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Abstract
Modern broiler breeds allow for high feed efficiency and rapid growth, which come at a cost of increased 
susceptibility to pathogens and disease. Broiler growth rate, feed efficiency, and health are affected by the 
composition of the gut microbiota, which in turn is influenced by diet. In this study, we therefore assessed how 
diet composition can affect the broiler jejunal gut microbiota. A total of 96 broiler chickens were divided into four 
diet groups: control, coated butyrate supplementation, medium-chain fatty acid supplementation, or a high-fibre 
low-protein content. Diet groups were sub-divided into age groups (4, 12 and 33 days of age) resulting in groups 
of 8 broilers per diet per age. The jejunum content was used for metagenomic shotgun sequencing to determine 
the microbiota taxonomic composition at species level. The composed diets resulted in a total of 104 differentially 
abundant bacterial species. Most notably were the butyrate-induced changes in the jejunal microbiota of broilers 
4 days post-hatch, resulting in the reduced relative abundance of mainly Enterococcus faecium (-1.8 l2fc, Padj = 
9.9E-05) and the opportunistic pathogen Enterococcus hirae (-2.9 l2fc, Padj = 2.7E-08), when compared to the control 
diet. This effect takes place during early broiler development, which is critical for broiler health, thus exemplifying 
the importance of how diet can influence the microbiota composition in relation to broiler health. Future studies 
should therefore elucidate how diet can be used to promote a beneficial microbiota in the early stages of broiler 
development.
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Introduction
The continuous expansion of the poultry industry comes 
with the demand to improve sustainability of produc-
tion. Modern broiler breeds offer the advantage of rapid 
growth and increased feed efficiency, but come with the 
disadvantage of increased susceptibility to physiological 
and metabolic disorders, and have indications of inferior 
immunity [1–6]. Although diet has also been optimized 
for sustainability in terms of growth rate and feed effi-
ciency, the effect of diet on the composition of the intes-
tinal microbiota has not been fully explored. Namely, 
the composition of the broiler jejunal microbiota and 
the potential diet-induced effects thereof are currently 
unknown, which is of specific interest as it is one of the 
principal sites of nutrient absorption [21].

The gastrointestinal tract and its associated microbiota 
jointly contribute to feed efficiency, the development of 
the immune system and ultimately to the state of health 
and disease [7–10]. In turn, diet composition is known 
to affect both intestinal physiology and microbiota com-
position, and is thus proposed as a tool to facilitate sus-
tainability in terms of feed efficiency, animal health and 
reduced mortality. The relevance of intestinal microbiota 
alteration was first highlighted when growth promoters 
in the form of antibiotics were established to affect the 
microbiota and increase performance and feed efficiency 
of chickens [11–14]. However, this sub-therapeutic use 
of antibiotics has the added effect to enrich for antibiotic 
resistant bacteria, leading to its prohibition in regions 
such as Europe, the United States, and parts of Asia [15–
21]. As a result, previous studies have investigated the 
impact of diet composition and additives on the intestinal 
microbiota in search for alternatives to mimic antibiotic-
driven beneficial effects, such as enhanced performance 
and feed efficiency [22–24]. In these studies, 16S rRNA 
gene sequencing remains the most common approach to 
determine diet-induced effects in the bacterial commu-
nity composition, but its resolution is surpassed by that 
of metagenomic shotgun sequencing (MSS). By sequenc-
ing the full microbiome, MSS is able to determine bacte-
rial species and can be used to study gene composition 
and their corresponding gene pathways [25].

The small intestine is specialized for nutrient absorp-
tion, where medium-chain fatty acids are mainly 
absorbed in the proximal part of the small intestine, 
amino acids in the proximal part of the jejunum, and 
long-chain fatty acids in the distal parts of the jejunum 
[26–29]. The small intestine is densely colonized with 
bacteria and in the case of broiler chickens, the most 
abundant bacteria include lactic acid-producing bacte-
ria Lactobacillus, Enterococcus and Streptococcus, from 
which Lactobacillus is overall the most abundant genera 
[30–34]. The high abundance of Lactobacillus suggests 
that these bacteria play a prominent role in the intestine 

and is one of the reasons why Lactobacillus is commonly 
applied as chicken probiotic [35, 36]. Diet composition is 
explored as an approach to induce shifts in the intestinal 
microbiota, for instance by altering the ratio of fatty acids 
and fibres in feed. When animal fat and soybean oil were 
supplemented with medium-chain fatty acids (MCFAs; 
0.3% C10 and 2.7% C12) for 34 days, the broiler ileum 
microbiota showed a reduction of Lactobacillus, Entero-
coccaceae, Micrococcaceae and an increase in Entero-
bacteriaceae [22]. MCFAs have been observed to have 
antibacterial properties against opportunistic pathogens 
like Clostridium perfringens and Escherichia coli when 
applied in in vitro experiments, but it is unknown if the 
antibacterial properties persist in a complex system as the 
intestinal microbiota [37–39]. Another example is butyr-
ate, which is a short-chain fatty acid (SCFA) and is the 
preferred energy-providing substrate of colonocytes [40]. 
When broiler feed was supplemented with butyrate for 
42 days, both feed efficiency and villi size were increased 
[23]. Butyrate can be rapidly absorbed by the microbiota 
and intestinal cells located in the proximal sites of the 
intestine. In order to slowly release butyrate over the full 
length of the intestine, Mallo et al., 2021, supplemented 
coated butyrate for 42 days and observed similar results 
to uncoated butyrate [41]. Supplementation of fibre in 
feed is known to induce changes in the intestinal micro-
biota of broilers. Mainly the bacteria located in the cae-
cal microbiota can ferment fibre, generating components 
including SCFAs [42]. While low level fibre supplementa-
tion can increase the amount of butyric acid in the cecum 
of 21-day-old broilers and increased the abundance of 
Helicobacter pullorum and Megamonas hypermegale, 
high levels of fibre supplementation increased the abun-
dance of taxa that may include pathogens, namely Sele-
nomonadales, Enterobacteriales, and Campylobacterales 
[24]. Qiuyu J. et al., 2024 also observed that fibre supple-
mentation in 21 day old broilers resulted in the increase 
in Escherichia-Shigella (i.e. Enterobacteriales), but addi-
tionally observed an increase of Bifidobacterium and 
Lactobacillus [43]. The genera of Bifidobacterium and 
Lactobacillus may include species that are considered 
beneficial and are applied in probiotics [44].

The majority of previously discussed studies analyse 
diet-induced effects on the genera taxonomic-level of 
bacteria, preventing the observation of species-specific 
effects. This lack of resolution can result in the neglection 
of important bacteria, including pathogens. Moreover, 
the effect of diet on the jejunal microbiota are unknown, 
while it is one of the principal sites of nutrient absorp-
tion. In this study, we therefore assessed how different 
diets impact the composition of the jejunal microbiota on 
the species level by performing MSS on broilers at 4, 12 
and 33 days post-hatch.
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Results
Jejunal microbiota composition across diet groups
A total of 96 Ross 308 broilers were housed in floor pens. 
They were divided into four diet groups, to study the 
effect of diet: (1) control diet (CON); (2) control diet sup-
plemented with butyrate (BUT), (3) control diet supple-
mented with medium-chain fatty acids (MCFA) and (4) 
a diet with high-fibre low-protein composition (HFLP). 
The jejunal microbiota was studied by taking jejunal 
content samples after either 4, 12 or 33 days post-hatch, 
thus studying groups of 8 broilers per diet per timepoint. 
Samples were used for metagenomic shotgun sequenc-
ing, resulting in 137.6  M [SEM 67.4] reads per sample 
and 32.7  M [SEM 2.5] assigned read pairs per sample 
after taxonomic classification. Sample s2229 contained 
the lowest number of assigned read pairs (1.7  M) and 
was therefore excluded from downstream analysis. This 

sample was part of the BUT group 12 days post-hatch. 
The top 10 most abundant species was consistent across 
all diet groups, comprising the following 10 species: Lac-
tobacillus johnsonnii, Limosilactobacillus reuteri, Ligilac-
tobacillus salivarius, Enterococcus hirae, Lactobacillus 
crispatus, Pediococcus acidilactici, Enterococcus faecium, 
Corynebacterium stationis, Limosilactobacillus vagina-
lis and Enterococcus faecalis (Fig. 1). These are all lactic 
acid bacteria, except for C. stationis [45, 46]. The jejunal 
microbiota displays a significant age-dependent effect, 
independent of diet, as revealed by Principal Coordinate 
Analysis (PCoA) of Bray-Curtis dissimilarity matrices 
(Pval = 0.001, figure s1). Principle Response Curve (PRC) 
analysis was used to highlight five species that show the 
largest change in relative abundance over time, account-
ing for the influence of different diet groups, compared 
to the control group (figure s2). This revealed the overall 

Fig. 1 Jejunal microbiota composition per diet group at 4, 12 and 33 days post-hatch. Relative abundance of the 10 most abundant bacterial species 
per diet group. (a) Control diet (CON), (b) control diet plus butyrate (BUT), (c) control diet plus medium-chain fatty acids (MCFA) and (d) a high-fibre low-
protein diet (HFLP). Broilers are grouped by columns, representing the number of days post-hatch. Abundance was plotted on the relative abundance 
scale from 1 to 100%. Each colour represents a different species (see legend)
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high abundances of L. johnsonnii and L. reuteri at 12 days 
post-hatch (58.99% [SEM 0.03], 28.89% [SEM 0.02]) com-
pared to 33 days post-hatch (18.16% [SEM 0.04], 6.99% 
[SEM 0.03]). In contrast, L. salivarius and L. crispatus 
showed low abundances at 12 days post-hatch (0% [SEM 
0.00]; 0.31% [SEM 0.00]) but high abundances at 33 days 
post-hatch (20.05% [SEM 0.28]; 6.86% [SEM 0.04]). C. 
stationis was present in low abundance at 12 days post-
hatch (0.83% [SEM 0.01]) and in slightly lower abundance 
at 33 days post-hatch (0.67% [SEM 0.01]).

The jejunal microbiota diversity expressed as Shan-
non index and the microbiota evenness expressed as 
Pielou index, were not significantly different between 
diet groups (Fig. 2a, figure s3). Overall, the total species 
diversity is highly similar among diet groups. PCoA of 
Bray-Curtis dissimilarity matrices revealed that diet was 
not a main driver of the observed variance in microbiota 

composition between samples at either 4, 12 or 33 days 
post-hatch (Fig. 2b).

Differential abundance analysis revealed a total of 104 
bacterial species that were significantly different in terms 
of abundance when comparing diet groups to the control 
group (Fig. 3, table s1-s9). At 4 days post-hatch, the com-
parison of the jejunal microbiota of the BUT diet group 
to the control group resulted in 43 differentially abundant 
bacteria. Bacteria with a relative abundance above 0.01% 
and that changed in terms of relative abundance com-
pared to the control group (p-value < 0.05), expressed as 
log2 fold changes (l2fc), included: a reduction of E. hirae 
(-2.9 l2fc, 4.2% abundance), Enterococcus faecium (-1.8 
l2fc, 1.2% abundance), Enterococcus durans (-2.6 l2fc, 
0.04% abundance), Erysipelatoclostridium ramosum (-2.4 
l2fc, 0.03% abundance), Enterococcus avium (-1.8 l2fc, 
0.02% abundance), Lacrimispora saccharolytica (-1.5 l2fc, 
0.01% abundance), Massilistercora timonensis (-1.5 l2fc, 

Fig. 2 Diversity indices of jejunal microbiota per diet group at 4, 12 and 33 days post-hatch. (a) Alpha diversity per diet group expressed by Shannon 
diversity index on OTU level. Diet groups did not differ in terms of alpha diversity when compared with Wilcoxon rank-sum tests. (b) Beta diversity of 
bacterial species, using principal coordinate analysis (PCoA) of Bray-Curtis dissimilarity on OTU level. Individual broilers and corresponding ellipses are 
coloured according to diet group (see legend). Plot panels represent broiler groups of 4, 12 and 33 days post-hatch. Permutational multivariate analysis of 
variance (PERMANOVA) and testing for homogeneity of multivariate dispersions revealed no significant differences between groups
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0.01% abundance), Lachnoclostridium phocaeense (-1.4 
l2fc, 8.3e-3% abundance) and of Weissella paramesen-
teroides (-5.1 l2fc, 2.2e-4% abundance). Comparing the 
MCFA diet group to the control group resulted in six 
differentially abundant bacteria that were present in low 
abundance; including a reduction of Pediococcus pento-
saceus (-1.6 l2fc, 0.04% abundance) and of W. parames-
enteroides (-4.8 l2fc, 2.8e-4% abundance). Comparing the 
HFLP diet group to the control group, resulted in seven 
differentially abundant bacteria that were present in low 
abundance, including a reduction of P. pentosaceus (-1.3 
l2fc, 0.043% abundance) and of W. paramesenteroides 
(-5.1 l2fc, 7.3e-5% abundance).

At 12 days post-hatch, the comparison of the BUT 
diet group to the control group revealed 17 differentially 
abundant bacteria that were present in low abundance, 
including a reduction of L. brevis (-2.1 l2fc, 1.1e-3% 
abundance). The MCFA diet group and control group 
comparison revealed three differentially abundant bacte-
ria that had a low relative abundance in both groups (all 
below 1e-2% abundance, table s5). Comparing the HFLP 
diet group to the control group revealed 31 differentially 

abundant bacteria, including the increase of Staphylo-
coccus pseudoxylosus (1.7 l2fc, 0.71% abundance), Cory-
nebacterium ammoniagenes (2.1 l2fc, 0.03% abundance), 
Arthrobacter sp. YC-RL1 (4.2 l2fc, 0.018% abundance 
and the decrease of W. paramesenteroides (-3.6 l2fc, 
4.2e-4% abundance), Limosilactobacillus mucosae (-2.2 
l2fc, 9.7e-5% abundance) and L. brevis (-2.3 l2fc, 1.4e-3% 
abundance).

At 33 days post-hatch, the BUT diet group and con-
trol group comparison revealed 18 differentially abun-
dant bacteria, including a reduction of L. vaginalis (-2.5 
l2fc, 0.42% abundance), Lactobacillus amylovorus (-2.2 
l2fc, 0.07% abundance, Lactobacillus helveticus (-2.3 l2fc, 
0.05% abundance), P. acidilactici (-1.2 l2fc, 0.01% abun-
dance) and the increase of Corynebacterium casei (1.1 
l2fc, 0.26% abundance) and Jeotgalicoccus (Micrococcus) 
candicans (1.5 l2fc, 0.03% abundance). The MCFA diet 
group and control group comparison revealed 33 dif-
ferentially abundant bacteria, including the increased 
abundance of Corynebacterium stationis (2.3 l2fc, 1.7% 
abundance), C. casei (1.8 l2fc, 0.16% abundance), Cory-
nebacterium glutamicum (1.3 l2fc, 0.12% abundance), 

Fig. 3 Differentially abundant confirmed bacterial species per diet group at 4, 12, 33 days post-hatch. Rows indicate the relative abundance of op-
portunistic pathogens E. hirae, E. faecium, E. durans and potential beneficial bacteria L. vaginalis. Columns represent broiler groups of 4, 12 and 33 days 
post-hatch. Individual broilers are coloured according to diet group (see legend). Adjusted p-values are calculated as part of ANCOMBC as function of the 
control diet and indicated by *< 0.05, **< 0.01 and ***< 0.001
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Aerococcus urinaeequi (1.6 l2fc, 0.04% abundance), J. 
(M.) candicans (2.3 l2fc, 0.02% abundance), C. ammonia-
genes (2.1 l2fc, 0.02% abundance) and Corynebacterium 
deserti (1.8 l2fc, 0.01% abundance). Comparing the HFLP 
diet group to the control group revealed 23 differentially 
abundant bacteria were present in low abundance in both 
groups (all below 1e-2% abundance, table s9).

Confirmation of opportunistic pathogenic and potential 
beneficial bacterial species
The observed differentially abundant bacteria included 
the opportunistic pathogens E. hirae, E. faecium, E. 
durans and S. pseudoxylosus. From this selection, E. 
hirae, E. faecium and E. durans are present in high rela-
tive abundance in broilers in the control group at an 
early stage of broiler development (20.53% [SEM 0.14], 
1.86% [SEM 0.19], 0.11% [SEM 0.00]) at 4 days post-hatch 
compared to broilers of 12 days post-hatch (1.75% [SEM 
0.05], 0.66% [SEM 0.03], 0.01% [SEM 0.00], Fig. 3). E. fae-
cium, E. durans and E. hirae were all shown to decrease 
in abundance at 4 days post-hatch as a result of butyrate 
supplementation compared to the control diet. In order 
to confirm the presence of these closely related species 
and exclude the possibility of incorrect annotation by the 
aligner tool, sequencing data of the control diet group 4 
days post-hatch was directly mapped to the genomes of 
all detected enterococcal species (105.1  M [SEM 33.0] 
reads per sample). This resulted in a high number of reads 
per sample mapping to E. hirae (10.0 M [SEM 6.0] reads, 
90.9% [SEM 5.3] coverage, 415.7 [SEM 286.1] depth), E. 
faecium (0.8 M [SEM 0.3] reads, 88.0% [SEM 2.1] cover-
age, 31.4 [SEM 15.8] depth), E. faecalis (0.3 M [SEM 0.3] 
reads, 88.6% [SEM 6.6] coverage, 12.4 [SEM 14.6] depth) 
and in lesser extend to other enterococcal species (all 
below 70% coverage), thus confirming that E. hirae and 
E. faecium are present in the jejunal microbiota of these 
broilers at 4 days post-hatch (table s10). This analysis was 
repeated for the bacteria L. mucosae, L. vaginalis, L. bre-
vis, L. amylovarus, L. helveticus, P. pentosaceus and W. 
paramesenteroides (supplemental data, table s10). From 
these bacteria, only the presence of L. vaginalis could be 
confirmed at 33 days post-hatch (0.4 M [SEM 2.2] reads, 
86.8% [SEM 10.9] coverage and 26.2 [SEM 140.5] depth). 
L. vaginalis was therefore confirmed to be present at 
0.71% [SEM 0.04] relative abundance in the control group 
at 33 days post-hatch (Fig. 3).

Discussion
In this study, we determined the jejunal bacterial micro-
biota of broilers 4, 12 and 33 days post-hatch using 
metagenomic shotgun sequencing (MSS) to evaluate to 
what extend diet can modulate the jejunal microbiota 
composition. The results reveal that diet supplementa-
tion with either butyrate (BUT), medium-chain fatty 

acids (MCFA) or diet with high-fibre low-protein content 
(HFLP), can induce significant differences in the relative 
abundance of a total of 104 bacterial species. The results 
of butyrate supplementation are of specific interest, 
since supplementation reduced the relative abundance 
of highly abundant enterococci in the jejunal microbiota 
4 days post-hatch; A critical stage for broiler health [47, 
48]. Specifically, MSS allowed to differentiate between 
bacteria on species level and revealed that butyrate sup-
plementation greatly reduces the relative abundance of 
both Enterococcus hirae and Enterococcus faecium.

Regardless of the fluctuations in microbiota composi-
tion in the first weeks of life, we observed that the most 
abundant species are lactobacilli. This includes the genera 
Lactobacillus, but also related genera such as Limosilacto-
bacillus, as a result of the reclassification of Lactobacillus 
into 25 genera in 2020 [49]. The high abundance of lacto-
bacilli is therefore in concordance with previous studies 
that analysed the small intestines of broilers [30, 33, 50]. 
MSS allowed us to surpass the taxonomic resolution of 
16S rRNA gene sequencing. To our knowledge, this is the 
first time that the composition of broiler jejunal micro-
biota has been determined at the bacterial taxonomic 
species level, unbiased by 16S rRNA hyper-variable 
region amplification choices. The jejunal microbiota 
displayed an overall age-dependent effect, independent 
of diet. Principle Response Curve analysis revealed five 
species that show the largest change in abundance over 
time, while accounting for the influence of different diet 
groups compared to the control group. These species 
suggest a transition from highly abundant Lactobacil-
lus johnsonii and L.  reuteri (respectively, 58.99% [SEM 
0.15] and 28.89% [SEM 0.02] relative abundance) at 12 
days post-hatch to Ligilactobacillus salivarius and Lac-
tobacillus crispatus (respectively, 20.35% [SEM 0.28] and 
6.86% [SEM 0.21]) at 33 days post-hatch. This is simi-
lar to the findings of Lu et al., 2023, when studying the 
broiler ileum microbiota using 16S rRNA gene clone 
libraries. They observed a transition of the most domi-
nant species, switching from Lactobacillus acidophilus at 
14 days post-hatch (53% abundance) to L. crispatus at 28 
days post-hatch (75% abundance) [30]. The ileum is the 
small intestinal region located directly downstream of the 
jejunum and the microbiota of these regions share simi-
larities in their composition, potentially explaining these 
similar findings [51].

We observed E. hirae to be the second most abun-
dant bacterial species in the jejunal microbiota 4 days 
post-hatch among diet groups (12.95% [SEM 0.21]) and 
observed a much lower relative abundance of E. hirae 12 
days post-hatch (0.83% [SEM 0.05]). This is in line with 
the findings of Schokker et al., 2017, where a decrease in 
overall enterococcal abundance was observed from 21.7% 
4 days post-hatch to 4.9% 14 days post-hatch [50]. When 
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specifically comparing for differences in the microbiota 
between diet groups, we determined that supplemen-
tation of butyrate to broiler feed resulted in a 2.9 log2 
fold change decrease in abundance of E. hirae in broil-
ers 4 days post-hatch when compared to the control diet 
group. In addition, the butyrate supplemented group 
showed a decrease of several enterococci species at 4 days 
post-hatch, including E. faecium and Enterococcus durans 
and Enterococcus avium. From these, only E. hirae and E. 
faecium were present in sufficient abundance to ensure 
that this species is present with at least 70% genome cov-
erage, leading us to conclude that butyrate supplemen-
tation induced a reduction in the relative abundance of 
E. faecium and E. hirae. To our knowledge, this is the 
first time this function is demonstrated in broilers and 
with sufficient resolution to distinguish between closely 
related enterococci species. The supplemented butyr-
ate in this study is coated, which was previously found 
to result in the slow release of butyrate along the length 
of the intestinal tract [52, 53]. The effect of coated butyr-
ate on enterococci is similar to the findings of Sun et al., 
2022, where coated butyrate was shown to reduce the 
abundance of enterococci in the ileum microbiota of 
squabs [54]. E. hirae is an opportunistic pathogen that 
can cause locomotion problems, endocarditis and sep-
ticaemia in broilers [55–58]. The observed reduction in 
the abundance of E. hirae 4 days post-hatch is of specific 
interest, since this early stage represents the most criti-
cal period during broiler development. In this stage, the 
immune and digestive system are still immature, thereby 
increasing the susceptibility to disease [47]. This period is 
furthermore marked by the transition from aerial breath-
ing, initiation of thermal regulation and changes in diet 
composition, from yolk to solid feed, contributing to the 
overall high stress load during early broiler development 
[48]. While some short-chain fatty acids directly inhibit 
bacterial growth, butyrate supplementation only resulted 
in limited growth inhibition of E. faecium and E. hirae, 
when tested in vitro [37–39, 59]. These in vitro results 
therefore suggest that the reduced abundance of E. hirae 
and E. faecium are not likely to be caused by butyrate 
directly, but rather indirect, i.e., by changes of the jejunal 
microbiota as a result of the butyrate supplementation.

Depending on the genetic makeup, E. faecium can 
act like an opportunistic pathogen or gut commensal 
[60–63]. Moreover, specific isolates of E. faecium are 
applied as broiler probiotics [64, 65]. The detected E. 
faecium genome should therefore first be determined 
in order to conclude about its pathogenic potential and 
impact on broiler health. In addition, we observed a 
reduced abundance of L. vaginalis as a result of butyr-
ate supplementation 33 days post-hatch. In contrast to 
E. hirae, L. vaginalis is expected to be beneficial for gut 
health. These findings therefore suggest that that butyrate 

supplementation has a positive effect on the broiler jeju-
nal microbiota 4 days post-hatch, but not at 33 days post-
hatch [66, 67]. While this concerns the positive effects 
on the microbiota, previous studies have shown that 
the mainly positive effects of butyrate on broiler perfor-
mance take place when supplemented for the duration 
of the starter phase (until 14–21 days) [68, 69]. While 
some studies confirm that this holds true for improved 
effects on broiler intestinal development as well, these 
results are ambiguous [52, 68, 70, 71]. Our results indi-
cate potential negative effects of butyrate supplementa-
tion in broiler at 33 days post-hatch, which seems to be 
in line with the findings of our previous study, where 
butyrate supplementation was found to increase both 
Gram-negative bacteria abundance and endotoxin excre-
tion in the cloacal microbiota at 35 days post-hatch [72]. 
Such information is essential to create ‘customized’ nutri-
tional approaches specific to each production phase, with 
the goal of cultivating a favourable microbiota in broiler 
chickens. Additional differentially abundant bacteria 
included the potential pathogens E. durans and S. pseu-
doxylosus and the following bacteria that are used in pro-
biotics since they are considered beneficial to gut health: 
L. brevis, L. amylovarus, L. helveticus, P. pentosaceus and 
W. paramesenteroides [44, 73–78]. There was, however, 
insufficient sequencing data to cover the genome of these 
species. Future studies should therefore validate whether 
the observed diet-induced effects concern these species 
or closely related species.

Conclusions
Metagenomic shotgun sequencing allowed us to surpass 
analytic limitations on a genera taxonomic-level of bacte-
ria and instead study species-specific effects. BUT, MCFA 
and HFLP diets induced changes in the jejunal micro-
biota composition at bacterial species level of broilers 4, 
12 and 33 days post-hatch. Most notable was the effect 
of butyrate supplementation 4 days post-hatch, reducing 
the abundance of E. faecium and the opportunistic patho-
gen E. hirae. This early stage is critical for broiler health, 
emphasizing the role of diet in shaping the microbiota 
and its relation to broiler development and health. Future 
studies should elucidate how diets promote beneficial 
microbiota while suppressing additional pathogens like 
Campylobacter species, Salmonella enterica, Escherichia 
coli, and Clostridium perfringens. The incorporation of 
functional metagenomics and metatranscriptomics can 
additionally determine the role of understudied bacteria 
and reveal microbial activity changes linked to diet.

Methods
Classification of broiler groups
Day-old Ross 308 male broiler chickens were obtained 
from a commercial hatchery (Probroed & Sloot, Groenlo, 
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The Netherlands), with an average weight of 43.3 g. They 
were housed in floor pens with wood shavings as sub-
strate ad libitum access to feed and water as described 
by Perricone et al., 2023 [72]. In summary, a total of 1344 
broilers were randomly allotted to one of six diets in a 
completely randomized block design. Broilers were kept 
in pens measured 1.10 × 1.90 m containing wood shavings 
and a perch. In order to prevent the exchange of manure 
and or litter, pens were separated by plywood panels. The 
temperature was set at 34 °C on day 0 and was gradually 
decreased to 20  °C over the course of 35 days [72]. All 
1344 broilers were sampled for Perricone et al., while a 
subset of samples were selected for this project, in order 
to determine associations between the microbiota com-
position and the following four diets: (1) control diet 
without any supplementation (CON); (2) control diet 
supplemented with micro-encapsulated sodium butyr-
ate (BUT, Excential Butycoat®, Orffa, Werkendam, the 
Netherlands), (3) control diet supplemented with a mix-
ture of medium-chain fatty acids (MCFA, Aromabiotic®, 
Nuscience, Belgium) and (4) a diet with a higher fibre 
and lower protein content compared to the control diet 
(HFLP, table s11) [72]. While the BUT and MCFA diet 
involve supplementation of components, the HFLP diet 
involved substitutions of several components of the con-
trol diet, including the substitution of rapeseed meal by 
potato protein and an increase of sunflower seed meal 
and corn, and a reduction in soybean meal. To summa-
rize, the described sample subset results into studying 
8 broilers per diet per timepoint. Feed was provided ad 
libitum via a round feeder (diameter: 35 cm) hanging in 
the pen. Water was provided via seven nipples along the 
side wall of a pen. Broilers were vaccinated against infec-
tious bronchitis before arrival at the experimental facility 
and on day 25, and against Newcastle disease at day 15.

Sample collection, storage and DNA extraction
Jejunal chyme samples were taken at either 4, 12 or 33 
days post-hatch. Broilers were first anaesthetized with 
Zoletil® and then euthanized via cervical dislocation. 
The jejunum was then isolated by excising a 10 cm seg-
ment, commencing from the Meckel’s diverticulum. The 
distal end of the segment was precisely aligned with the 
Meckel’s diverticulum and the diverticulum was included 
in the extraction. The jejunum content was subsequently 
squeezed into collection tubes, snap-frozen in liquid 
nitrogen and transferred to storage at -80 °C. One freeze-
thaw cycle was introduced when dividing samples into 
aliquots of 0.2 g. Aliquoted samples were used for DNA 
extraction with the PureLink Genomic DNA Mini Kit 
(Invitrogen, Carlsbad, USA) according to the manufac-
turer’s instructions. Total DNA was quantified by using a 
2200 Tapestation (Agilent, Santa Clara, USA).

Metagenomic shotgun sequencing and data processing
DNA samples were sent to GenomeScan B.V. (Leiden, 
the Netherlands) for Metagenomic shotgun sequencing. 
Library preparation was performed using the NEBNext® 
Ultra II FS DNA module (E7810S, NEB, Ipswich, USA) 
and the NEBNext® Ultra II Ligation module (E7595S, 
NEB, Ipswich, USA) according to manufacturer’s pro-
tocols. Libraries were sequenced on a NovaSeq 6000 
sequencer (Illumina, San Diego, USA) using S2 flow 
cells and the 2 × 150  bp paired-end kit (Illumina, San 
Diego, USA) according to company protocols. Sam-
ples contained on average 137.6  M [SEM 67.4] reads 
per sample. Sequencing reads were adapter-clipped, 
erroneous-tile filtered, and quality-trimmed at ≥ Q20 
(PHRED score) using Bbduk v38.96 and subsequently 
filtered for host DNA using the global-alignment algo-
rithm of BBmap v38.96 with default settings and fast = t 
(broiler genome version 2021/01/19, accession num-
ber GCF_016699485.2) [79]. Read pairs were then used 
for taxonomic classification by Kraken v2.1.2 using the 
premade standard Kraken RefSeq nucleotide database 
and applying a confidence cut-off of 0.3 (database ver-
sion 5/17/2021) [80]. This resulted into 32.7 M [SEM 2.5] 
assigned read pairs per sample. The sample with the low-
est number of assigned read pairs (1.7 M) was excluded 
from downstream analysis (s2229, BUT group 12 days 
post-hatch). Kraken2 read counts were exported using 
kraken-biom v1.0.1 with default settings –min S –max O, 
here referred to as OTU level [81].

Data analysis
Analysis of sequencing data was performed in R version 
4.0, Rstudio v2022.02.2 + 485 and functions of R packages 
phyloseq (version 1.4) and ggplot2 [82, 83]. The top 10 
abundant bacteria in the jejunal microbiota were plotted 
by applying taxonomic agglomeration on species level 
(tax_glom, phyloseq package) while removing unassigned 
reads and extracting and plotting the ten most abundant 
bacteria using the aggregate function of microbiome 
utilities and plotting functions of the microbiome pack-
age [84, 85]. Bray-Curtis dissimilarity was used to evalu-
ate difference in community structure on OTU level, 
using Hellinger-transformed abundances. Community 
composition was visualized with principal coordinates 
analyses (PCoA) of Bray-Curtis dissimilarity using func-
tions of phyloseq and the microbiome packages [82, 85]. 
Permutational Multivariate Analysis of Variance (PER-
MANOVA) and tests on homogeneity of dispersion were 
employed using the adonis2 function (999 permutations, 
seed of 194,175) and betadisper function from the vegan 
package [86]. Principle Response Curve analysis was used 
to illustrate the trends for diet on the microbiome across 
different age groups [87]. Bacterial species were first fil-
tered for at least 10% prevalence and 0.001% abundance, 
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after which the prc function of the vegan package was 
applied with 999 Monte Carlo iterations [86]. The Shan-
non diversity and Pielou evenness index were calculated 
on OTU level by first applying rarefaction to an equal 
library size (720,000 reads, matching the sample with the 
lowest number of reads), using the rarefy_even_depth 
function of phyloseq (set.seed = 194,175, replace = FALSE) 
[82]. Consequently, the alpha diversity function of the 
microbiome package was applied [85]. Differential abun-
dance analysis was performed by first applying an over-
all 10% prevalence and 0.001% abundance cut-off for 
bacterial species across all diet groups. ANCOM-BC 
version 1.6.0 was subsequently applied with standard set-
tings, including Bonferroni correction for false discovery 
rate, batch correction for cage blocks and an alpha of 

0.05 [88]. Structural zeros were included in the analysis 
(struc_zero = TRUE) and are indicated in tables s1-s9. A 
subsequent cut-off of 0.01% abundance per bacterial spe-
cies per diet group and an absolute fold change cut-off 
of 2 were applied to generate the differential abundance 
plot (Fig. 4). The validation of detected bacterial species 
was performed by listing the reference genomes from all 
enterococcal species detected by kraken and download-
ing the corresponding RefSeq sequence from the NCBI 
database, filtering on full genomes and selecting the top 
hit when sorting by significance. Potential plasmids were 
excluded from the reference genomes and the resulting 
genomes were used to create a database using KMA ver-
sion 1.4.3 and the index function with settings -sparse 
TG. Sequencing reads were subsequently aligned to this 

Fig. 4 Differentially abundant bacteria in jejunal microbiota per diet group at 4, 12, 33 days post-hatch. Differential abundance analysis on BUT, MCFA and 
HFLP diet groups as a function of the control diet group at (a) 4 days post-hatch, (b) 12 days post-hatch and (c) 33 days post-hatch. Log2 fold change (l2fc) 
differences are visualized by bars and the standard error by error bars. Diet group are coloured (see legend). Differentially abundant bacteria are visualized 
(abundance > 0.001% ; p-value < 0.05; l2fc > |1|) and ordered from most abundant (top) to least abundant (bottom)
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database using KMA and settings − 1t1, -ca¸ -apm p and 
-ef [89].
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