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Background
Plant genomics is a rapidly evolving field with the poten-
tial to accelerate crop improvement and revolutionize 
agriculture [1–3]. A better understanding of the genetic 
basis of plant development and stress response path-
ways holds promise for creating novel crop cultivars with 
improved yield quantity and stability, including height-
ened resistance to diseases [4] and enhanced tolerance to 
abiotic stress [5].

The release of the first plant reference genome of Ara-
bidopsis thaliana in December 2000 marked the begin-
ning of the plant genomics era [6]. Over the past years, 
the number of sequenced and assembled plant genomes 
has been exponentially growing [7]. Several major proj-
ects are currently in progress, aimed at deepening our 
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Abstract
Plant genomics plays a pivotal role in enhancing global food security and sustainability by offering innovative 
solutions for improving crop yield, disease resistance, and stress tolerance. As the number of sequenced genomes 
grows and the accuracy and contiguity of genome assemblies improve, structural annotation of plant genomes 
continues to be a significant challenge due to their large size, polyploidy, and rich repeat content. In this paper, 
we present an overview of the current landscape in crop genomics research, highlighting the diversity of genomic 
characteristics across various crop species. We also assessed the accuracy of popular gene prediction tools in 
identifying genes within crop genomes and examined the factors that impact their performance. Our findings 
highlight the strengths and limitations of BRAKER2 and Helixer as leading structural genome annotation tools 
and underscore the impact of genome complexity, fragmentation, and repeat content on their performance. 
Furthermore, we evaluated the suitability of the predicted proteins as a reliable search space in proteomics studies 
using mass spectrometry data. Our results provide valuable insights for future efforts to refine and advance the 
field of structural genome annotation.
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knowledge of plant genomics and enhancing taxonomic 
representation. The Darwin Tree of Life project aims to 
sequence the genomes of 70,000 eukaryotic species in 
Britain and Ireland [8]. The 10K Plant Genomes Proj-
ect is set to sequence over 10,000 genomes from every 
major clade of plants and eukaryotic microbes, aiming to 
address key questions in plant evolution [9]. Additionally, 
the Open Green Genomes Initiative (OGG) plans to pro-
duce at least thirty-five high-quality genome assemblies 
and annotations across all major evolutionary lineages of 
land plants. Another significant initiative is the 3k Rice 
Genome Project, which aims to sequence 3,000 diverse 
Asian cultivated rice genomes [10]. This project pro-
vides substantial genomic data crucial for the discovery 
of novel alleles and advancing rice breeding technologies. 
Together, these projects represent significant strides in 
plant genomic research, contributing to a broader under-
standing and utilization of plant genetic resources. As 
of January 2024, GenBank [11] hosted 1781 sequenced 
plant species within the Viridiplantae clade, with some 
plant species having more than one genome assembly. 
These include agriculturally and economically impor-
tant orders such as the Brassicales, Cucurbitales, Fagales, 
Malvales, Rosales, and Solanales. Additionally, further 
sequenced plant genomes have also been deposited in 
other databases, such as Phytozome [12] and PLAZA 
[13], or in species-specialized portals, such as The Sug-
arcane Genome Hub [14] and the CuGenDBv2 database 
[15], which hosts the reference genomes of members 
of the Cucurbitaceae family, consisting of economi-
cally important fruit and vegetable crops. In addition to 
quantity, the quality of assembled genomes has also seen 
a marked improvement despite the challenges posed by 
diverse characteristics of plant genomes, such as vary-
ing sizes, ploidy levels, heterozygosity, and high repeat 
content [16]. Recent advancements in telomere-to-telo-
mere (T2T) genome completion have advanced the field, 
enabling the assembly of complete and accurate genomic 
sequences. For instance, a recent T2T assembly of the 
maize genome using ultralong reads from Oxford Nano-
pore Technology (ONT) and PacBio HiFi reads resulted 
in a complete genome assembly where each chromosome 
is represented as a single contig with a base accuracy 
over 99.99% [17]. This has unveiled the full complexity 
of highly repetitive regions and enabled the assembly of 
challenging genomic features such as the nucleolar orga-
nizer regions and centromeres, setting a new standard 
in genomic research. Moreover, similar T2T assemblies 
have been achieved in other plant species, such as sor-
ghum and melon, where high-coverage sequencing tech-
nologies combined with sophisticated computational 
approaches have resulted in gap-free genomes [18, 19]. 
Out of the 1,781 genome assemblies in GenBank, 34 
plants had complete genome-level assemblies, 772 had 

chromosome-level assemblies, 723 had scaffold-level 
assemblies, and 252 had contig-level assemblies.

Annotating plant genomes to identify functional ele-
ments, such as genes and regulatory regions, is a critical 
step for downstream studies, including proteomics and 
comparative genomics, offering insights into evolution 
and biological functions across different species [20]. 
Developing robust, standardized, and scalable methods 
for genome annotation across multiple genomes is criti-
cal for avoiding errors in gene boundaries and splice sites, 
thus ensuring that genome editing techniques, such as 
CRISPR, are effectively employed in crop genetic studies 
and molecular breeding [21, 22], as errors in annotations 
can propagate through databases, potentially mislead-
ing breeding strategies. Furthermore, through the devel-
opment of standardized genome annotation methods, 
researchers can construct comprehensive pan-genomes, 
integrating detailed genes and transposable elements 
annotations. This approach facilitates a deeper explora-
tion of genetic diversity, distinguishing core genes shared 
across populations from dispensable ones unique to spe-
cific individuals, thereby shedding light on the genetic 
bases of crucial agricultural traits. Over the past few 
decades, genome annotation has significantly advanced, 
enriched by data from transcriptomics, proteomics, and 
epigenomics [23]. Additionally, the adoption of deep 
learning techniques for tasks such as motif discovery and 
gene model prediction signifies a notable advancement in 
the field [24–26]. Despite the remarkable progress made 
in automated genome annotation tools, genome annota-
tion remains prone to errors, especially with respect to 
gene boundaries, alternative splice sites, and non-coding 
elements. These limitations may stem from factors such 
as the quality of draft genome assemblies and the com-
plex nature of eukaryotic exon maps, particularly those 
with large genomes and high GC content, such as those 
of many plant species. These genomes are often rich in 
repetitive elements, which complicates the precise iden-
tification and annotation of genes and regulatory ele-
ments. Furthermore, to achieve accurate predictions, 
genome annotation requires significant investments of 
time, resources, and manual curation to rectify errors 
and ambiguities. Consequently, there is a critical need 
to systematically evaluate and benchmark various gene 
prediction strategies to assess their reliability and to pin-
point the most effective approaches. Furthermore, this 
evaluation serves the purpose of limiting the propagation 
of errors within protein databases.

Here, we present a comprehensive analysis of the 
genomic data for 100 crop plants, going beyond the typi-
cal model species to encompass some of the more com-
plex genomic structures. This effort is part of the “The 
Proteomes that Feed the World” project [27], which aims 
to chart the proteomes of the 100 most important crops 
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for human nutrition. We examined the effects of various 
genomic properties, including assembly length, assembly 
quality, fragmentation, GC content, percentage of repeti-
tive elements, and Angiospermae class (monocotyledons 
or dicotyledons), on the accuracy of structural genome 
annotation. Furthermore, we evaluated the suitability of 
the predicted proteins as a reliable search space in pro-
teomics studies using mass spectrometry data.

Methods
Data collection
The list of the most important crops for human nutrition 
was obtained from the Food and Agriculture Organiza-
tion (FAO) of the United Nations [28]. These crops were 
ranked according to their annual production in millions 
of tons for the year 2018, with our focus directed towards 
the top 100 crops in this ranking.

Publicly available genome assemblies of the 100 crops 
were systematically sourced from a variety of data-
bases, primarily GenBank [11]. The most recent ver-
sions of assemblies, accompanied by relevant metadata 
on sequencing technology and assembly tools, were col-
lected (Supplementary Table 1).

Based on the availability of genomic information and 
annotations, our list of crops was categorized into three 
distinct groups. Group A comprises crops for which 
both genome assemblies and annotations are publicly 
available. We refer to the best available version of anno-
tation as the reference annotation, which is usually gen-
erated using comprehensive pipelines incorporating 
transcriptomics and/or proteomics data. Group B con-
sists of crops that possess a genome assembly but lack a 
reference annotation. Finally, group C includes crops for 
which no publicly available genome assemblies could be 
found (Supplementary Table 1).

Construction of the phylogenetic tree
NCBI taxonomy IDs for the 100 crops were collected and 
utilized to construct a phylogenetic tree using the Phy-
loT tree generator tool [29]. The tree was visualized and 
annotated using the interactive Tree Of Life (iTOL) tool 
[30].

Quality assessment and genome statistics
The contiguity of the genome assemblies was assessed for 
plants in groups A and B using Quast [31]. Detailed infor-
mation on the genomic features, including the assembly 
size, number of contigs/scaffolds, N50, L50, and GC con-
tent, can be found in Supplementary Table 2. Given that 
N50 values (expected: as high as possible, approaching 
the genome size) and L50 values (expected: as small as 
possible, close to 1) do not assess completeness or cor-
rectness of the assemblies, we employed BUSCO ver-
sion 5.4.3 [32] to evaluate gene space completeness. This 

analysis used the embryophyte lineage (embryophyta_
odb10) database, encompassing 1614 genes. Genomes 
with a completeness score exceeding 95% are consid-
ered of a high-quality. Although a completeness range 
of 90-95% is still acceptable, scores below 90% suggest 
significant deficiencies in the assembly. Additionally, 
due to the abundance of repetitive sequences within 
plant genomes, which presents significant challenges to 
the assembly process, it becomes imperative to evaluate 
the assembly of repeat space. The LAI score serves as a 
robust metric for assessing the continuity of intergenic 
and repetitive sequence assembly, facilitating cross-spe-
cies comparisons. Assemblies are categorized based on 
their LAI score: those scoring below 10 are classified as 
draft quality, while assemblies falling within the range 
of 10 to 20 are considered reference quality. Exception-
ally high-quality assemblies, denoted as gold quality, have 
LAI scores exceeding 20 [33]. Identification of Long Ter-
minal Repeat retrotransposon (LTR-RT) candidates was 
conducted using LTRharvest [34] and LTR_FINDER [35] 
algorithms, with parameters detailed in supplementary 
file 1. Subsequently, filtering was employed via LTR_
retriever [36] to isolate high-confidence LTR retrotrans-
posons. The raw LTR-Associated Index (Raw LAI) and 
the corrected LAI were then computed by the LAI pro-
gram deployed in the LTR_retriever package.

Repeat annotation and masking
Repeat masking is a critical step in genome annotation 
as it reduces the number of erroneous gene models in 
subsequent steps. De novo repeat identification was con-
ducted using RepeatModeler2 (version 2.0.3) [37] with 
subsequent annotation and soft masking of the identi-
fied repeats using RepeatMasker [38]. The percentage 
of repetitive sequences in each genome within groups 
A and B was calculated, and the prevalence of different 
repeat families is reported in Supplementary Table 3.

Gene prediction
The accuracy of the state-of-the-art gene prediction tools 
was benchmarked using the Arabidopsis thaliana and 
Medicago truncatula genomes, which are well-known 
model plants with high-quality reference annotations 
curated by specialized consortia—AraPort (Arabidopsis 
Information Portal) [39] and the International Medicago 
Genome Annotation Group (IMGAG) [40]. Due to the 
limited availability of species-specific RNA sequencing 
data for most crops, gene prediction tools capable of per-
forming ab initio prediction without extrinsic evidence, 
as well as those capable of utilizing hints from alignments 
against generic protein databases, were selected. This 
approach ensures the applicability and relevance of the 
selected tools to annotate our list of crops genomes, for 
which species-specific RNA-seq data may be scarce. The 
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selected gene prediction tools for evaluation included 
BRAKER2 [41], GALBA [42, 43], SNAP [44], GeneID 
[45], GlimmerM [46], and Helixer [26]. Each tool was 
executed using the most appropriate species model, with 
all other parameters set to default values (see Supplemen-
tary File 1 for more details). The top-performing tools 
were chosen to annotate the crop genomes in group A, 
as these crops have publicly available reference annota-
tions, which serve as essential benchmarks for standard-
ized comparative analyses.

Evaluation of gene prediction tools
The performance of the selected gene prediction tools 
was assessed at both the coding region (CDS) and the 
gene levels using the following standard statistical 
measures:

 
Sensitivity (Sn) =

TP
TP + FN

 
Specificity (Sp) =

TP
TP + FP

 
F1score =

2*Sn*Sp
Sn + Sp

At the CDS level, true positives (TP) were identified as 
coding regions with boundaries that precisely matched 
those specified in the reference annotation. Con-
versely, false positives (FP) were characterized as coding 
regions whose boundaries deviated from the reference 
annotation.

Additionally, at the CDS level, we calculated three sup-
plementary metrics for sensitivity and specificity (Sup-
plementary Fig. S1). The first metric, ‘OScore’, assesses 
the proportion of predicted exons that are not true posi-
tives but still overlapping with actual exons in the refer-
ence annotation, referred to as Overlapping Predicted 
Exons (OPE). The second metric ‘WScore’, evaluates the 
proportion of falsely predicted exons that do not overlap 
with any exons in the reference annotation, denoted as 
Wrong Exons (WE). The third metric ‘MScore’, evaluates 
the missed true exons that are overlooked by the tools 
and have no overlap with any predicted exon, referred to 
as Missed Exons (ME).

 
OScore =

Number of Overlapping Predicted Exons (OPE)
Number of falsely Predicted Exons (FP)

 
WScore =

Number of Wrong Exons (WE)
Number of falsely Predicted Exons (FP)

 
MScore =

Number of Missed Exons (ME)
Number of all Reference Exons (TP + FN)

At the gene level, TP were defined as genes in which the 
boundaries of all coding regions corresponded exactly to 
the reference annotation. Conversely, FP were charac-
terized as genes that had at least one coding region with 
boundaries deviating from the reference annotation.

Additionally, we compared the completeness of the 
predicted gene sets to the completeness of the reference 
annotations by running BUSCO in the protein mode with 
the embryophyte lineage.

We proceeded by conducting statistical comparisons 
to assess the performance of the selected gene prediction 
tools. Initially, we evaluated the normality distribution of 
the data for each metric using the Shapiro-Wilk test. Sub-
sequently, we employed the most appropriate statistical 
tests.

Assessment of gene prediction tools through peptide 
identification
The quality and reliability of the gene prediction tools 
can be further assessed by examining how well the pre-
dicted proteins serve as a reliable search space for iden-
tifying peptides in proteomics research. This evaluation 
involves analyzing the overlaps between peptides identi-
fied through the use of the reference or predicted pro-
tein sequences. A high degree of overlap indicates that 
the predicted protein sequences serve as a reliable search 
space for peptide identification.

Label-free tandem mass spectrometry datasets from 
thirty tissues of Arabidopsis thaliana (720 runs) [47] 
and six tissues of Medicago truncatula (60 runs) [48] 
were processed using MSFragger software [49], with all 
default settings except for precursor true tolerance (20 
ppm) and fragment mass tolerance (20 ppm) for Arabi-
dopsis thaliana and precursor true tolerance (20 ppm) 
and fragment mass tolerance (0.35 Dalton) for Medicago 
truncatula. These adjustments were tailored to the speci-
fications of the mass analyzers employed in the experi-
ments. Searches were performed against several FASTA 
databases, including extracted protein sequences from 
the reference annotations, predicted proteins derived 
from genome annotation tools, and the six-frame transla-
tion of the respective genomes. Each database comprised 
both canonical and isoform sequences, with an equiva-
lent number of decoy sequences generated using the 
DecoyPyrat tool [50].

Initially, the False Discovery Rate (FDR) was set to 1 
(equivalent to 100%) to permit subsequent rescoring of 
peptide-spectrum matches (PSMs) using the Oktoberfest 
pipeline [51]. Following this rescoring process, we filtered 
the identified PSMs, maintaining an FDR of 1%.
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Results
Data overview
Among the 100 crops studied, we were able to retrieve 
genome assemblies and annotation data for 54 crops, 
classifying them under Group A. Group B consisted of 
40 crops for which genome assemblies were available but 
lacked annotation data. Finally, Group C included 6 crops 
for which neither genome assemblies nor annotations 
were found (Fig. 1a).

Our list of crops displays a remarkable spectrum of 
diversity within both the monocotyledons and dicotyle-
dons classes (Fig.  1a; Supplementary Table 1), spanning 
a wide range of phylogenetically distinct orders (Fig. 1b; 
Supplementary Table 1). Prominent plant orders include 
Fabales, Poales, and Rosales. Notably, the Agaricus bispo-
rus (Mushroom) cultivar stands apart from other crops 
due to its distant relationship with these plants, as it 
belongs to the Fungi kingdom.

Sequencing technologies and assembly methods
Over the past decade, crop genome sequencing strate-
gies have undergone a significant shift, transitioning 
from the traditional and labor-intensive Sanger sequenc-
ing—which had been used to sequence only five genomes 
of our crops—to the more efficient next-generation 
sequencing (NGS) technologies, predominantly Illumina 
platforms (Fig. 2). These platforms have played a crucial 
role, having been utilized to sequence numerous crops, 
either solely (21 crops) or in combination with other 
methods (40 crops). With the advent of third-generation 
sequencing technologies, such as PacBio and Oxford 
Nanopore, a notable shift towards these newer methods 
was observed. PacBio has seen extensive use; 18 plants 
were completely sequenced using PacBio alone, and 
an additional 23 plants were sequenced using a hybrid 
approach combining both Illumina and PacBio tech-
nologies. In contrast, the Oxford Nanopore technology 
has been employed for complete sequencing in only two 
plants.

In terms of genome assembly methodologies, early 
Sanger-sequenced genomes predominantly employed 
the ARACHNE assembler [52], while Illumina sequenc-
ing saw extensive use of SOAPdenovo [53], Newbler [54], 
and Allpaths [55] as the key tools for genome assembly. 
However, with the advent of long-read sequencing tech-
nologies, tools like Falcon [56], Canu [57], and Hifiasm 
[58] have become the most commonly employed for 
assembling complex genomes, either independently or in 
combination with other tools for scaffolding and assem-
bly polishing. Additionally, other assembly tools such as 
MaSuRCA [59] and SMARTdenovo [60], while used less 
frequently, have also gained popularity in the genomics 
community. The integration of these diverse tools has 
been critical in addressing challenges associated with 

complex genome structures and in enhancing the conti-
guity and accuracy of the assembled genomes. Moreover, 
recent genome assemblies almost universally employ 
Hi-C data to correct assembly errors and to complement 
linked reads and optical maps, significantly improving 
the scaffolding of contigs and providing chromosome-
spanning contiguity to the assemblies.

Genome statistics and quality assessment
The genome assemblies in our dataset exhibited substan-
tial variations in size, ranging from 30  Mb of Agaricus 
bisporus to 16 Gb of Allium sativum (Supplementary Fig. 
S2a). Similarly, the assembly level demonstrated consid-
erable variation from a chromosome-level assembly in 
Citrus limon with 9 chromosomes to a highly fragmented 
assembly in Secale cereale, consisting of 905,722 contigs 
(Supplementary Fig.  S2b). The percentage of GC con-
tent varied widely between the genomes, with a mean of 
37.43% and a standard deviation of 3.6% (Supplementary 
Fig. S2c).

Completeness assessment
BUSCO, short for Benchmarking Universal Single-Copy 
Orthologs, is a widely used tool for evaluating the com-
pleteness of a genome assembly and its correspond-
ing annotation [32]. It is designed to assess how well 
a genome assembly and its annotation present a par-
ticular lineage. This assessment relies on a predefined 
set of single-copy orthologous genes that are expected 
to be universally present in most genomes of that lin-
eage. Although the set of genes, referred to as ‘BUSCO 
genes’, constitutes less than 5% of the entire gene pool of 
a particular genome, this method is particularly valuable 
for newly sequenced and for comparing the complete-
ness of different genome assemblies or annotations. A 
quantitative assessment of the completeness in terms of 
the expected BUSCO gene content of a genome assem-
bly demonstrated that, in general, the majority of crop 
genomes cover at least 90% of the BUSCO genes from 
the embryophyte lineage (Fig.  3b). A notable exception 
is constituted by Agaricus bisporus, a fungus that lacks 
a significant portion of genes specific to the embryo-
phyte lineage of land plants. Saccharum officinarum 
(sugarcane) showed a lower completeness of only 70% 
for the embryophyte BUSCO genes. Such low complete-
ness of the assembly may be attributed to the inherent 
complexities associated with the Saccharum officina-
rum genome, characterized by high levels of polyploidy, 
aneuploidy, and heterozygosity [61]. Additionally, ten 
crop genomes—Abelmoschus esculentus, Brassica jun-
cea, Avena sativa, Arachis hypogaea, Brassica napus, 
Digitaria exilis, Diospyros kaki, Fragaria x ananassa, 
Triticum aestivum, and Zingiber officinale—exhibit a 
high percentage of duplicated BUSCO genes (over 90% 
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Fig. 1 Data availability and diversity. (a) Categorization of 100 crops into groups based on the availability of genome assemblies and annotations, 
highlighting the diversity among monocotyledons and dicotyledons. (b) Phylogenetic spectrum of the studied crop species across diverse plant orders
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duplication) (Supplementary Fig. S3). Possible reasons 
for this finding include the assembly of distinct haplo-
types, a recent whole genome duplication event, or the 
presence of technical artifacts in the genome assembly 
process that require further investigation.

In our analysis, nine crop genome assemblies achieved 
‘gold’ quality, and 36 assemblies achieved ‘reference’ qual-
ity as assessed by the LTR Assembly Index (LAI) score, 
while the majority (49 crop genomes) were classified as 
‘draft’ quality (Supplementary Table 2). Notably, genomes 

in the draft category were predominantly sequenced 
without the aid of long-read sequencing technologies. 
Resequencing these genomes using advanced sequencing 
platforms and sophisticated assembly tools will signifi-
cantly enhance the quality of these assemblies and benefit 
all subsequent downstream analyses.

Analysis of repetitive elements
Crop genomes exhibited a high percentage of repetitive 
elements, averaging 57.36% across the genomes (Fig. 3d 

Fig. 2 Sankey diagram illustrating the distribution of the studied genomes across various sequencing technologies from 2000 to 2024, along with the 
primary tools utilized for assembly
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and Supplementary Table 3). Such high repeat content 
poses a major obstacle for assembling contigs into larger 
scaffolds. Overall, larger genome assemblies appeared to 
have higher repeat content, as indicated by a Pearson cor-
relation coefficient of 0.53 (Fig. 3c). Among the families 
of repetitive elements, retroelements such as Long Inter-
spersed Nuclear Elements (LINES), Short Interspersed 
Nuclear Elements (SINES), and Long Terminal Repeats 
(LTRs) are the most abundant, while DNA transposons 
constitute the second most prevalent family (Fig. 3a).

The number of protein-coding genes
Based on the publicly available reference annotations for 
54 crops, the number of protein-coding genes varies sig-
nificantly, ranging from 23,802 in Cucumis sativus with 
an assembly size of 226 Mb to a maximum of 138,361 in 
Prunus domestica (Fig. 3f ). Additionally, a high number 
of protein-coding genes were identified in the genomes 
of Brassica napus, Pisum sativum var. sativum, Cartha-
mus tingtorius, Pyrus communis, and Zingiber officinale. 
Larger genomes tended to have more protein-coding 
genes (R = + 0.38) (Fig.  3e). However, it is important to 
note that genome size and the number of protein-coding 

Fig. 3 (a) Proportional representation of repeat families within the genome assemblies. (b) BUSCO assessment of plant assemblies showing relative com-
pleteness using the embryophyte lineage. Genes are grouped into five categories: complete (C), single-copy (S), duplicated (D), fragmented (F), or missing 
(M) BUSCO genes. (c) Correlation between assembly size and repeat content percentage. (d) Repeat content as a percentage of the total assembly size. 
(e) Correlation between assembly size and protein-coding gene count. (f) The number of protein-coding genes across 54 crop genomes
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genes do not always correlate with organismal complex-
ity—a phenomenon referred to as the C-value/G-value 
enigma [62]. Furthermore, the observed positive corre-
lation (R = + 0.61) between the proportion of duplicated 
BUSCO genes and the overall protein-coding gene count 
(Supplementary Fig. S4) might indicate technical artifacts 
in the genome assembly, such as misassembly or mis-
placement of contigs and scaffolds, which could falsely 
increase the apparent gene number. Such artifacts may 
arise from challenges in distinguishing between true gene 
duplication events and sequencing errors, particularly in 
the regions containing highly repeat content.

Benchmarking gene prediction tools
The benchmarking of the selected gene prediction tools 
was conducted against the well-curated reference anno-
tations of the Arabidopsis thaliana and Medicago trun-
catula model plant genomes. These tools do not rely on 
species-specific transcriptomics or proteomics data. 
Comparative analysis revealed that BRAKER2 and 
Helixer exhibited superior performance in terms of sensi-
tivity and specificity compared to the other tools assessed 
(Fig. 4a and 4b).

BRAKER2 is an automated pipeline that uses pro-
tein evidence-supported self-training GeneMark-EP 
to generate a training gene set for the gene prediction 
tool AUGUSTUS, which employs generalized hidden 
Markov Models (GHMM) [41, 63–70]. On the other 
hand, Helixer adopts a different strategy, relying on a 
deep stacked Bidirectional Long Short-Term Memory 
(BLSTM) network to make predictions in the form of a 
base pair-wise classification, with subsequent generation 
of final gene models by HMMs. Given the comparable 
accuracies demonstrated by these two tools and their uti-
lization of different methodologies for gene prediction, 
both BRAKER2 and Helixer were used in our assessment.

Accuracy of BRAKER2 and Helixer at the CDS level
The accuracy of both BRAKER2 and Helixer was assessed 
at the CDS level against the reference annotations of 54 
crops. Given the non-normal distribution of the data, as 
confirmed by the Shapiro-Wilk test, we opted for non-
parametric tests. Specifically, we utilized the Kruskal-
Wallis test to compare the distribution of each metric 
across the selected tools. Subsequently, we performed 
pairwise comparisons employing the Mann-Whitney U 
test to identify specific differences between the tools.

Our comparative analysis at the CDS level revealed no 
significant difference between BRAKER2 and Helixer 
in terms of sensitivity and specificity (p = 0.54 and 0.63, 
respectively). However, Helixer demonstrated superior 
ability to recognize exon-containing regions, as evi-
denced by its higher OScore and lower WScore com-
pared to BRAKER2 (p = 0.0005). This suggests that while 

Helixer excels at identifying potential coding regions, 
it may not accurately predict the exact boundaries of 
them. This was further confirmed by the lower MScore, 
indicating that Helixer missed fewer coding regions 
than BRAKER2 (p = 0.04). Potential errors in annotating 
these regions in reference annotations could influence 
the assessment of gene prediction accuracy. A merged 
annotation approach, integrating outputs from both 
tools, notably enhanced sensitivity by 5–10%; however, 
this gain was offset by a decrease in specificity due to the 
inclusion of false positives from each method. An alterna-
tive strategy employing only the overlapping predictions 
from both tools significantly enhanced specificity by 30%, 
albeit at the cost of reducing sensitivity by 5–15%, as it 
excluded correct unique predictions from each individual 
tool (Fig. 4c and 4d).

Accuracy of BRAKER2 and Helixer at the gene level
Our findings at the gene level indicate that, in terms of 
specificity, there was no significant difference between 
the tools (p = 0.42). However, BRAKER2 exhibited higher 
sensitivity, surpassing that of Helixer by approximately 
10% (p = 3.8e-05). This suggests that BRAKER2 predicted 
proteins have fewer errors or frameshifts compared to 
Helixer. Combining the outputs of both tools resulted in 
a 7% boost in sensitivity, albeit at the cost of a propor-
tional decrease in specificity. Furthermore, common 
genes predicted by both tools showed higher specificity 
but lower sensitivity (Fig. 4e).

Completeness of predicted gene sets
We further assessed the quality of the reference anno-
tations as well as of BRAKER2, and Helixer predic-
tions using BUSCO assessment at the protein level for 
the embryophyte genes  (Fig.  4f ). Reference annota-
tions demonstrated the highest completeness levels, 
with only five crops—Camellia sinensis, Carica papaya, 
Cocos nucifera, Piper nigrum, and Saccharum officina-
rum—exhibiting a poor completeness score below 80%. 
However, reference annotations had the highest rate of 
duplicated BUSCO genes. In comparison, BRAKER2 
predictions had the poorest completeness scores and the 
highest rate of fragmented BUSCO genes. Helixer, on the 
other hand, excelled in predicting complete single copy 
BUSCO genes. All three annotations showed a very low 
percentage of missing BUSCO genes less than 2%. Nota-
bly, Saccharum officinarum’s annotations had the poor-
est quality, with only 47%, 42%, and 68% completeness 
reported for the reference, BRAKER2, and Helixer anno-
tations, respectively. This observation aligns with the 
low completeness score of the Saccharum officinarum 
genome assembly, a factor likely attributed to the inher-
ent complexities discussed earlier.
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Fig. 4 Sensitivity and specificity of gene prediction tools at the coding region (CDS) level on the Arabidopsis thaliana(a) and Medicago truncatula(b) 
genomes. (c, d) Evaluation of BRAKER2 and Helixer annotations at the coding region (CDS) level in 54 crops with available reference annotations. The 
figure displays a boxplot comparison across key performance metrics: Sensitivity, Specificity, F1 score, Overlapping exons score (OScore), Wrong exons 
score (WScore), and Missed exons score (MScore). The data are categorized by predictions unique to BRAKER2 (blue), unique to Helixer (green), those 
obtained by merging predictions from both tools (Merged, red), and common predictions by both tools (Common, yellow). (e) Evaluation of BRAKER2 
and Helixer annotations at the gene level. (f) Evaluation of completeness scores for reference (orange), BRAKER2 (purple), and Helixer (green) annotations, 
highlighting the significant p-values
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Factors affecting gene prediction accuracy
To understand the factors influencing the performance of 
each tool, we examined the correlation between various 
metrics, including assembly size, the number of contigs, 
GC content percentage, and repeat content percent-
age, with the accuracy of both BRAKER2 and Helixer 
at the CDS level (Fig. 5a). Our findings indicate that the 
accuracy of both tools drops significantly for assemblies 
of larger size, especially impacting BRAKER’s specific-
ity, which exhibits a Spearman correlation coefficient of 
-0.75 with the assembly size. This could be partly due to 
the reliance of BRAKER2 on protein alignment for guid-
ing gene prediction, a method that might become less 
accurate as the complexity of the assembly increases. 
Moreover, the sensitivity of BRAKER2 was significantly 
inversely correlated with the GC content (ρ=-0.6). The 
specificity of Helixer is influenced by the number of con-
tigs, with a correlation coefficient of -0.46, suggesting 
that its LSTM-based approach, while robust in handling 
long sequences, may struggle with fragmented genomes, 
as fragmentation can lead to incomplete or misassembled 
genes, challenging Helixer’s ability to accurately identify 
gene boundaries. At the same time, Helixer was more 
resistant to variations in GC content. The high content of 
repeats negatively affected both BRAKER2 and Helixer 
performance, with BRAKER2’s sensitivity being primarily 
affected (ρ=-0.59). These findings suggest that BRAKER2 
may not be the optimal choice for projects involving 
large genomic assemblies with high GC content and high 
repeat content, as its ability to accurately identify specific 
gene sequences diminishes. In contrast, Helixer’s LSTM-
based approach shows potential strengths in processing 
diverse genomic sequences but faces challenges with 
fragmented genomes. It is important to highlight that 
BRAKER2 can predict different protein isoforms arising 
from a single gene due to alternative splicing, whereas 
Helixer is limited to predicting a single protein isoform 
per gene. Moreover, BRAKER2 offers quantitative scores 
for its predicted features, facilitating the assessment of 
prediction confidence, unlike Helixer, which does not 
provide feature prediction scores.

We extended our analysis to explore the impact of 
angiosperm class on the accuracy of the two tools. This 
aspect is particularly crucial given the inherent genomic 
distinctions between monocotyledons and dicotyledons, 
such as the GC content of transcripts and the free energy 
of DNA promoters [71].

Our findings revealed that the accuracy of Helixer 
remained largely unaffected by the angiosperm class 
(Fig.  5b). However, when it came to BRAKER2 predic-
tions on monocotyledons, a significant decrease in the F1 
score, as much as 10%, was evident. This decrease in per-
formance could potentially be attributed to BRAKER2’s 
reliance on protein hints from external databases. These 

databases are possibly skewed towards dicotyledons 
proteins, given the greater species diversity in dicoty-
ledons compared to monocotyledons (75% and 22% of 
species diversity, respectively [72]). This significant dif-
ference in the number of dicotyledon species may have 
led to a more comprehensive and representative collec-
tion of dicotyledons protein data, thereby enhancing 
the accuracy of BRAKER2 for dicotyledons but not for 
monocotyledons.

Gene prediction across different plant orders
We compared the accuracy of BRAKER2 and Helixer 
across various taxonomic plant orders (Fig. 5c). Notably, 
orders such as Malvales and Cucurbitales demonstrated 
high F1 scores for both BRAKER2 and Helixer, indicating 
robust gene prediction capabilities. In contrast, orders 
including Ericales, Asterales, and Poales exhibited lower 
accuracies with both tools. This may be attributed to var-
ious complexities inherent in the genomes of these taxa, 
which present challenges for accurate gene prediction. 
While the data suggests that BRAKER2 generally pre-
dicts coding regions with higher accuracy than Helixer in 
many of the represented orders, it is important to note 
that a statistical comparison was not feasible due to lim-
ited species representation in certain orders, with 11 
orders containing fewer than three crops. A more thor-
ough investigation into the genomic correlates of gene 
prediction accuracy within these taxa will be the subject 
of future study.

Assessing the utility of predicted proteins for peptide 
identification in proteomics studies
We evaluated BRAKER2 and Helixer predictions for their 
suitability as a protein database for peptide identification 
in proteomics research using tandem mass spectrom-
etry data.  Fig. 6 illustrates the overlap between peptides 
identified using reference protein sequences and those 
predicted by BRAKER2 and Helixer, as well as the six-
frame translation of the genome. Peptides identified by 
using the predicted proteins from BRAKER2 or Helixer 
exhibited a remarkable overlap with those identified 
using reference proteins. In Arabidopsis thaliana, both 
BRAKER2 and Helixer achieved a 99% overlap with the 
reference. In Medicago truncatula, BRAKER2 exhib-
ited an overlap of 93% with the reference, while Helixer 
demonstrated a higher overlap of 96%. These results 
demonstrate that both BRAKER2-predicted proteins 
and Helixer-predicted proteins serve as effective search 
spaces for peptide identification in proteomics research. 
However, the discovery of peptides uniquely identified by 
one tool but not detected by the others underscores the 
inherent constraints and variability in gene prediction 
methodologies. Such unique, non-overlapping peptides 
may signal the presence of previously unidentified genes 
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Fig. 5 (a) Impact of genomic features on the accuracy of gene prediction. Each panel represents a scatter plot with a fitted linear regression line, show-
ing the relationship between BRAKER2 and Helixer annotation metrics (Sensitivity - Sn, Specificity - Sp, and F1 Score) and key genome characteristics 
(Assembly Size, Contig Count, GC Content percentage, Repeat content). The Spearman correlation coefficient (R) and associated p values are displayed 
for each relationship, indicating the strength and significance of the correlations, with red asterisks highlighting the metric most impacted by each factor. 
(b) Comparison of BRAKER2 and Helixer in predicting genes within dicotyledons and monocotyledons classes, as indicated by F1 scores at the coding 
region (CDS) level. (c) Accuracy of BRAKER2 and Helixer predictions across different taxonomic plant orders, as demonstrated by average F1 scores at the 
coding region (CDS) level

 



Page 13 of 15Abbas et al. BMC Genomics          (2024) 25:619 

or gene isoforms, suggesting opportunities for enhanc-
ing the reference annotations with these novel peptides. 
The peptides identified with the six-frame translation of 
the genome displayed a lower overlap with those of the 
reference annotation, ranging from 67 to 77%. This can 
be attributed primarily to the lack of splice junction pep-
tides in the six-frame translation. Additionally, the larger 
search space results in increased identification of false 
positive peptides, necessitating a stricter cutoff score at 
a 1% FDR, ultimately leading to the exclusion of a larger 
number of true positives as well. Notably, a small propor-
tion (1–2%) of peptides identified through the six-frame 
translation exhibited no overlap with any other annota-
tion search database. The fact that these peptides fall 
outside of annotated protein-coding regions indicates 
potentially incorrect exon boundaries, missed genes or 
coding exons, and can thus be used to indirectly assess 
the completeness of genome annotation. Furthermore, 
this underscores the importance of incorporating mass 
spectrometry data into genome annotation pipelines. 
Such integration holds promise for enhancing structural 
genome annotation and uncovering previously unanno-
tated genes.

Conclusions
In line with the goals of the “The Proteomes that Feed 
the World” project [27], which seeks to character-
ize the proteomic profiles of the top 100 crop plants 
essential for human nutrition using tandem mass spec-
trometry—a method reliant on high-quality genome 
annotations—this research systematically explored the 
genomes of these crops. Our study provides insights into 

the prevailing trends in genomic sequencing technolo-
gies and assembly methodologies. Notably, 40 of the 89 
assembled plants lacked any publicly accessible reference 
annotation, underscoring the urgent need to find the best 
automated genome annotation strategy.

BRAKER2 and Helixer showed the best accuracy 
among the benchmarked genome annotation tools. 
Helixer stands out for its speed, independence from 
repeat masking, and applicability to large genomes. How-
ever, it exhibits lower performance on highly fragmented 
genomes assembled at the contig level. In contrast, 
BRAKER2 exhibits the capability to leverage extrinsic 
evidence into its annotations and shows superior sensitiv-
ity, especially at the gene level, with the ability to predict 
different protein isoforms per gene. However, BRAKER2 
is more susceptible to challenges posed by high GC con-
tent and an abundance of repetitive elements, making it 
more suitable for small- to medium-sized genomes.

While our study has primarily explored specific gene 
prediction tools capable of ab initio predictions, either 
independently or with alignment hints derived from 
general protein databases, it is imperative to consider 
alternative and complementary approaches that could 
enhance gene prediction accuracy further. For instance, 
integrating species-specific RNA-seq data from various 
tissues and developmental stages will provide transcrip-
tional evidence of predicted genes and can uncover new 
genes that were not identified through ab initio predic-
tion methods. Furthermore, comparative genomics can 
aid in identifying conserved genes across related species, 
which is particularly beneficial for genomes that are less 
characterized. Additionally, the adoption of deep learning 

Fig. 6 Overlaps between the peptide sets of Arabidopsis thaliana (a) and Medicago truncatula (b) identified from BRAKER2/Helixer predictions, a six-frame 
translation, and the reference annotation
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techniques, which have shown promise in tasks such as 
pattern recognition and predictive modeling, could be 
explored more thoroughly. Employing ensemble methods 
that combine multiple algorithms can also enhance pre-
diction accuracy by leveraging their respective strengths 
and mitigating their weaknesses. Lastly, integrating 
proteomic data represents a significant opportunity to 
improve and refine genome annotation methodologies, 
thereby advancing the field of plant genomics.
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