A T G C G C T C A T T G C G T T G T C A
mantle protein FW  A C C C C G T C G A T G T T A C C A A G

RV  C C T T T G G A T T C G T A A C C G C C
suppressor of cytokine signaling 5-like FW  A G T C A G C T T C C G G C G A T A T G

RV  T G T A C G A T G C A A G G G A G T G G
fibrillin-2 FW  C G G A G G A T T T C G A T G T G A G T

RV  T G A A T A C C C T T C C C A A C A G C
dynein beta chain X5 FW  A A A G T G A C C A C T C T C A G C A G C

RV  G C A T T A T C T G T C C A G T G T C C T C A
myosin-IIIb FW  T C C G A C C A G A A A A A T T C T A G C C A

RV  G G A A T A G G C T T G G C C A C T G A
lectin FW  G C T C T C C T G G T G G G A C T T T T

RV  T C G T T G G C T G C A T C T G A A C A
18 S FW  G T C T G G T T A A T T C C G A T A A C G A A C G G A A C T C T A

RV  T G C T C A A T C T C G T G T G G C T A A A C G C A A C T T G

Table 2 RNA sequencing results for the reads counting and 
mapping to the reference genome (Crassostrea gigas) in each 
replicate of the three different treatments: Fresh (fresh larvae 
diluted in FSW), CPA exposure (fresh larvae exposed to CPAs) and 
Cryopreserved (post-thaw larvae)
Sample name Raw reads Clean reads Mapping rate
Fresh 1 39,715,992 35,869,429 78.26%
Fresh 2 37,386,071 34,327,775 71.32%
Fresh 3 62,447,666 57,490,869 78.36%
CPA exposure 1 54,670,784 48,589,140 78.67%
CPA exposure 2 48,127,214 44,519,020 75.57%
CPA exposure 3 62,107,727 57,668,375 79.75%
Cryopreserved 1 33,792,962 30,215,425 74.03%
Cryopreserved 2 38,604,604 34,370,367 66.38%
Cryopreserved 3 36,055,724 32,137,199 76.05%
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lectin). The comparison between the results of gene 
expression in both techniques presented the same ten-
dency and for that reason the RNA-seq output was con-
sidered to be confirmed. More specifically there was a 
general upregulation of adgre3, socs5, hsp70 and myob3b 
regarding control group. Contrarily, dynein beta, bp10, 
muc19, lectin, epx, mp and fbn2 were downregulated in 
the two different methods. These results are shown in 
Fig. 4. Table 3 summarizes the expression results obtain 
using both methods for all the 11 selected genes, and 
their respective previously reported function.

Discussion
After a few studies in C. angulata to establish and 
improve freezing/thawing protocols, cryopreservation 
has been identified as a technique with the potential to 
preserve its genetic lines and enhance its reproduction 
management [18, 25, 32–34]. Although C. angulata, like 
other bivalves, had promising results in preserving sperm 
and larvae [18, 25, 32–34], cryopreserving larvae has 
proven to be challenging due to the multicellular organ-
ism’s size and complexity [25]. In bivalves, the evalu-
ation of the post-thaw quality of larvae has been based 
on swimming activity, morphology, and survival [6, 8, 
25]. To elucidate about the molecular changes that occur 
during the cryopreservation process and identifying the 

Fig. 2 Gene ontology (GO) enrichment results for all differentially expressed genes (DEGs) in the comparison between cryopreserved larvae against 
fresh larvae

 

Fig. 1 Volcano plots representing the results of differential expression analysis between the two comparisons. A Cryoprotectant exposed larvae against 
fresh larvae. B Cryopreserved larvae against fresh larvae. C Venn diagram representing the distribution of DEGs between the two comparisons
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involved molecular mechanisms of cryodamage, the cur-
rent study has analysed the alterations in gene expression 
of cryoprotectant exposed and cryopreserved C. angu-
lata larvae using RNA sequencing.

Transcriptomic, functional and enrichment analysis
In the present study it was possible to identify a set of dif-
ferentially expressed genes in both treatment compari-
sons. Assessing the comparison between cryoprotectant 
exposed larvae and fresh larvae, the number of DEGs was 

Fig. 4 Quantitative qPCR validation of RNA-seq results in terms of relative gene expression

 

Fig. 3 Top 10 enriched pathways according to the results of the KEGG enrichment analysis for all differentially expressed genes in the comparison be-
tween cryopreserved larvae against fresh larvae
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considered to be low (2 genes upregulated and 1 down-
regulated). Therefore, any possible toxic effect dealt by 
cryoprotectant exposure was not considered for further 
analysis. However, the number of DEGs detected when 
comparing cryopreserved larvae against fresh larvae, 
was considerably higher (233 genes upregulated and 378 
downregulated). These results reveals that molecular 
damage is associated with freezing-thawing process dur-
ing cryopreservation of Crassostrea angulata D-larvae 
rather than to cryoprotectant exposure.

Following a functional analysis, the relation of all DEGs 
to specific CC, MF and BP was evaluated through an 
enrichment analysis. Among these different gene ontol-
ogies (GO), the most significantly enriched were inte-
gral components of membrane (CC) and Chitin binding 
(MF). Chitin is the second most abundant natural poly-
saccharide and it is abundantly present in the shell matrix 
of oyster species such as Pinctata fucata martensii and C. 
gigas [35, 36]. Chitinase and Chitin synthases are vastly 
represented in the mantle, a very important tissue in 
shell formation and during early oyster larval develop-
ment stages [37]. The results of the present study showed 
a down regulation of chitin synthase, chitin binding pro-
teins and different isoforms of acidic mammalian chitin-
ase in cryopreserved larvae, suggesting an impairment 
in shell formation and corroborating the data presented 
by Anjos et al. [25] in previous studies. Also, chitinases 
are known for their importance in immune response 
and by helping to maintain normal life cycle functions 
since, not only synthesis, but also degradation of chitin, 
are important in the development of chitin containing 
organisms [38]. Different DNA binding related molecular 
functions (RNA polymerase II transcription factor activ-
ity, sequence specific DNA binding; transcription factor 
activity, sequence-specific DNA binding; DNA binding) 
were also significantly enriched. An example of DNA 
binding functions are the changes occurring in DNA 
methylation during early development in C. gigas as 
reported by Riviere et al. [39]. Moreover, Zhao et al. [40] 
hypothesized that due to its connection to cell prolifera-
tion, DNA binding was a key element in stress response. 
This means that as a stress factor, the cryopreservation 
process may induce an impairment in the early develop-
ment of C. angulata larvae.

Regarding the KEGG pathway enrichment analysis, the 
most significantly enriched pathway was the “neuroac-
tive ligand-receptor interaction”. This pathway is made 
up of receptors situated on plasma membranes that are 
involved in signal transduction from the external envi-
ronment into cells [41]. An analysis of the transcrip-
tome of C. gigas and P.f. martensii at different stages of 
development revealed that neuroendocrine pathways 
such as this one, were implicated in important devel-
opmental functions like shell formation, settling, and Ta
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metamorphosis [42]. Furthermore, a previous study by 
Lu et al. [43] reported a significant enrichment of this 
pathway upon induced stress in P.f. martensii. Both pre-
vious studies and the results of our study are a plausible 
evidence of the malformations observed by Anjos et al. 
[25].

The second two most significant enriched pathways 
were the endocytosis and the spliceosome. The first one 
is an imperative part of the membrane receptors activity 
and quantity control, regulating the signal transduction 
mediated by those receptors [44]. This pathway is also 
known to be related to cell proliferation and organism 
growth since it is connected to the degradation of epider-
mal growth factor receptors (EGFR) [45]. These receptors 
were referred to be directly corelated to the develop-
ment and growth of the pearl oyster [46]. Also, Li et al. 
[47], proposed that endocytosis-induced processes such 
as signal transduction and plasma membrane proteins 
degradation, may regulate oyster growth by integrating 
endogenous signaling pathways and environmental input. 
These previous studies corroborate the results of the 
present study and therefore, it is hypothesized that cryo-
preservation may affect growth in C. angulata larvae.

Concerning “spliceosome”, as a key tool of genetic 
information processing, it is extremely important in 
the survival, adaptation and development of the organ-
ism [48]. Previous studies have already demonstrated an 
impairment of this process due to stress factors such as 
ocean acidification [49]. The same may be assumed by 
observing the functional analysis results of the present 
research, more specifically, the significant enrichment of 
processes like “DNA binding”.

In our study, there was also a significant enrichment 
of the “ribosome” pathway. This molecular organelle is 
responsible for the translational capacity of a cell and so, 
directly related to protein synthesis and functions such as 
cell growth, proliferation and apoptosis [50]. Moreover, 
other protein processing related pathways were signifi-
cantly enriched, the “proteasome” and “protein process-
ing in endoplasmic reticulum”, suggesting an increased 
amount of degraded proteins. Cryopreservation clearly 
induces a stress response in this organism and apparently 
leads to a development malfunction, mainly at the shell 
formation and membrane level.

Putative biomarkers of cryopreserved larval quality
To validate RNAseq data, a selection of 11 genes was 
done according to their relevance in certain functions. 
These genes were checked for their putative use as bio-
markers of post-thaw larval quality. One of the functions 
affected by cryopreservation was the oxidative stress 
system. Heat shock proteins 70, hsp70, a subgroup of 
chaperones, are important to maintain the homeostasis 
of the cell and has the capacity of counteract apoptotic 

mechanisms, interviewing in cell processes such as cell 
movement and cytoskeleton stabilization [51, 52]. Our 
findings indicate that the expression levels of hsp70 were 
higher in post-thaw D-larvae than in fresh larvae (larvae 
dilute in FSW). This result is in line with data reported by 
Park et al. [53], where the expression levels of four apop-
totic-related genes, including hsp70, were observed to be 
significantly elevated in cryopreserved bovine embryos. 
This expression may arise, as suggested by the authors, as 
a stress response and potentially compromised develop-
mental ability. Overall, these proteins have the function 
of preventing thermal or oxidative stress, which is com-
monly associated with cryopreservation procedures.

Eosinophil peroxidase (epx) is an enzyme released from 
eosinophils granulocytes, that is essential to maintain 
the main function and homeostasis of eosinophils [54]. 
Eosinophils are made part of a group of cells known as 
hemocytes that play a crucial role in bivalve immune 
response to defend against different stressors, such as 
pathogens, temperature, acidification and pollution [55]. 
In the present work, the epx expression revealed that this 
gene was suppressed in D-larvae after freezing/thaw-
ing steps. Other studies, conducted in Anguilla japonica 
and C. gigas reported that when organisms were exposed 
to osmotic stress conditions, the levels of epx were also 
suppressed [56, 57], having been suggested by Zhao 
et al. [57] that this could serve as a protective tactic for 
mitigating cellular stress and lowering levels of reactive 
oxygen species (ROS). The observed suppression of epx 
expression in our study may be related to our experimen-
tal protocol that involved environmental fluctuations 
due to the freezing/thawing process, which must have 
induced thermal stress, leading to increased expression 
of hsp70 rather than epx.

The dynein beta chain flagellar outer arm, dyh4, 
belongs to the dynein protein family. Dynein proteins 
are divided into two main groups, which are cytoplasmic 
and axonemal dynein [58]. Cytoplasmic dynein is respon-
sible for intracellular transport and cell mitosis [58, 59]. 
Axonemal dynein is a microtubule-based molecular 
motor that is in charge of the generation and regulation 
of the bending of cilia and flagella in eukaryotes [58, 60]. 
Dynein arms convert the chemical energy released upon 
ATP binding into mechanical force, producing the driv-
ing power for the organelles’ movement [60]. Cilia and 
flagella play important roles in bivalve sperm and lar-
vae motility. The expression of dynein beta in thawed C. 
angulata D-larvae was lower than in the fresh larvae, sug-
gesting some level of cilia impairment which may affect 
the larvae swimming performance and, in further larvae 
development stages, their feeding behavior and sensorial 
role. Unfortunately in the present study we could not fol-
low larval development but this data corroborated previ-
ous findings reported by our group, where a significant 
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lower velocity and motility was observed in thawed C. 
angulata D-larvae when compared with the control 
group [25]. Similar findings were reported by Suquet et 
al. [61] and Suneja et al. [62], where lower performances 
in swimming activity of C. gigas post-thaw D-larvae were 
reported. Suneja et al. [62] even explored the organogen-
esis of these larvae and identified development problems 
in the velum structure as a result of cryodamage, which 
suggests that modifications in the structure of the velum 
can lead to cilia impairment. This can affect the swim-
ming and feeding behavior and compromise the perfor-
mance of the larvae or even lead to their death at later 
stages. Apart from impairing structural modification 
associated with filtration and movement mechanisms, 
the downregulation of dynein motor proteins may also 
contribute to shell malformations, previously detected 
Anjos et al. [25] since as stated by De Wit et al. [63] these 
proteins have an important role as transporters of cellu-
lar components during the initial stages of shell forma-
tion in this species.

Myosin is the key muscle protein of thick filaments 
[64] and its function is to transform chemical energy in 
mechanical force that travels along actin filaments, result-
ing in the contraction of the muscle [65]. In bivalves, dur-
ing larval development, the actin filaments or expression 
profiles of myosin heavy chain are mainly found in the 
velum retractor and adductor muscle, while in the adult 
phase in the adductor and mantle muscles [64, 66, 67]. 
Myosin heavy chain seems to have an important role in 
C. gigas embryo-larval developmental phases, especially 
in the stages of trochophore and D-larvae, due to the for-
mation of the muscle structures during embryogenesis 
some associated with larval locomotion [64]. Thus, our 
results revealed that cryopreservation may have affected 
certain mechanisms in C. angulata D-larvae related to 
myosin protein production. This is evidenced by the 
higher gene expression of myob3b in the cryopreserved 
D-larvae compared to the control group, which may sug-
gest a compensatory response to the cryopreservation 
process.

Fibrillin-2 is a protein encoded by the fbn2 gene that 
belongs to the fibrillin family [68]. In C. gigas, fibrillin 
is highly expressed in the mantle [69], a soft tissue layer 
that lines the inner shell and covers the visceral mass. 
This structure provides protection, contributes to shell 
formation, facilitates respiration and plays a crucial role 
in the oyster’s filter feeding mechanism [70, 71]. Our 
results showed that expression of the fbn2 transcript was 
suppressed after cryopreservation. This suggests that 
there may be an alteration at the level of the extracellu-
lar matrix of C. angulata larvae. This alteration is likely 
to have implications in the development and mainte-
nance of tissues, potentially jeopardizing the subsequent 
larval developmental stages. David et al. [72] observed 

a down-regulation of the fibrillin gene in the mantle 
and gills of C. gigas after 24 days of hypoxia exposure. 
These results together with the ones obtained for mp, a 
specific mantle protein present in the epithelial cells, 
where expression was also suppressed, demonstrates that 
these alterations could compromise proper functioning, 
which can lead to alterations in the mantle tissues, shell 
formation and feeding capacity, especially during the 
early stages of development when structures are being 
formed. Some morphological alterations as mantle pro-
tuberance and reduction of body size related to the shell 
were detected in C. angulata post-thaw D-larvae in a 
prior work conducted by our group [25]. These morpho-
logical alterations can be related to mp gene suppression 
observed after freezing/thawing steps.

Suppressors of cytokine signaling (socs) are a class of 
inhibitory proteins that negatively regulate cytokine sig-
nal transduction [73, 74]. These inhibitory proteins play 
an essential role in several intercellular signal pathways 
that are engaged in the immune system [73, 75], growth 
and development of the organisms [76] being identified 
in several organs of C. gigas [75]. In our results, we iden-
tified the socs5 gene as being upregulated in cryopre-
served larvae when compared with the fresh larvae. This 
result suggested that the cryopreservation protocol may 
have induced physical stress in the D-larvae of C. angu-
lata, due to exposure to a combination of hyperosmotic 
solution (cryoprotectant solution) with temperature 
variations (freezing/thawing steps). These stress factors 
may have activated the production of cytokines, and to 
control an excessive response that can be harmful to the 
host, socs5 was activated. Similar results were obtained 
by De Zoysa et al. [77] with the socs2 gene being upregu-
lated in Haliotis discus discus during thermal, low-salin-
ity and hypoxic stress.

Blastula protease 10, bp10, involved in immune func-
tions and embryonic development [78, 79] is an enzyme 
that belongs to the astacin metalloprotease family [80]. 
This gene has been used to evaluate the toxic effects of 
metals and other contaminants in Paracentrotus lividus 
embryos being upregulated or downregulated depending 
on the compound tested [79]. Our results revealed that 
cryopreservation suppressed the bp10 expression in the 
D-larvae of C. angulata when compared to the control. 
However, little is known about the bp10 gene in oysters 
and further studies will be needed to characterize and 
understand how variation in the expression of this metal 
binding protein is affected in cryopreserved larvae.

Lectins play a fundamental role in the self and nonself 
recognitions, innate immunity, reproduction and food 
capture and ingestion in bivalves [81–84]. Particularly in 
shell formation, these group of proteins are involved in 
the extracellular matrix agglutination [63]. In our study, 
the expression of lectins in C. angulata cryopreserved 
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D-larvae was lower than in the fresh larvae. Since lec-
tins can bind carbohydrates present in the surface of 
microalgae, they participate in the recognitions of food 
particles. Therefore, in our study changes in lectin gene 
expression may affect larvae’s digestive functions, impair-
ing their ability to efficiently capture and process food. It 
is crucial to understand the implications of altered lectin 
gene expression in C. angulata thawed D-larvae as it can 
have consequences on their feeding selection and further 
digestive function and ultimately in larval developmental 
outcomes.

Conclusions
In this study, the analysis of differential gene expres-
sion revealed significant changes in genes associated 
with growth, structural development, oxidative stress 
response, and the immune system in cryopreserved C. 
angulata larvae, compared to fresh larvae. No effects 
were seen in larvae exposed to cryoprotectants. These 
findings underscore the importance of considering both 
molecular and physiological aspects in the development 
of reliable cryopreservation protocols and in the detec-
tion of relevant biomarkers of cryodamage in C. angu-
lata D-larvae. Furthermore, they highlight the critical 
step in the cryopreservation process, revealing that gene 
expression is not affected by cryoprotectant exposure as 
it is by the freezing process itself. Importantly, this study 
emphasizes the significance of our findings for the shell-
fish sector, providing valuable insights for future research 
in cryobiology and support aquaculture and restocking 
programs.
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