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Abstract 

Deep Mutational Scanning (DMS) assays are powerful tools to study sequence‑function relationships by measuring 
the effects of thousands of sequence variants on protein function. During a DMS experiment, several technical arte‑
facts might distort non‑linearly the functional score obtained, potentially biasing the interpretation of the results. We 
therefore tested several technical parameters in the deepPCA workflow, a DMS assay for protein–protein interactions, 
in order to identify technical sources of non‑linearities. We found that parameters common to many DMS assays such 
as amount of transformed DNA, timepoint of harvest and library composition can cause non‑linearities in the data. 
Designing experiments in a way to minimize these non‑linear effects will improve the quantification and interpreta‑
tion of mutation effects.
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Background
How information encoded in DNA sequence is translated 
into molecular function is central to our understanding 
of the genotype-phenotype relationship. Deep Muta-
tional Scanning (DMS) assays allow to evaluate the effect 
of thousands of sequence variants on a given molecular 
function in parallel and have therefore become powerful 
tools to address this question. In DMS assays, a variant 
library is created by mutagenizing a sequence of inter-
est and then  exposed to a selective assay that separates 
variants based on their activity. Because the assay is 

performed in a pooled format, high-activity variants are 
enriched under the selective conditions while low-activ-
ity variants are depleted. Enrichment and depletion are 
quantified using deep sequencing [1, 2].

Proteins perform most biochemical functions within a 
cell and do so by interacting with one another. The speci-
ficity of these protein-protein interactions (PPIs), i.e. the 
information about which two proteins interact with one 
another, is encoded in the DNA sequence and is therefore 
central to the sequence-function relationship. Moreover, 
it has been shown that disease-associated variants are 
enriched at interaction interfaces, which is why perturba-
tions of PPIs are of major interest in medical and phar-
macological research [3].

The fast-progressing advances made in sequencing 
technology enable the discovery of more and more vari-
ants in the human population with potential effects on 
PPI affinity. The vast amount has long surpassed a num-
ber feasible to study individually. Recent publications 
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have shown that DMS assays are very well suited for the 
study of PPIs or protein-ligand interactions at large scale 
[4–10].

Deep sequencing-based protein complementation 
assay (deepPCA) is one DMS approach to measure PPIs 
that proved to be very useful to study determinants of 
specificity in conserved protein interaction domains such 
as human basic leucine zippers [5, 11]. In this assay, a 
Dihydrofolate Reductase-based Protein-fragment Com-
plementation Assay (DHFR-PCA) is combined with DMS 
by performing DHFR-PCA in a pooled format and meas-
uring the effect of thousands of mutations in a protein of 
interest on its ability to interact with its partners. DHFR-
PCA is based on the reconstitution of a methotrex-
ate (MTX)-insensitive mouse DHFR variant (Fig.  1A). 

Both halves of the enzyme (referred to as DH-tag for the 
N-terminal fragment and FR-tag for the C-terminal frag-
ment) are used to tag each of the two proteins of interest 
and expressed in Saccharomyces cerevisiae cells. Interac-
tion between these two proteins promotes complemen-
tation between the two DHFR fragments and sustains 
growth in presence of MTX, which inhibits the endog-
enous DHFR [12, 13].

DHFR-PCA is quantitative, i.e. the growth rate of the 
respective cells depends on the concentration of recon-
stituted DHFR, which is itself a function of protein abun-
dance and the affinity of the interaction [14]. In deepPCA, 
this quantitative aspect is leveraged in a pooled setting, 
where variants of the interacting proteins are enriched or 
depleted depending on the strength of their PPI.

Fig. 1 The deepPCA general principle and workflow. A In DHFR‑PCA, proteins of interest are tagged with the two opposite halves 
of a MTX‑insensitive DHFR variant. Upon interaction of the tagged proteins, DHFR is reconstituted and functional. Yeast cells expressing 
the interacting pair can sustain cell growth in presence of MTX [13]. B deepPCA: pairs of proteins tagged with opposite DHFR termini are 
expressed from single plasmids. Molecular barcodes encoded on the plasmids allow identification of the protein pair. Plasmids are transformed 
into yeast cells so that each cell expresses one plasmid. Cells expressing interacting proteins are enriched in selective medium containing 
MTX. Enrichment and depletion of interacting and non‑interacting pairs is quantified by barcode sequencing of plasmids extracted from input 
and output cultures [11]
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deepPCA has been designed to allow library-on-library 
screening. First, intermediate libraries for DH- and FR-
fusions are cloned with random DNA barcodes. The 
association between barcode and variant is determined 
for each library by deep sequencing and the two librar-
ies are then combined on the same plasmid in a way that 
juxtaposes the barcodes. This plasmid library is then 
transformed into yeast cells at a low multiplicity of trans-
formation, i.e., to minimize the number of cells with two 
or more plasmids. Competitive growth in MTX-contain-
ing medium then results in enrichment of interacting 
pairs and depletion of non-interactors. Input and output 
cultures (before and after competition) are harvested, 
and plasmids are extracted.

Enrichment and depletion of individual pairs are quan-
tified by deep sequencing of the molecular barcodes 
encoded on the plasmids. Frequencies of each pair in 
input and output populations are determined and used to 
calculate the growth rate (generations per hour) of cells 
expressing each pair of proteins as a proxy for the con-
centration of the complex (Fig. 1B).

deepPCA’s readout, like many other DMS assays, 
maps non-linearly to the latent trait where mutations 
are expected to have additive effects [5, 15]. Indeed, the 
readout is directly proportional to the concentration 
of the complementation complex, which is itself non-
linearly related to the underlying energetic dimension 
where mutations that are not energetically coupled affect 
the free energy of the complex additively. Mutations 
that have additive effects at the energetic level will thus 
show non-additive effects at the level of protein complex 
concentration, which can be mis-interpreted as the two 
mutations having some structural or functional relation-
ship. This phenomenon has been referred to as global, 
phantom or non-specific epistasis [5, 16–18]. Regressing 
out these non-linearities is therefore required to access 
mutational effects on the latent additive trait. This is typi-
cally achieved by employing an appropriate mechanistic 
model describing the system, such as two- or three-states 
thermodynamic models for PPIs [5, 6, 11, 17, 19, 20].

The experimental pipeline can also introduce addi-
tional non-linearities when technical factors affect dif-
ferent variants in different ways depending on their 
position within the dynamic range of the assay. These 
non-linearities can sometimes be accounted for even 
when not explicitly included in the thermodynamic 
model, for instance by being incorporated in some global 
parameters determining the shape of other non-line-
arities. However, they can still have negative effects by 
restricting the dynamic range of the assay. It is therefore 
important to identify potential sources of non-linearity 
in the workflow to improve the quantification of muta-
tional effects.

The purpose of this study is thus to perform optimiza-
tion experiments at different critical steps of the experi-
mental pipeline to identify sources of non-linearity in 
the deepPCA workflow. The parameters tested were 1) 
amount of transformed library DNA, 2) MTX concentra-
tion, 3) timepoint of harvest, and 4) library composition. 
This improved our understanding of both the biologi-
cal/physical and technical non-linearities and will allow 
us to account and correct for these sources of error in 
our experimental design. The improved data quality will 
enable a more accurate thermodynamic modelling of the 
underlying biophysical processes, benefiting a deeper 
understanding of evolutionary, epistatic, and pathogenic 
effects of mutations. Currently, many DMS assays follow 
a similar experimental design [21], with read-outs that 
can be affected by the same technical parameters, espe-
cially 1), 3) and 4).  Therefore, our findings for deepPCA 
are not limited to this particular assay but can also be 
applied to a variety of other DMS applications.

Results and discussion
A yeast transformation protocol with minimal double 
transformants and optimized library coverage
If a cell contains two plasmids expressing pairs of  pro-
teins with different interaction strengths, the cell’s growth 
rate is mostly determined by the strong interaction pair 
and the change in frequency of the weak pair will be 
overestimated, which can be a source of non-linearity. 
Therefore, to preserve the quantitative nature of DHFR-
PCA, the fraction of cells carrying two or more different 
plasmids must be minimized.

To determine the proportion of cells co-transformed 
by more than one plasmid in our large scale, high-
efficiency transformation protocol, we transformed 
different amounts (between 250 ng and 1 μg) of an equi-
molar mixture of two centromeric plasmids (pRS415 and 
pDL00266) carrying each a different auxotrophic selec-
tion marker. We then plated on selective plates missing 
one or both corresponding metabolites to count the total 
number of transformed cells and the number of double 
transformants and calculated the percentage of cells car-
rying more than one plasmid (see Methods). Transfor-
mants are selected in two consecutive rounds for many 
generations before the start of the competition in the 
MTX medium, in order to overgrow the large majority of 
non-transformed cells. This should allow for cells carry-
ing two different plasmids to lose one and thus decrease 
the percentage of double transformants [22]. To meas-
ure the rate of loss, we compared the percentage of cells 
carrying more than one plasmid directly after transfor-
mation and at the end of the selection process, i.e., just 
before inoculation of the MTX medium (Supplementary 
Table 1).
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The percentage of double transformants directly after 
transformation and before MTX selection increased in 
a linear fashion with increasing DNA amount (Fig. 2A). 
The total number of transformants also increases in a 
linear fashion when transforming with higher amounts 
of DNA (Supplementary Fig. 1A). Moreover, it remained 
stable indicating that the cells maintain both plasmids 
over the multiple generations of growth.

We next measured the effects of transforming differ-
ent DNA amounts and hence different percentages of 
double transformants on deepPCA interaction scores. 

We constructed a small library based on a JUN variant 
library recently assayed [11]. We combined the 608 sin-
gle amino acid substitutions of the leucine zipper domain 
of human JUN (FR-tagged) with three out of 54 wild-
type human basic leucine zippers (bZIPs; DH-tagged). 
The three wildtype bZIPs were selected to span a range 
of interaction strengths between JUN and its wild-type 
partners. FOS was used as a strong interactor, ATF7 as 
a weak interactor and NFE2 as a non-interactor. This 
library was used in most experiments presented in this 
paper and will be referred to as the balanced JUN library.

Fig. 2 Effect of transforming with different amounts of DNA. A Fraction of double transformants per cell for different amounts of DNA transformed. 
Cells were transformed with DNA amounts from 250 ng to 1 μg. The amount of double transformants was quantified after initial transformant 
selection and after selection round 2 (see Methods). B Distributions of growth rates obtained from deepPCAs performed with cells transformed 
with differing amounts of DNA between 100 ng and 20 μg. C Pairwise correlations of growth rates between samples from deepPCAs performed 
with cells transformed with differing amounts of DNA. Scatter plots are shown in the bottom left panels, histograms are shown on the diagonal, 
and Pearson correlation coefficients are shown in the upper right panels. D Scatterplot between samples transformed with 100 ng DNA and 20 μg 
DNA
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We performed deepPCA after transforming yeast 
cells with five different amounts of library DNA, 
expanding the range used above to better detect effects 
on interaction scores (100 ng, 333 ng, 1 μg, 3 μg, and 
20 μg). We first compared the correlations between 
variant frequencies in input and output samples across 
all conditions. Overall, the correlations were very simi-
lar, but it was apparent that the output samples from 
the cells transformed with 20 μg of library DNA cor-
related stronger with all input samples than the other 
quantities transformed, indicating that library variants 
are less enriched or depleted when transformed with 
this high DNA amount (Supplementary Fig.  1B; Sup-
plementary Table  2). To further investigate this, we 
calculated the per variant growth rate (generations 
per hour) for each sample and observed a narrower 
distribution in the 20 μg sample while the distribution 
in the remaining samples were very similar (Fig.  2B; 
Supplementary Table  3). When looking at the corre-
lations between growth rates, the correlation coeffi-
cients were very high but decreasing with increasing 
difference in DNA amount (Fig. 2C). This is once more 
especially apparent for the 20 μg sample for which we 
observe a clear non-linear trend with growth rates of 
other samples. This can be explained by the expected 
high average number of plasmids per cell in that sam-
ple. For example, when directly comparing growth 
rates of the sample transformed with 100 ng DNA and 
the one transformed with 20 μg DNA, slow growers 
are most severely affected and grow faster in the high 
DNA sample (Fig.  2D). This is because slow grow-
ers will likely get co-transformed with a plasmid that 
expresses a pair that interacts more strongly, and thus 
increase the growth rate of the cell in MTX beyond the 
level expected for the weakly interacting variant alone. 
There is only a slight decrease in growth rates for the 
strong interactors, which might be due to interfer-
ence from the weaker co-transformed plasmid on the 
expression from the stronger plasmid. Importantly, 
these effects are not stochastic and affect the trend, as 
further demonstrated by the high correlation between 
output replicates of the 20 μg sample (Supplementary 
Fig.  1C). Because of the large number of transfor-
mants per variant pair obtained (~1000) and the high 
co-transformation percentage expected with 20 μg 
of DNA, each variant pair is expected to be co-trans-
formed with a large fraction of all other variant pairs. 
The average effect thus becomes deterministic. On the 
contrary, if the average number of transformants per 
variant was low, a variant pair in one replicate might 
be co-transformed with strong variant pairs while in 
another replicate it might be co-transformed with 
weak variant pairs.

The non-linear trend and the narrowing of the distribu-
tion of interaction scores is still apparent at 3 μg and neg-
ligible at 1 μg and lower amounts. We thus choose 1 μg 
as an optimal trade-off between the high number of total 
transformants required when working with large libraries 
and a low percentage of double transformants with mini-
mal effects on the distribution of interaction scores.

Increasing concentration of MTX results in higher 
but linear selection strength
Next, we tested the effect of MTX concentration during 
competitive growth. Previous deepPCA studies used a 
standard concentration of 200 μg/mL MTX [5, 6, 11, 5, 6], 
which we here refer to as 1X MTX. This concentration was 
first determined for performing DHFR-PCA on agar plates 
[13, 23], and we therefore decided to verify that it is also 
well-suited for deepPCA in liquid culture. We evaluated 
the effect of 1/20X, ¼X, ½X, 1X, and 2X MTX concentra-
tion and a DMSO only control, controlling for the effects 
that some variants can have on actual cellular fitness, for 
instance by interfering with other cellular components. 
In addition, we also compared the results from different 
MTX vendors (using 1X MTX in the assay; Supplemen-
tary Tables 4 & 5).

We did not observe any effect from the supplier (Sup-
plementary Fig.  2A). We also did not observe any fit-
ness effect in DMSO (Pearson correlation coefficient of 
1.00 between input counts and output counts from cells 
grown in DMSO; Figure3A, upper left). On the con-
trary, in presence of as low as 1/20X MTX, enrichments 
of some variants can be observed which is reflected 
in the lower correlation coefficients to input counts 
(Fig.  3A). The correlation coefficients decrease together 
with increasing MTX concentration, indicating stronger 
selection at higher MTX concentrations. The correlation 
between output counts of the ¼, ½ 1 and 2X samples is 
0.99, further indicating little differences in enrichments 
at different MTX concentrations.

Increasing MTX concentration stretches the growth 
rate distributions (Fig.  3B), further indicating stronger 
selection regimes. The lower mode of the distribution 
decreases (lower modes of 0.0984, 0.05, 0.0347, 0.0164, 
and 0.00532 for 1/20X, 1/4X, 1/2X, 1X, and 2X MTX 
concentration, respectively) while the fast-growing vari-
ants are little affected (upper modes are 0.2448, 0.238, 
0.2272, 0.2322, and 0.225 for 1/20X, 1/4X, 1/2X, 1X, 
and 2X MTX concentration, respectively), indicating a 
higher background growth at lower MTX concentration, 
probably resulting from an incomplete inhibition of the 
endogenous DHFR. Since the growth rates show a very 
high correlation at different MTX concentrations and do 
not appear non-linearly related (Supplementary Fig. 2B), 
increasing it from 1 to 2X does not confer significant 
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Fig. 3 Different MTX concentrations do not result in non‑linearities, but selection pressure is higher in higher concentration. A Pairwise correlations 
of average counts between input and output samples of deepPCAs selected in DMSO and different concentrations of MTX. Scatter plots are shown 
in the bottom left panels, histograms are shown on the diagonal, and Pearson correlation coefficients are shown in the upper right panels. B 
Distributions of growth rates of deepPCAs selected in DMSO and different concentrations of MTX
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benefit and would not justify the higher cost. However, 
decreasing MTX concentration 2X or 4X would have the 
advantage of a lower cost and might therefore be consid-
ered for very large and costly experiments. The slightly 
higher background growth can be accounted for by the 
global parameters of the thermodynamic model that lin-
early rescales the growth rate to the fraction bound [6]. 
We thus conclude that 1X is an optimal trade-off between 
cost and selection strength.

The lag‑phase at the start of the competition non‑linearly 
affects growth rates
We next set out to determine the ideal harvesting strategy 
to maximize the size and spread of the measured effects, 
while keeping the error small. To this end, different har-
vesting time points for the input and output samples 
were considered. Previously, the input cultures were har-
vested before inoculating the MTX-containing selection 
medium. A portion of these cells was used to inoculate 
the competition culture which was grown for five more 
generations before harvesting the output sample. At the 
beginning of the growth in the MTX medium, cells have 
enough stores of tetrahydrofolate (THF), the product of 
DHFR, and downstream metabolites to sustain growth 
until relying solely on the complemented DHFR activity. 
Therefore, cells expressing different pairs of proteins are 
expected to grow at the same rate for a few hours. This 
is clearly apparent in screens on agar plates, where cells 
at all array positions were able to grow to form small 
colonies and only the positions at which cells expressed 
interacting proteins would grow further. This lag before 
the selection kicks in can thus potentially non-linearly 
affect the estimated growth rate such that the difference 
between true and estimated growth rate would be larger 
for weak interactors since the MTX-dependent growth 
time is overestimated. Strong interactors, on the other 
hand, might not see a strong decrease in growth rate 
upon MTX selection, and their estimated growth rate 
will be very close to the true growth rate (Fig. 4A).

To investigate this effect, we used the same JUN bal-
anced library and compared growth rates obtained fol-
lowing the normal protocol to those obtained by first 
pre-incubated cells in the MTX medium for 2.5 hours 

before collecting the input sample and inoculating fresh 
MTX medium. Both output cultures were harvested at a 
cell density corresponding to a population growth of five 
generations. As expected, we do see an apparent slight 
non-linear relationship between growth rates with a 
stronger effect on weak interactors, i.e., pairs with a lower 
growth rate that show a disproportionately stronger 
increase in generation time than the strong interactors 
(Fig. 4B; Supplementary Tables 4 & 6).

Pre-incubation in MTX is therefore recommended to 
minimize non-linear effects. However, the extra steps 
make the experimental procedure more complex and 
costly and might add to the technical noise of the data 
while the non-linear effects can be accounted for by the 
global parameters of the thermodynamic model that con-
trol the curvature of the non-linear transformation[6]. 
The decision of whether or not to perform the pre-incu-
bation is thus left to the experimenter depending on the 
use of the data.

The choice of harvesting timepoint is another source 
of non‑linearities
The number of generations in competitive growth might 
also result in differences between estimated and true 
growth rate (Fig. 4C). We therefore performed deepPCA 
by harvesting the input samples before MTX selection 
and harvesting the output samples after 2, 3, 4, 4.5 and 
5 generations of total population growth (Supplementary 
Tables 7 & 8). For this experiment, we used the full JUN 
variant library combined with the 54 wt bZIPs from [11]. 
We first compared the distributions of generation times 
across the different samples. Though similar, the harvest 
after 2 generations shows a slight shift towards higher 
average growth rates indicating that the selective pres-
sure was not applied long enough for strong depletion of 
the slow growers (Supplementary Fig. 3A). Additionally, 
a non-linear relationship between the samples harvested 
after different generation times that seems to affect slow-
growers disproportionately stronger is observed. The 
higher the difference in generations at harvest the more 
pronounced is this effect, being the strongest between 
the samples harvested at 2 and at 5 generations (Fig. 4D, 
Supplementary Fig. 3B). This can also be explained by the 

Fig. 4 Growth time and pre‑selection phase non‑linearly affect growth rates. A Harvesting input samples before or after a pre‑competition phase 
in which all yeast cells still grow at equal growth rates can result in differences in measured growth rate. Harvesting before pre‑competition 
phase can result in an overestimation of growth rate of slow growers because the assumed duration of selection is longer than the actual 
duration. B Scatter plot comparing growth rates of deepPCAs for which the input sample has been harvested before or after the pre‑competition 
phase (after 2.5 hours in MTX). C Harvesting after shorter growth time can result in further overestimation of growth rate for slow growers 
because the pre‑competition phase represents a larger fraction of the overall selection time and more strongly influences the estimated growth 
rate than after a long growth time. D Scatter plot comparing samples of deepPCAs grown for 2 generations and 5 generations. E Standard errors 
of growth rate as a function of growth rate for samples harvested after different generations

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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effect of the lag-phase, which is proportionately stronger 
when the effective competition is shorter (Fig.  4C). For 
this reason, a harvest at later timepoint (i.e., after 5 gen-
erations) will result in estimated growth rates that are 
closer to the true growth rates than those estimated from 
samples harvested earlier.

On the other hand, with increasing time of growth, 
also the noise and therefore the error of measurement 
increases, especially for slow growers (Fig.  4E). This is 
likely due to stronger depletion of slow growers after 
prolonged growth and thus lower read counts, the main 
source of measurement error[24, 25]. Thus, choosing the 
timepoint of harvest is a tradeoff between how close to 
the true growth rates the estimated ones are and how 
high of an error and drop-out rate of slow growers is 
tolerable.

Library composition
In principle, measured growth rates for individual pro-
tein pairs should be independent of library compositions. 
To test this, we performed deepPCA using our pre-deter-
mined standard settings of 1 μg of DNA for transforma-
tion, harvest of input samples before the competition 
and harvest of output samples after 5 generations of 
growth. We screened three different libraries of identical 
sizes, the balanced JUN library, a slow-growing library in 
which we replaced the strong interactor FOS by the non-
interactor ATF2, and a fast-growing library in which we 
replaced the non-interactor NFE2 by the strongest inter-
actor JDP2. Importantly, ATF7 was present in all three 
libraries, allowing to compare growth rates and test if 
they are affected by library composition (Supplementary 
Tables 9 & 10). Growth rates for the ATF7 pairs were well 
correlated between the different libraries (Fig. 5A).  How-
ever, their distributions differ, and the growth rates esti-
mated for ATF7 pairs when competing against stronger 
pairs are lower (Fig. 5B). This is also true for other part-
ners that overlap only in two libraries. For example, FOS 
shows overall higher growth rates in the balanced library 
where it forms the strongest interactions with JUN vari-
ants than compared to the fast-growing library where 
JDP2 forms the strongest interactions with JUN variants. 
This is more likely to be due to technical artefacts than 
actual differences in growth rates, such as inaccuracies in 
the estimation of frequencies from read counts. However, 
this has little impact on downstream analyses since mod-
elling usually transforms growth rates to a different scale 
more relevant to a protein’s molecular activity.

Conclusions
We have performed a multi-parameter optimization 
study of deepPCA to identify sources of non-linearity 
in the workflow. Parameters like amount of transformed 

DNA and timepoint of harvest were identified to intro-
duce non-linearities in the data. While these can easily 
be accounted for by thermodynamic modeling, identify-
ing these sources of non-linearity can help improve the 
modelling process. Non-linearities can also affect the 
dynamic range of the assay, for instance by pushing vari-
ants into a saturation plateau. Different variants with dif-
ferent scores could thus appear similar because of the 
non-linearity in the read-out. Adapting the experimental 
procedure to minimize this non-linearity would also help 
improve quantification accuracy and ultimately draw cor-
rect conclusions about underlying biological processes.

In many cases, the choice of parameter is a trade-off 
between technical feasibility or cost and measurement 
accuracy. For most of our purposes, an optimal trade-off 
between total number of transformant obtained and fre-
quency of double transformants, which affects measure-
ment linearity, consists in transforming 1μg of plasmid 
DNA (under the experimental conditions used here). 
The choice of MTX concentration is a trade-off between 
higher cost and a wider growth rate scale leading to more 
separation, i.e. larger differences, between the measured 
growth rates. We therefore recommend sticking to the 
concentration of 200 μg/mL that has been used so far. 
This can however be reduced to 50 μg/mL if cost becomes 
limiting without much impact on quantification. Con-
centrations of 10 μg/mL or lower should be avoided. We 
recommend a timepoint of harvest after 5 generations of 
growth as this prevents a strong influence of the initial 
lag phase on the measured growth rates. However, for 
libraries that consist of primarily slow-growing variants, 
a shorter growth time is advised as the prolonged growth 
time can result in noisy data.

We do note that all these experiments were performed 
using rather small libraries. Although our findings should 
be generally applicable, it is essential to thoroughly plan 
every DMS assay beforehand and take into consideration 
potential additional sources of non-linearity that might 
come from different library sizes or properties of the pro-
teins screened.

Methods
Yeast strain
All experiments presented were performed in BY4742 
(MATα his3Δ1 leu2Δ0 lys2Δ0ura3Δ0).

Media and buffer recipes

• LB: 25 g/L Luria-Broth-Base (Invitrogen, Waltham, 
MA, USA). Autoclaved 20 min at 121 °C.

• LB-agar with 2X Ampicillin (100 μg/mL): 25 g/L 
Luria-Broth-Base (Invitrogen, Waltham, MA, USA), 
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Fig. 5 Growth rates are not independent of library composition. A Pairwise correlations of overlapping components between growth 
rates obtained from deepPCAs performed with different libraries. Scatter plots are shown in the bottom left panels, histograms are shown 
on the diagonal, and Pearson correlation coefficients are shown in the upper right panels. B Distributions of growth rates for individual components 
obtained from deepPCAs of slow‑growing, balanced and fast‑growing libraries
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7.5 g/L Agar, 1.2 g/L  MgSO4H2O. Autoclaved 20 min 
at 121 °C. Cool-down to 45 °C. Addition of 100 mg/L 
Ampicillin.

• YPAD:  20 g/L Bacto-Peptone, 20 g/L Dextrose, 10 
g/L Yeast extract, 25 mg/L Adenine. Filter-sterilized 
(Millipore Express ®PLUS 0.22 μm PES, Merck, 
Darmstadt, Germany).

• SC-ura: 6.7 g/L Yeast nitrogen base without amino 
acids, 20 g/L glucose, 0.77 g/L complete supplement 
mixture drop-out without uracil. Filter-sterilized 
(Millipore Express ®PLUS 0.22 μm PES, Merck, 
Darmstadt, Germany).

• SC-ura/ade/met: 6.7 g Yeast nitrogen base without 
amino acids and folic acid, 20 g/L glucose, 0.74 g/L 
complete supplement mixture drop-out without ura-
cil, adenine and methionine. Filter-sterilized (Mil-
lipore Express ®PLUS 0.22 μm PES, Merck, Darm-
stadt, Germany).

• SORB: 1 M sorbitol, 100 mM LiOAc, 10 mM Tris-
HCl pH 8.0, 1 mM EDTA pH 8.0. Filter-sterilized 
(Millipore Express ®PLUS 0.22 μm PES, Merck, 
Darmstadt, Germany).

• Plate mixture: 40 % PEG3350, 100 mM LiOAc, 10 
mM Tris-HCL pH 8.0, 1 mM EDTA pH 8.0. Filter-
sterilized (Millipore Express ®PLUS 0.22 μm PES, 
Merck, Darmstadt, Germany).

• Recovery medium: YPAD + 0.5 M sorbitol. Filter-
sterilized (Millipore Express ®PLUS 0.22 μm PES, 
Merck, Darmstadt, Germany).

• Standard competition medium: SC-ura/ade/met + 
200 μg/mL methotrexate (BioShop Canada Inc., Can-
ada), 2 % DMSO.

• DTT buffer: 0.1 M EDTA-KOH pH7.5, 10 mM DTT
• Zymolyase buffer: 20 mM K-phoshpate pH 7.2, 1.2 M 

sorbitol, 0.4 mg/mL Zymolyase 20T (amsbio, USbio-
logical), 100 μg/mL RNAse A

• Methotrexate (Sigma Aldrich/Merck, Darmstadt, 
Germany).

Plasmid
The libraries used in this study were derived from [11].

To study the effect of harvesting the cells after different 
growth generations, we used the exact same library as in 
[11]. For this, an intermediate library of all single amino 
acid variants of the JUN zipper region fused to the DHFR 
c-terminal half (referred to as FR-tag) and identifiable by 
24 bp randomly generated molecular barcodes was cre-
ated. Barcode and variants were associated as described 
in [11]. This library was combined with a pooled collec-
tion of plasmids carrying all 54 wt bZIPs fused to the 
DHFR N-terminal half (referred to as DH-tag) and iden-
tifiable by a Sanger sequencing-confirmed molecular 
barcode of 20 bp. The two intermediate libraries were 

cloned together using high-efficiency cloning and stand-
ard restriction enzyme-mediated cloning with enzymes 
AvrII (New England Biolabs, Ipswitch, MA) and HindIII-
HF (New England Biolabs, Ipswitch, MA) as described in 
[11]. For all barcodes, see Supplementary Tables 11 & 12.

The other experiments were performed with a sub-
library of the above one. A standard balanced library 
was created combining the full JUN variant prey library 
with 3 wt bZIPs as bait. These were chosen based on their 
wt interaction strengths with wt JUN that were derived 
from [11]. To achieve a library of balanced growth rate, 
the JUN library was combined with ATF7, a medium-
strength interactor of JUN, FOS, a strong interactor of 
JUN, and NFE2, a weak interactor of JUN, as bait using 
the same cloning strategy as above. This library was 
called balanced JUN library.

For testing different library compositions, two addi-
tional libraries were created. For a slow-growing library, 
the JUN variant library was combined with ATF7, NFE2 
and one additional weak interactor of JUN, ATF2, as bait. 
This library will be referred to as slow JUN library. For 
a fast-growing library, the JUN variant library was com-
bined with ATF7, FOS and one additional strong interac-
tor of JUN, JDP2, as bait. Again, the same cloning strategy 
as above and as described in detail in [11] was applied. 
This library will be referred to as fast JUN library.

deepPCAs
Large‑scale yeast transformation
Yeast cells of the strain BY4742 were grown to satura-
tion overnight in YPAD. For individual replicates, sin-
gle colonies were used to inoculate the culture. In the 
morning, different sizes of pre-culture were inoculated 
at an OD600 of 0.3 in 175 mL YPAD medium. The cells 
were grown for ca. 4 hours until they reached an OD600 
between 1.2 and 1.4. (Because of the larger library size, 
all volumes at each step in the different generation times 
deepPCA were doubled. The exact protocol for transfor-
mation of this library can also be found in [11].) Next, the 
cells were harvested for 5 min at room temperature (RT) 
and 3,000 g. The pellets were washed first with 50 mL 
H2O and then 50 mL SORB and finally resuspended in 
7 mL SORB and incubated on a wheel at RT for 30 min. 
To each sample, 175 ul of 10 mg/mL salmon sperm DNA 
(Agilent Technologies, Santa Clara, CA) were added, and 
the tubes were mixed well. Afterwards, DNA was added 
to the samples according to Table 1 followed by thorough 
mixing by shaking the tube.

Afterwards, 35 mL of Plate Mixture were added to 
each sample and the samples were incubated at RT on a 
wheel for another 30 min. 3.5 mL of DMSO were added 
to each sample followed by a 20 min-heatshock in a 42 
°C water bath. To ensure homogeneous distribution of 
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the heat within the sample, the tubes are inverted a few 
times after 1, 2.5, 5, 7.5, 10 and 15 min. The cells were 
then spun down for 5 min at RT and 3,000 rpm. After 
thorough removal of the liquids, they were resuspended 
in recovery medium and incubated for 1 hour at 30 °C 
without agitation. The recovered cells were finally spun 
down for 5 minutes at RT and 3,000 g, the supernatant 
was removed, and the pellet was resuspended in 350 mL 
of SC-ura for selection 1. Additionally, cells were plated 
on SC – ura plates for counting the amount of transfor-
mants. For measuring the percentage of double trans-
formants, cells were additionally plated of SC-leu and 
SC-ura-leu (see below). Selection 1 was grown for ca. 48 

hours until the cells reached saturation.

Measurement of percentage of double transformants
As plasmid with URA3 resistance, a plasmid derived 
from pRS416 [26] was used. As plasmid with LEU2 resist-
ance, we used a lab-internal plasmid called pDL00266 
that was derived from pRS415 [26] and was of simi-
lar size than pRS416 to facilitate equimolar mixing. An 
equimolar pool of the two plasmids was created and was 

transformed according to the protocol above. To measure 
the number of transformants and double transformants, 
different volumes of cells that would result in countable 
amounts of colonies on the plates were plated after trans-
formation according to Table 2 and grown for 2 days at 
30 °C. Additionally, selection 1 cultures of 350 mL were 
set up for all samples. Each sample was performed in 
duplicate.

After 2 days, the colonies on the plates were counted, 
the total amount of transformants per 350 mL selection 
culture was calculated and for each individual sample, 
the percentage of double transformants was calculated 
using eq. 1.

The averages of replicates and their standard deviations 
were calculated. The total number of transformants is 
represented by the denominator of equation 1 and corre-
sponds to the sum of transformants on the -ura and -leu 
selections. Since these both also include double transfor-
mants that would hence be counted twice since present 
on the two plates, we then subtract the number of double 
transformants counted on the -ura/leu plates. The num-
ber of double transformants on the numerator of equa-
tion 1 is multiplied by two based on the assumption that 

(1)2 × No. colonies on SC − ura − leu

No. colonies on SC − ura + No. colonies on SC − leu − No. colonies on SC − ura − leu
×100%

Table 1 Overview of DNA amounts and libraries used in individual experiments

Experiment Amount of DNA transformed per 175 mL 
per‑culture

Library used

Measurement of percentage of double transfo‑
mants

250 ng, 500 ng, 750 ng, 1 μg (details see below) Equimolar pool of similar sized plasmid back‑
bones with URA3 and LEU2 auxotrophic selection 
markers

Transformation with different amounts of DNA 
deepPCA

100 ng, 333 ng, 1 μg, 3 μg, 20 μg Balanced JUN library

Lag/no‑lag phase deepPCA 1 μg Balanced JUN library

Different MTX concentrations/brands, fitness 
effect in DMSO deepPCA

1 μg Balanced JUN library

Different generation times deepPCA 3.5 μg Full JUN vs. 54 wt bZIPs library [11]

Different library compositions deepPCA 1 μg Balanced JUN library, slow JUN library, fast JUN 
library

Table 2 Plating scheme for counting of double transformants directly after transformation

Sample no. DNA amount Plating SC ‑ URA and SC ‑ LEU Plating on SC ‑URA/‑LEU

1 250 ng 2 x 40 ul, 2 x 110 ul 2 x 400 ul, 2 x 1.1 mL

2 500 ng 2 x 35 ul, 2 x 100 ul 2 x 350 uL, 2 x 1 mL

3 750 ng 2 x 20 ul, 2 x 60 ul 2 x 200 ul, 2 x 600 ul

4 1 ug 2 x 10 ul, 2 x 50 ul 2 x 100 ul, 2 x 500 ul
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25% of double transformants received to ura plasmids, 
25% received two leu plasmids and 50% received one of 
each, which are the only ones that can be counted on the 
-ura/leu plates.

Next, the saturated cultures of selection 1 were meas-
ured and the number of cells required to inoculate 200 
mL of selection 2 in SC-ura-ade-met at OD600 of 0.1 was 
harvested. The cultures were inoculated and grown for 
ca. 12 hours until an OD of 1.2 was reached. Since there 
was no selection for the maintenance of the -leu plasmid 
alone and it was expected to only observe pRS415 plas-
mids in double transformants together with the pRS416-
derived plasmid, the second round of plating was only 
done on SC-ura and SC-ura-leu according to Table 3. The 
cells were again incubated at 30 °C for 2 days after which 
the colonies were counted and the total number of trans-
formants was calculated.

For colony numbers see Supplementary Table 1.
The percentage of double transformants was now cal-

culated using eq. 2.

The averages of replicates and their standard deviations 
were calculated.

Competition assay
All deepPCAs were started with selection 2: OD600 
of the saturated cultures of selection 1 was measured 
and the number of cells required to inoculate 100 mL 
of SC-ura-ade-met at OD600 0.1 was harvested and 
re-suspended in the prepared medium. For the screen 
comparing the different harvesting timepoints that was 
performed with a larger library, 2 L of selection 2 were 
inoculated. The cells were grown at 30 °C and 200 rpm 
for ca. 12 hours until they reached an OD600 of 1.2. 
According to the condition tested, the competition assays 
were then performed slightly differently.

(2)2 × No. colonies on SC − ura − leu

No. colonies on SC − ura − No. colonies on SC − ura − leu
× 100%

Transformation with different amounts of DNA 
and different library compositions
100 mL of competition medium were inoculated at 
OD600 0.05 and grown at 30 °C and 200 rpm until they 
reached an OD600 of about 1.6. The remaining cells from 
selection 2 were harvested at RT or 4°C for 5 min at 3,000 
OD, the pellet was washed twice with sterile H2O and 
then frozen at -20 °C. When the competition culture had 
reached the desired OD600, the cells were harvested in 
the same way and frozen.

lag phase vs. no lag phase
For the + lag phase sample, 100 mL of competition 
medium were inoculated at OD600 0.05 and grown 
at 30 °C and 200 rpm until they reached an OD600 of 
about 1.6. The remaining cells from selection 2 were 
harvested at RT or 4°C for 5 min at 3,000 OD, the pel-
let was washed twice with sterile  H2O and then frozen 
at -20 °C. For the - lag phase sample, the entire selection 
2 culture was used to inoculate 100 mL of competition 

medium and was incubated at 30 °C and 200 rpm for 2.5 
hours. From this pre-competition culture, another 100 
mL of competition medium were inoculated at OD600 
0.05 and grown at 30 °C and 200 rpm until they reached 
an OD600 of about 1.6. The remaining pre-competition 
culture was harvested as described above. All competi-
tion cultures that had reached the desired OD600 were 
harvested in the same way.

Different MTX concentration/brands/DMSO
The assay was performed as described in “Transforma-
tion with different amounts of DNA” above, but the com-
position of competition medium was slightly adjusted 
depending on the sample (Table 4). To make sure that the 
same amount of DMSO would be added to each sample 

Table 3 Plating scheme for counting of double transformants after selection 2

Sample no. DNA amount Plating SC ‑ URA Plating on SC ‑URA/‑LEU

1 250 ng 2 x 2 ul, 2 x 5 ul of 1/100 X diluted culture 2 x 200 ul of undiluted culture, 2 x 20 ul of undiluted culture, 2 x 2 ul 
of undiluted culture

2 500 ng 2 x 2 ul, 2 x 5 ul of 1/100 X diluted culture 2 x 200 ul of undiluted culture, 2 x 20 ul of undiluted culture, 2 x 2 ul 
of undiluted culture

3 750 ng 2 x 2 ul, 2 x 5 ul of 1/100 X diluted culture 2 x 200 ul of undiluted culture, 2 x 20 ul of undiluted culture, 2 x 2 ul 
of undiluted culture

4 1 ug 2 x 2 ul, 2 x 5 ul of 1/100 X diluted culture 2 x 200 ul of undiluted culture, 2 x 20 ul of undiluted culture, 2 x 2 ul 
of undiluted culture
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(2 mL), different stock concentrations of DMSO had 
been prepared beforehand.

Different generation times
To harvest cells at low generation times and still get a 
sufficiently high number of cells for the subsequent 
DNA extraction and sequencing library preparation, 
the competition cultures were inoculated at different 
OD600s as listed in Table 5.

2 L of competition medium were inoculated at the 
indicated OD600s from selection 2 culture and grown 
until they reached the desired OD600. They were then 
harvested as described above.

DNA extraction
We recently introduced a novel technique to extract 
plasmid DNA from yeast cells that gives us about 
10-times higher plasmid enrichment than the previous 
method as described in Diss & Lehner, 2018.

DNA from input and output samples was extracted 
by first spheroblasting the yeast cells followed by plas-
mid Mini- or Midiprep according to the culture size 
using Qiagen kits (QIAGEN, Hilden, Germany). To 
spheroblast the cells, pellets were thawed and incubated 
in 4 mL per 100 mL culture 0.1 M EDTA-KOH pH7.5, 
10 mM DTT at 30 °C and 180 rpm shaking for 15 min. 
The cells were harvested at RT and 2,500 g for 5 min 

and re-suspended in 4 mL per 100 mL culture of 0 mM 
K-phosphate pH7.2, 1.2 M sorbitol, 0.4 mg/ml Zymol-
yase 20T (amsbio, USbiological) and 100 ug/mL RNase 
A. Cells were incubated at 30 °C and 180 rpm shaking 
until spheroblasting was complete after approximately 
2 hours. Spheroblasts were collected at RT and 2,500 g 
for 5 min and then re-suspended in 1.6 mL per 100 mL 
culture homemade buffer P1 (according to the manu-
facturers protocol, QIAGEN, Hilden, Germany). 1.6 mL 
per 100 mL culture of homemade buffer P2 (according 
to the manufacturers protocol, QIAGEN, Hilden, Ger-
many) was added. The samples were mixed well by inver-
sion. Finally, 1.6 mL per 100 mL culture of pre-cooled, 
commercial buffer P3 (QIAGEN, Hilden, Germany) were 
added and the samples were again mixed well.

Miniprep for cultures of 100 mL
The mixtures were transferred to 5 mL reaction tubes 
(Eppendorf, Hamburg, Germany) and spun at max. speed 
for 20 min in a tabletop centrifuge. The supernatant was 
recovered and plasmid DNA was purified following the 
standard QIAprep Spin Miniprep Kit (QIAGEN, Hilden, 
Germany) protocol and eluted in 50 μl EB buffer.

Midiprep for cultures of 2L
The larger cultures were purified using a slightly adjusted 
Miniprep protocol as described in [11].

To quantify the amount of plasmid DNA in the 
extracts, qPCRs were performed using primers specific 
for the plasmid backbones (oGD241, oGD242. A plasmid 
of similar size to the library and known concentration 
was used to make a standard curve. The plasmid was pre-
diluted to 0.4 ng/ul and a dilution series of 6 sequential 
1/5 X dilution steps was performed in triplicate. qPCR 
was performed with the X SsoAdvanced Univeral SYBR 
Green Supermix (Bio-Rad Laboratories, Hercules, CA, 
USA) according to the manufacturers protocol.

Sequencing library preparation
A single round of PCR was performed using NEBNext® 
Multiplex Oligos for Illumina®(New England Biolabs, 
Ipswitch, MA) that anneal to the Illumina primer bind-
ing sites already present in the barcode region of the 
plasmid. Depending on the sequencing run type and the 
expected reads per sample, an at lest 10-fold excess of 
plasmid molecules over expected reads was used as tem-
plate for the PCRs. The libraries were amplified with Q5 
polymerase (New England Biolabs, Ipswitch, MA). 50 μl 
reactions were set up with the required number of plas-
mid molecules, 1 X Q5 reaction buffer, 0.25 μM primer 
mix, 200 μM dNTPs, and 0.5 μl Q5 polymerase. The PCR 
was run between 14 and 20 cycles, depending on the PCR 
efficiency of the individual sample, with an annealing 

Table 4 Concentration and brand of MTX used for different 
conditions in the deepCPA

Sample Name Final concentration / brand MTX

DMSO 0 μg/mL

1/20 X MTX 10 μg/mL, BioShop Canada Inc., Canada

1/4 X MTX 50 μg/mL, BioShop Canada Inc., Canada

1/2 X MTX 100 μg/mL, BioShop Canada Inc., Canada

1 X MTX 200 μg/mL, BioShop Canada Inc., Canada

2 X MTX 400 μg/mL, BioShop Canada Inc., Canada

1 X MTX Sigma 200 μg/mL, Sigma‑Aldrich, Merck, Darm‑
stadt, Germany

Table 5 Inoculation and harvest OD600 for different numbers of 
generations

Generations to grow until 
harvest

Inoculation OD600 OD600 
at 
harvest

2 0.2 0.8

3 0.1 0.8

4 0.05 0.8

4.5 0.05 1.2

5 0.05 1.6
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temperature of 63 °C and an extension at 72 °C for 30 sec-
onds. Amplicons were gel-purifed from a 1 % Agarose gel 
using the QIAquick Gel Extraction Kit (QIAGEN, Düren, 
Germany). After determining the concentration with 
Qubit (Invitrogen, Waltham, MA, USA), samples were 
pooled at equimolar ratios and the pool was purified 
once more using AMPure XP magnetic beads (Beckman 
Coulter, Indianapolis, IN) according to the manufactur-
ers protocol using a 1:1 ratio of beads and sample. As a 
final quality control, qPCR was performed on the pool 
to confirm the concentration measured with Qubit using 
the KAPA Library Quantification Standards with Primer 
(Roche Sequencing Solutions Inc, Pleasanton, CA), and 
the fragment distributions were checked on a Bioanalyzer 
(Agilent Technologies, Santa Clara, CA). The final library 
was submitted for sequencing on an Illumina sequencer 
(different sequencers were used, namely NovaSeq, HiSeq, 
NextSet, and MiSeq; all from Illumina, San Diego, CA). 
50 bp single-end sequencing was performed in all cases 
to cover the barcode region. To increase sequencing, 
PhiX phage library was spiked into the library at varying 
amounts between 10 and 25 %.

Data analysis
Raw read counts were processed and transformed into 
count tables using the mutscan R package [27]. Sam-
ples with an average Phred score below 20 and incorrect 
amplicon structure were discarded at this step. After-
wards, the sequences were matched with the barcode 
table and only perfect matches were kept. All barcodes 
belonging to the same variant were summed up and 
finally, all rows containing less than 10 reads in any input 
or less than 1 in any output were discarded. For each pair, 
growth rates were calculated using eq. 3.

Modes of the growth rates were calculated using a cus-
tom function in R that takes the y values of a density as 
input and identifies modes by comparing each element to 
its neighbors. If an element is greater than both its pre-
ceding and succeeding elements, it is considered a mode.

Figures were created in R Studio and Adobe Illustrator. 
All counts and average growth rates can be found in Sup-
plementary Tables 2 to 10 as indicated in the main text.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864‑ 024‑ 10524‑7.

Supplementary Material 1.

(3)log2(
countsOut/sum(countsOut)

countsIn/sum(countsIn)
) + log2 (

ODOut

ODIn
) )/growth time[hours]

Supplementary Material 2.

Supplementary Material 3.

Supplementary Material 4.

Supplementary Material 5.

Supplementary Material 6.

Supplementary Material 7.

Supplementary Material 8.

Supplementary Material 9.

Supplementary Material 10.

Supplementary Material 11.

Supplementary Material 12.

Supplementary Material 13.

Supplementary Material 14.

Supplementary Material 15.

Supplementary Material 16.

Code availability
All custom scripts will be provided upon requests

Authors’ contributions
AMB and GD conceptualized the project. KS and AMB performed all the 
experiments with support from DK, KS and KKG. AMB analyzed the data. AMB 
and GD interpreted the results. AMB and GD wrote the manuscript.

Funding
This work was supported by the Novartis Research Foundation and SNF 
Project grant 197593.

Availability of data and materials
Deep sequencing data is available at GEO with accession number GSE245485.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare they have no conflict of interest.

Received: 14 November 2023   Accepted: 14 June 2024

References
 1. Fowler DM, Fields S. Deep mutational scanning: A new style of protein 

science. Nat Methods. 2014;11:801–7.
 2. Fowler DM, Stephany JJ, Fields S. Measuring the activity of protein 

variants on a large scale using deep mutational scanning. Nat Protoc. 
2014;9:2267–84.

https://doi.org/10.1186/s12864-024-10524-7
https://doi.org/10.1186/s12864-024-10524-7


Page 16 of 16Bendel et al. BMC Genomics          (2024) 25:630 

 3. Sahni N, Yi S, Taipale M, Fuxman Bass JI, Coulombe‑Huntington J, Yang F, 
et al. Widespread Macromolecular Interaction Perturbations in Human 
Genetic Disorders. Cell. 2015;161:647–60.

 4. Starita LM, Young DL, Islam M, Kitzman JO, Gullingsrud J, Hause RJ, et al. 
Massively parallel functional analysis of BRCA1 RING domain variants. 
Genetics. 2015;200:413–22.

 5. Diss G, Lehner B. The genetic landscape of a physical interaction. Elife. 
2018;7:1–31.

 6. Faure AJ, Domingo J, Schmiedel JM, Hidalgo‑Carcedo C, Diss G, Lehner 
B. Mapping the energetic and allosteric landscapes of protein binding 
domains. Nature. 2022;604:175–83.

 7. Moesslacher CS, Woodsmith J, Auernig E, Feichtner A, Jany‑Luig E, Jehle 
S, et al. Missense variant interaction scanning reveals a critical role of the 
FERM‑F3 domain for tumor suppressor protein NF2 conformation and 
function. Life Sci Alliance. 2023;6:1–16.

 8. Heyne M, Shirian J, Cohen I, Peleg Y, Radisky ES, Papo N, et al. Climbing 
up and down Binding Landscapes through Deep Mutational Scanning 
of Three Homologous Protein‑Protein Complexes. J Am Chem Soc. 
2021;143:17261–75.

 9. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, et al. 
Deep Mutational Scanning of SARS‑CoV‑2 Receptor Binding Domain 
Reveals Constraints on Folding and ACE2 Binding. Cell. 2020;182:1295‑
1310.e20.

 10. Ernst A, Gfeller D, Kan Z, Seshagiri S, Kim PM, Bader GD, et al. Coevolution 
of PDZ domain‑ligand interactions analyzed by high‑throughput phage 
display and deep sequencing. Mol Biosyst. 2010;6:1782–90.

 11. Bendel A, Faure A, Klein D, Shimada K, Kempf G, Cavadini S, et al. The 
genetic architecture of protein interaction affinity and specificity. bioRxiv. 
2023;2023.10.17.562688.

 12. Pelletier JN, Campbell‑Valois F‑X, Michnick SW. Oligomerization domain‑
directed reassembly of active dihydrofolate reductase from rationally 
designed fragments. PNAS. 1998;95:12141–6.

 13. Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames 
I, et al. An in vivo map of the yeast protein interactome. Science. 
2008;320:1465–70.

 14. Remy I, Michnick S. Clonal selection and in vivo quantitation of protein 
interactions with protein‑fragment complementation assays. PNAS. 
1999;96:5394–9.

 15. Tareen A, Kooshkbaghi M, Posfai A, Ireland WT, McCandlish DM, Kinney 
JB. MAVE‑NN: learning genotype‑phenotype maps from multiplex assays 
of variant effect. Genome Biol. 2022;23:98.

 16. Tokuriki N, Tawfik DS. Stability effects of mutations and protein evolvabil‑
ity. Curr Opin Struct Biol. 2009;19:596–604.

 17. Otwinowski J. Biophysical inference of epistasis and the effects of muta‑
tions on protein stability and function. Mol Biol Evol. 2018;35:2345–54.

 18. Fraser HB, Plotkin JB. Using protein complexes to predict phenotypic 
effects of gene mutation. Genome Biol 8, R252 (2007). https:// doi. org/ 10. 
1186/ gb‑ 2007‑8‑ 11‑ r252.

 19. Kinney JB, Murugan A, Callan CG, Cox EC. Using deep sequencing to 
characterize the biophysical mechanism of a transcriptional regulatory 
sequence. PNAS. 2010;107:9158–63.

 20. Weng C, Faure AJ, Lehner B. The energetic and allosteric landscape for 
KRAS inhibition. bioRxiv. 2022;2022.12.06.519122.

 21. Wei H, Li X. Deep mutational scanning: A versatile tool in systematically 
mapping genotypes to phenotypes. Front Genet. 2023;14:1–9.

 22. Zhang Z, Moo‑Young M, Christi Y. Plasmid Stability in Recombinant Sac‑
charomyces cerevisiae. Biotechnol Adv. 1996;14:401–35.

 23. Diss G, Gagnon‑Arsenault I, Dion‑Coté A‑M, Vignaud H, Ascencio DI, 
Berger CM, et al. Gene duplication can impart fragility, not robustness, in 
the yeast protein interaction network. Science. 2017;355:630–4.

 24. Faure AJ, Schmiedel JM, Baeza‑Centurion P, Lehner B. DiMSum: An 
error model and pipeline for analyzing deep mutational scanning data 
and diagnosing common experimental pathologies. Genome Biol. 
2020;21:1–23.

 25. Rubin AF, Gelman H, Lucas N, Bajjalieh SM, Papenfuss AT, Speed TP, et al. 
A statistical framework for analyzing deep mutational scanning data. 
Genome Biol. 2017;18:1–15.

 26. Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains 
designed for efficient manipulation of DNA in Saccharomyces cerevisiae. 
Genetics. 1989;122:19–27.

 27. Soneson C, Bendel AM, Diss G, Stadler MB. mutscan ‑ a flexible R package 
for efficient end‑to‑end analysis of multiplexed assays of variant effect 
data. Genome Biol. 2023;24:1–22.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1186/gb-2007-8-11-r252
https://doi.org/10.1186/gb-2007-8-11-r252

	Optimization of a deep mutational scanning workflow to improve quantification of mutation effects on protein–protein interactions
	Abstract 
	Background
	Results and discussion
	A yeast transformation protocol with minimal double transformants and optimized library coverage
	Increasing concentration of MTX results in higher but linear selection strength
	The lag-phase at the start of the competition non-linearly affects growth rates
	The choice of harvesting timepoint is another source of non-linearities
	Library composition

	Conclusions
	Methods
	Yeast strain
	Media and buffer recipes

	Plasmid
	deepPCAs
	Large-scale yeast transformation
	Measurement of percentage of double transformants
	Competition assay
	Transformation with different amounts of DNA and different library compositions
	lag phase vs. no lag phase
	Different MTX concentrationbrandsDMSO
	Different generation times
	DNA extraction
	Miniprep for cultures of 100 mL
	Midiprep for cultures of 2L
	Sequencing library preparation
	Data analysis

	References


