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Abstract

Background: Spontaneous tumors in dog have been demonstrated to share many features with their human
counterparts, including relevant molecular targets, histological appearance, genetics, biological behavior and response to
conventional treatments. Mammary tumors in dog therefore provide an attractive alternative to more classical mouse
models, such as transgenics or xenografts, where the tumour is artificially induced. To assess the extent to which dog
tumors represent clinically significant human phenotypes, we performed the first genome-wide comparative analysis of
transcriptional changes occurring in mammary tumors of the two species, with particular focus on the molecular
pathways involved.

Results: We analyzed human and dog gene expression data derived from both tumor and normal mammary samples.
By analyzing the expression levels of about ten thousand dog/human orthologous genes we observed a significant overlap
of genes deregulated in the mammary tumor samples, as compared to their normal counterparts. Pathway analysis of
gene expression data revealed a great degree of similarity in the perturbation of many cancer-related pathways, including
the 'PI3K/AKT', 'KRAS', 'PTEN', 'WNT-beta catenin' and 'MAPK cascade'. Moreover, we show that the transcriptional
relationships between different gene signatures observed in human breast cancer are largely maintained in the canine
model, suggesting a close interspecies similarity in the network of cancer signalling circuitries.

Conclusion: Our data confirm and further strengthen the value of the canine mammary cancer model and open up new
perspectives for the evaluation of novel cancer therapeutics and the development of prognostic and diagnostic
biomarkers to be used in clinical studies.
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Background

The availability of predictive preclinical animal models
for human breast tumours represents a major challenge in
breast cancer research. In vivo mouse models such as
xenografts and transgenics, although widely used, have
been demonstrated to fail in recapitulating essential fea-
tures of human breast cancers such as heterogeneity,
tumour microenvironment and dependence on steroid
hormones [1,2]. Besides the intrinsic evolutionary dis-
tance between mice and humans, additional differences
can originate from induced genetic modifications (trans-
genic mice) or from the altered presence of adjacent nor-
mal tissue, stromal cells, vasculature and immune system
components (xenografts) [3-7]. Together these factors
translate into a limited value of these mouse models for
the study of cancer pathogenesis, progression and ther-
apy, and represent a major obstacle to the identification of
reliable predictive molecular biomarkers and the develop-
ment of effective therapeutic agents [1,8].

However, during the last few years, along with the
sequencing of the entire dog genome (99% complete,
~2.5 billion base pairs) and the clear evidence of its close
similarity with the human genome [9], the dog has
emerged as an attractive alternative model for cancer
research [9]. For many gene families and in particular
those associated with cancer, the similarities between dog
and human gene sequences have been found to be much
closer than the respective counterparts in mouse [10].
Molecular cytogenetic analysis of canine tumour cells
derived from haematological malignancies revealed the
retention of ancestral chromosomal aberrations in com-
parable cancers of human and dog [11,12]. In mammary
carcinomas, altered expression of the ERBB2 and TP53
genes were observed to be similar in the two species, sug-
gesting similar roles in carcinogenesis and potential use as
prognostic indicators [13-15]. It was also observed that
similar mutations in oncogenes can result in different can-
cers in humans and dogs. For example, similar mutations
in KIT, a tyrosine kinase growth factor receptor, have been
identified in both human gastrointestinal stromal
tumours (GIST) and dog mast-cell cancers [16]. Moreover,
comparative histological analyses indicate that the intra-
tumoural (cell-to-cell) heterogeneity observed in human
breast tumours also occurs in the cognate dog tumors
[17]. The natural consequences of this heterogeneity
underlie the deadly features of human cancers, namely
acquired resistance to therapy, recurrence and metastasis.

Additional and more general considerations have contrib-
uted to the increased interest in the dog as a preclinical
model. Dogs have a large body size and are relatively out-
bred as compared to other laboratory animals, therefore
providing a genetic diversity similar to that seen in
humans [9]. Spontaneous cancers in dogs develop in the
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context of a natural immune system where the tumor and
its microenvironment are syngeneic. Unlike mice, dogs
share a common environment with humans and are
exposed to some of the same carcinogens [18]. Moreover,
compared to humans, the shorter life span of dogs facili-
tates the study of mammary tumours that develop after a
few years instead of decades. Finally, as in humans, pro-
gesterone treatment, advancing age, obesity and diet, rep-
resent risk factors for mammary tumour development in
dogs [9].

In this study we present the first genome-wide analysis of
transcriptional changes occurring in the mammary
tumours of dog, including a comparative analysis with
respect to human breast tumors. Starting from independ-
ent human and dog microarray studies, changes in gene
expression levels were compared following the mapping
of the orthologous genes represented across both array
platforms. By unsupervised analysis, we show that cluster-
ing is predominantly driven by the origin of the samples
(tumour/normal) rather than by species (dog/human),
indicating a close overall transcriptional similarity
between tumours in both systems. A significant number
of genes differentially expressed in human breast
tumours, compared to normal human samples, were also
found deregulated in the canine model. Moreover, a path-
way-focused analysis of these genes revealed a large degree
of similarity in the up- and down-regulation of several
cancer related pathways.

We have also addressed the comparison of human and
dog tumours from a more systemic perspective, by explor-
ing the networks of transcriptional relationships existing
between different gene signatures. Various prognostic and
oncogenic signatures, derived from independent human
breast cancer studies, were collected from the literature
and their expression relationships were examined in
human breast tumours. We show that many of these sig-
natures, although developed within different experimen-
tal settings and contexts, exhibit coordinated patterns of
expression. By performing the same analysis on the dog
tumour samples, we observed that these relationships are
largely maintained, thus suggesting a close interspecies
similarity in the network of cancer signalling circuitries
governing the establishment and the progression of the
tumour.

Collectively our data confirm and strengthen the value of
the dog as a suitable model for studying breast cancer,
including the development of prognostic molecular
biomarkers and the evaluation of novel cancer therapeu-
tics.
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Results

Data

The dog gene expression data set consists of microarray
data from 33 mammary samples, comprising 7 healthy
and 26 diseased samples. All samples were extracted from
a total of 10 animals, each animal bearing one or more
tumors.

All dog carcinomas were assigned to grade 1, according to
diagnostic criteria proposed by the World Health Organi-
zation (WHO) [19]. For the purpose of the study, canine
samples were grouped in four classes (from 0 to 3), repre-
senting increasing levels of aggressiveness (see Additional
file 1), as follows. Class 0: 7 normal samples; class 1: 3
'hyperplastic/dysplastic lesions' (representing benign pro-
liferative lesions) and 2 'benign tumors'; class 2: 2 'in situ
carcinomas' (malignant tumor with a better prognosis as
compared to other malignant lesions) and 2 ‘tubular car-
cinomas' (showing well differentiated morphology and
no evidence of infiltration); class 3: 6 'simple carcinomas'
and 11 'complex carcinomas' (representing aggressive
forms of malignant tumors). For simplicity, classes 0, 1, 2
and 3 are respectively, referred to in the text as 'normal’,
'benign’, 'intermediate’ and 'malignant’ samples.

The human data set consists of 129 samples, including 68
malignant tumors and 61 matched adjacent normal sam-
ples. Human tumors were classified according to TNM
classification [20] in stages 1-4, with 3 tumor samples
belonging to stage 1, 51 to stage 2, 13 to stage 3 and 1 to
stage 4 (see Additional file 2).

cluster 1
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Microarray experiments were run on two different custom
designed, double channel Agilent microarray platforms
(25K probes for human and 44K probes for dog). Both
data sets used a pool of normal samples as a common
baseline sample, respectively derived from human and
dog samples (see Methods). For each sample, gene expres-
sion ratio values were calculated by comparing the indi-
vidual sample (tumor or normal) with the respective
common baseline.

Gene expression analysis of dog mammary tumours

To characterize the overall diversity between individual
dog samples, we performed an unsupervised hierarchical
clustering of all 33 dog samples, arbitrarily assigned to
three major classes: 'normal’, 'benign and intermediate
tumors' and 'malignant tumors' (Figure 1). The first bifur-
cation of the hierarchical clustering dendrogram identifies
two clusters of samples, which represent non-random dis-
tributions of normal and malignant samples from the
complete population. Normal samples are over-repre-
sented in cluster 1 (hypergeometric test; P = 4 x 10-%), seg-
regating into the same sub-cluster, while malignant
tumors are over-represented in cluster 2 (hypergeometric
test P = 1.1 x 103). Interestingly, samples from the
'benign and intermediate tumor' class were evenly distrib-
uted across the two clusters, as expected by their interme-
diate phenotype falling between 'mormal' samples and
'malignant tumors'. Genes differentially expressed in the
three sample groups were then identified by ANOVA anal-
ysis. Using a conservative g-value threshold of 0.001, a list
of 1043 genes was selected (see Additional file 3). Accord-
ing to their patterns of expression, six groups of genes

Dog - Malignant
Dog - Intermediate
Dog - Benign

Dog - Normal

cluster 2

aesT AT AlA

Figure |

Unsupervised hierarchical clustering of dog samples. Unsupervised hierarchical clustering of 33 dog samples based on a
subset of 2008 most variable genes selected using a filter of three-fold change or more on at least three samples. Samples are
colored according to pathological classification and numbered according to the individual dog origin.
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could be identified (Figure 2). Each group was analyzed
separately by gene set enrichment analysis (see Methods
and Additional file 3).

Group A: 442 genes down-regulated in 'benign-intermediate tumors'
and 'malignant tumors' as compared to 'normal’'

Genes in this group are enriched for lipid metabolism
related genes (P = le-5), PPAR-alpha targets (P = 3e-6)
and genes related to activation of the MAPK pathway (P =
0.0028), including the ELK3 transcription factor. Accord-
ing to our data (see below) and previously reported data
[21], ELK3 expression is also decreased in human breast
carcinoma. Moreover, ELK3 down-regulation was

Benign-

Normal Intermediate

Malignant

(a) (b)
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observed in malignant mesothelioma [22] and cervical
cancer cells [23], thus suggesting a potential role as a
tumor suppressor.

Group B: 94 genes down-regulated in 'malignant tumors' as
compared to ‘normal’

This group is enriched for genes involved in protein kinase
CK2 activity (P = 0.0002), double stranded break repair (P
= 0.0004), constituents of cytoskeleton (P = 0.0002) and
WNT receptor signaling pathway (P = 0.0070). Amongst
them are two genes of the CK2 complex: the CK2beta reg-
ulatory subunit, reported to inhibit cell proliferation [24]
and the CK2alpha2 catalytic subunit (CSNK2A2) [25].

Mitosis

94

29

284

@

Protein kinase CK2 activity

NHEJ mechanisms of DSBs repair
Alpha-adrenergic receptor activity

442 Cytoskeletal part

Whnt receptor signaling pathway
Extracellular matrix structural protein
TGF- Signaling

Growth factor activity

Leukocyte chemotaxis

Ras Oncogenic Pathway Signature Genes

ECM remodeling

Pan-tumor hypoxia signature
Chemokines and adhesion

Protein metabolic process

30 RNA processing

Ribosome biogenesis and assembly
Negative regulation of transcription
164 VEGF-family signaling

Pre-mRNA processing

RNA metabolic process

Nucleic acid transport

RNA binding

Nuclear transport

Biopolymer metabolic process
Toll-like receptor signaling pathway
Interferon Signaling

Cell proliferation

Immune and inflammatory response

p-value
Gene Set AlB|C|D|E[F] M p<0.0001
PPAR-alpha targets [l p<0.005
Cellular lipid metabolic process [] p<0.05
Activation of MAPKK activity

Figure 2

Identification of gene classes in canine mammary samples. (a) Hierarchical clustering of dog samples based on a sub-
set of 1043 genes selected by |-way ANOVA (g-value < 0.001). For display purposes, samples in each class (normal, intermedi-
ate-benign, malignant) were clustered separately and arranged from normal (left) to malignant (right). Genes were grouped in
six groups according to their pattern of expression (see description in the text) and hierarchically clustered separately. The
gene size of each group is indicated to the right of each cluster. (b) Graphical representation of the significance of gene set
enrichment for the six gene groups described in (a). Enrichment scores are computed by one-sided Fisher's exact test, using
the entire set of orthologous genes represented on both human and dog microarray platforms as the reference population.
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Group C: 29 genes up-regulated in 'normal' and 'benign-intermediate
tumors' as compared to ‘'malignant tumors'

This group is enriched for structural components of the
extra-cellular matrix (ECM) (P = 0.0003) and growth fac-
tor activity (p = 0.0048) related genes represent the dom-
inant feature of this group. In humans, the expression of
ECM genes in breast cancer is known to be related to the
clinical outcome [26]. The lower expression of structural
components of the ECM in tumors, coupled with the
increased expression of genes involved in ECM remode-
ling observed in group D (see below), is likely to contrib-
ute to the creation of a favorable microenvironment for
tumor invasion. Growth factor related genes down-regu-
lated in tumour samples are: BMP4, found to inhibit the
tumorigenic potential of human brain tumor initiating
cells[27]; MAP2K2, a regulator of G1/S transition [28] and
LTBP4, reported to be down-regulated in human mam-
mary adenocarcinoma [29];

Group D: 30 genes up-regulated in 'malignant tumor' as compared
to 'benign-intermediate tumors' and 'normal’

A significant overlap was observed with genes of the KRAS
oncogenic pathway, (P = 0.0036), the hypoxia signature
(P=0.0012), ECM remodeling (P = 0.0002) and chemok-
ines and adhesion (P = 0.0003). Genes in the KRAS onco-
genic pathway include interleukin-8 (IL8), a member of
the CXC chemokine family and a key player in the activa-
tion of the inflammatory response. IL8 is secreted by a
large number of tumors, including breast [30], and its
expression is reported to be modulated by hypoxia [31-
33].

Group E: 164 genes up-regulated in 'malignant tumor' as compared
to 'normal'

This group is enriched for genes associated with increased
proliferative activity such as RNA processing (P = 0.0014),
RNA binding (P = 0.0013), ribosome biogenesis (P =
0.0016). VEGF-family (P = 0.0069) and Toll-like receptor
(P = 0.0445) signaling pathways were also found to be
enriched in this set. The VEGF-family signaling pathway is
activated in tumors, well known to induce the formation
of new blood vessels and its inhibition leads to the stasis
or even regression of the tumor [34]. The Toll-like recep-
tor (TLR) signaling pathway is known to promote the
malignant transformation of normal epithelial cells in
various tumors (reviewed in [35]).

Group F: genes up-regulated in 'malignant tumors' and 'benign-
intermediate tumors' as compared to 'normal' (284)

This group shares many of the enrichments observed in
the previous group E, indicating that the major biological
"themes" distinguishing malignant from normal tissues
are also present in the less aggressive tumors represented
in the "benign and intermediate" class. In addition to
group E, this group was found enriched in cell prolifera-
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tion genes (P = 0.0046), genes responsible for the
immune and inflammatory response (P = 0.0020) and
genes involved in interferon signaling (P = 7e-5). The list
includes eight genes known to be modulated by inter-
feron levels in human: CXCL16, IFI44, IFNAR1, IFNAR2,
IFNGR2, ISG15, MX1, and STAT?2. Specific enrichment of
immune-related genes in group F probably reflects the
presence of lymphocytes infiltrating both "benign and
intermediate” and "malignant" tumor classes as com-
pared to their normal tissue counterparts. However, as
previously reported, a significant proportion of these
genes might also originate in breast tumor cells and not be
due exclusively to stromal infiltration [36].

Unsupervised clustering analysis of dog and human
samples

The overall similarity between dog and human samples
was analyzed using the unsupervised principal compo-
nent analysis (PCA) of dog and human samples. The anal-
ysis was performed including the expression values of
9.963 genes identified as orthologous between the two
species and represented on the respective microarray plat-
forms (see Methods).

All 162 samples from the two species were projected onto
the first three principal components (Figure 3). The first
component captures most of the variability (31%) and
drives the separation of tumor and normal samples of
both species. An additional 7% and 6% of the total varia-
bility is captured by the second and the third principal
components, respectively, which instead drive the separa-
tion of groups of normal and tumor samples within each
species. As evident from Figure 3, general differences in
tumor/normal characteristics of the samples dominates
with respect to the dog/human species membership. The
species separation is however clearly evident within the
group of normal samples while being less pronounced in
the group of tumors, most likely because of the higher het-
erogeneity of these samples as compared to healthy nor-
mal tissue. Noticeably, one canine (M6b) tumor clusters
in the group of normal samples. In absence of additional
information, this could supposedly be explained by a par-
ticular cellular composition of this sample, where the epi-
thelial compartment is under-represented with respect to
the stromal part.

To identify the most relevant biological 'themes' driving
the separation of tumor and normal samples and repre-
sented on the first PC, genes most correlated with this axis
were analyzed by gene set enrichment analysis (Addi-
tional file 4 and Figure 3).

Consistent with the previous analysis run on dog samples
only, genes with higher expression in tumors (positive
correlation with first PC) were found to be enriched for
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*« ECM

+» Cell-matrix adhesion

» Cell communication

* TGF-B receptor pathway

Principal component analysis of human-dog combined dataset. Results of principal component analysis based on the
subset of 9,963 human-dog orthologous genes. The 162 samples were projected on the first three principal components that
capture ~44% of the total variability. Three main sample clusters are highlighted in colors. Cluster A contains the majority of
human and dog tumors. Cluster B is a sub-cluster of cluster A and contains mostly 'benign' and 'intermediate' dog tumors.
Cluster C includes almost all normal samples from human and dog. The genes contributing the most to the first principal com-
ponent analysis were analyzed by genes set enrichment analysis and enriched gene sets (p < 0.05) were selected. Results are
summarized along the grey arrow. Among the others, cell cycle (P = 6e-9) and DNA replication (P = 7e-6) emerged as
enriched gene sets (up-regulated in both species tumors and listed on the right side of the arrow), as well as extracellular
matrix (P = 0.0025), cell matrix adhesion (P = 0.0078), cell communication (P = 0.0207), TGF-f3 receptor signaling pathway (P
=0.0115) (down-regulated in both species tumors and listed on the left side of the arrow).

cell cycle (P = 6e-9) and DNA replication (P = 7e-6)
related genes.

Conversely, genes with higher expression in normal sam-
ples (negative correlation with first PC) were enriched for
genes related to the extracellular matrix (P = 0.0025), cell
matrix adhesion (P = 0.0078), cell communication (P =
0.0207) and TGF-B receptor signaling pathway (P =

0.0115). Interestingly, the nine dog tumors classified as
'benign' and 'intermediate’ cluster somewhere in between
tumor and the normal samples in the PCA space, along
the first principal component. This observation is consist-
ent with the biology of low aggressive tumors, which
maintain some of the biological features of the normal tis-
sue counterpart such as low proliferation rate and limited
vascularization.
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Comparative analysis of deregulated genes and pathways
in human and dog mammary cancer

By using the Student's t-test we separately identified for
human and dog, those genes globally deregulated in
tumors as compared to their normal counterparts (Figure
4 and Additional file 5). To allow for a consistent compar-
ison between human and dog, samples classified as
'benign' or 'intermediate' were excluded from the t-test
analysis of the dog data set. Out of the set of 9.963 orthol-
ogous genes, 1.259 genes were identified as significantly
up-regulated in dog tumors (g-value < 0.001) and many
of them (717, hypergeometric test p = 9e-62) were also
up-regulated in human tumor samples. Similarly, of the
773 genes down-regulated in dog tumors, a significant
number (343, hypergeometric p = 1e-16) were also down-
regulated in the human tumour samples. Thus, the analy-
sis reveals the presence of a shared core of genes com-
monly deregulated in both human and dog mammary
tumors. Although statistically significant, we believe this
number of 'core genes' represents only a conservative esti-
mate. This is most likely due to the limited size of the dog
data set, which results in the reduced power of the t-test

Human

T up-regulated

l down-regulated

Figure 4

http://www.biomedcentral.com/1471-2164/10/135

used for the identification of differentially expressed
genes. The large overlap between genes deregulated
(either up or down) in dog and human can also be appre-
ciated in a heat map representation including data from
both species, after hierarchical clustering (Figure 5) [37-
41].

By gene set enrichment analysis we attempted to identify
those gene sets or pathways showing a global deregulation
in tumor samples as compared to their normal counter-
parts (see Methods).

We defined as "up-" or "down-regulated" those gene sets
or pathways statistically enriched in the list of genes up- or
down-regulated, respectively, in tumors (the complete
results are available in Additional file 6). As expected, a
large part of the pathways showing up-regulation in
tumors from both species are related to increased prolifer-
ating activity and to the general reorganization of cells
observed in many tumor types (Figure 6). In particular, we
observed gene sets related to cell cycle (S phase, M/G1,
G1/S), protein and RNA transport (including RAN medi-

Dog

p-value = 9e-62

p-value = 1e-16

Up and Down regulated genes in Human and Dog. Venn diagrams representing up- and down-regulated genes in human
and dog mammary tumors. On the right side, the Fisher's exact test p-values of the overlaps are reported.
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Figure 5

Hierarchical clustering of human-dog combined dataset. Clustering of the combined gene expression data for 33 dog
(17 malignant, 5 benign and 4 intermediate) and 129 human (68 malignant and 6 | normal) breast samples. A subset of 600 most
variable genes was selected (see Methods for details). Samples in each class (dog normal, benign, intermediate and malignant
samples, and human normal and malignant samples) were hierarchically clustered separately based on the Pearson correlation
coefficients, and then columns were ordered based on class membership. Genes were hierarchically clustered based on Pear-
son correlation coefficients. The histograms at the bottom represent for each sample (column) the respective signature score
values [37-41] (see Methods).

ated), nucleotide and nucleic acid metabolism and trans-  dinately impairing cell differentiation, adhesion to the
port, DNA repair and metabolism. extracellular matrix and cell-cell communication [42,43].

More specific sets of genes emerging as perturbed in both
Conversely, gene sets and pathways related to cell and tis- human and canine mammary tumors are described in
sue development, cell matrix adhesion and cell communi-  more detail below.

cation emerged as being down-regulated. These findings
are consistent with the notion that silencing of these proc-
esses favors tumour cell invasion and migration by coor-
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Figure 6

Gene set enrichment analysis of tumor deregulated genes. Results of gene set enrichment analysis carried out on the
tumor deregulated genes independently identified in dog and human datasets. Enrichment p-values are computed using the
Fisher's exact test. A selection of the gene sets enriched (p < 0.05) in both human and canine datasets is shown.

Commonly up-regulated gene sets/pathways

Gene signature of breast cancer initiating cells

a group of genes identified as being differentially
expressed in a population of tumor initiating cells
(CD44+CD24-) as compared to normal breast epithelium
[44]. The up-regulation of this gene set provides indirect
evidence of the presence of tumor initiating cells in both
species tumor samples. If confirmed by experimental val-
idation, this result would promote dog as a suitable
model also for the study of breast tumor initiating cells.

Expression signature of KRAS2 mediated lung cancer
KRAS2 (KRAS) is a signal transduction GTPase, turned
permanently on by somatic mutation in many cancers,

including breast [45,46]. This group of genes was found to
be controlled at the transcriptional level by signaling
events downstream of the activated form of the KRAS
oncogene [45]. The activation of this gene set is consistent
with the observed up-regulated levels of KRAS in tumors
from both species and with the up-regulation of pathways
such as 'PI3K/AKT' downstream of KRAS (see below).

Signature of PTEN loss of function in human breast cancers

the 'PTEN loss of function' signature was identified in
human breast tumors lacking PTEN protein expression
[47]. Since loss of PTEN implicates strong activation of the
'PI3K/AKT" pathway, the up-regulation of this group of
genes as a whole represents a marker of the activation of
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the 'PI3K/AKT' pathway. This pathway is an important
regulator of cell proliferation and survival and its aberrant
activation has been associated to the development and
progression of a number of cancers [47].

Role of AKT in hypoxia induced HIF | activation (PI3K/AKT)
amongst many cellular processes, the 'PI3K/AKT' pathway
[48] activates a number of genes involved in the activation
of HIF1, with direct HIF1A activation preceding the
hypoxia-induced activation that only occurs when the
growing cells outstrip the available oxygen supply. HIF1A,
up-regulated in both tumor types, is a central player in the
adaptation to hypoxia and known to be frequently acti-
vated in different tumors [48].

Cancer module Lymphoma and immune response expression
clusters and Interferon signaling

although the up-regulation of these gene sets could be the
consequence of lymphocyte infiltrates present in the sam-
ples, the intrinsic up-regulation of immune related genes
in the tumor itself has also been reported [36].

Regulation of RACI activity and RAN regulation pathway

RAN and RAC1 are two other members of the GTPase
KRAS superfamily and, like KRAS, are involved in many
cellular processes, including the cell cycle, cell-cell adhe-
sion, motility and of epithelial differentiation [49]. The
observed up-regulation of this gene set, together with the
activation of the KRAS activity signature, reiterates the
important roles in tumor development and maintenance
for different members of the KRAS superfamily of both
species.

Commonly down-regulated gene sets/pathways
WNT-receptor signaling pathway (WNT-beta catenin)

this pathway describes a complex network of proteins
known for their important role in embryogenesis and nor-
mal physiological processes in adult animals and with a
central role in cancer [50]. Although the pathway is
known to be globally activated in many tumors [50] here
we observe - consistently both in human and dog - a
down-regulation of many pathway components. How-
ever, a closer look at the respective genes reveals that
many of them (SFRP5 [51], WISP3 [52], DKK4 [53], FRZB
[54] and JUP [55]) are antagonists of the 'WNT-beta cat-
enin' pathway, thus exerting a tumor suppressor role in
normal conditions. Down-regulation of the antagonistic
components of the "WNT-beta catenin' pathway in breast
cancer has been reported [50,56]. Interestingly, WNT4
and WNT5A are down- and up-regulated in both species,
respectively. This inverse deregulation has been observed
to be associated with the epithelial-mesenchymal transi-
tion in human squamous carcinoma cells, a developmen-
tal event central to cancer progression [57].

http://www.biomedcentral.com/1471-2164/10/135

MAPKKK cascade

mitogen-activated protein (MAP) kinases are serine/thre-
onine-specific protein kinases that respond to extracellu-
lar stimuli and regulate various cellular activities, such as
gene expression, mitosis, differentiation, and cell survival/
apoptosis [58]. The MAPK signaling pathway involves a
complex network of interactions between proteins,
including the activation of the KRAS protein and the inac-
tivation of various components of the cellular apoptotic
machinery. The following genes were observed down-reg-
ulated in both dog and human tumors: ELK3, known to
play a role in the activation of MAPK activity and
decreased mRNA expression was already observed in
breast cancer cells [21,59,60]; CNKSRI known to act as
tumor suppressor in KRAS-induced apoptosis and to neg-
atively regulate cell proliferation [61]; GPS2, a G protein
pathway suppressor which modulates cellular signaling
pathways and enhances p53-induced apoptosis [62];
QARS, a component of aminoacyl-tRNA synthetase mul-
tienzyme complex which exerts an anti-apoptotic effect by
binding and inhibiting MAP3K5, a kinase that plays a key
role in apoptosis [63].

Analysis of relationships between the expression patterns

of prognostic and oncogenic signatures

To get a comprehensive view of possible relationships
existing between various cancer related signatures in the
human and dog mammary tumors, we closely analyzed a
large and heterogeneous compendium of published tran-
scriptional signatures, all related to breast cancer. The sig-
natures composing the compendium were defined in
independent studies using different methodologies and
cancer models, including human primary breast tumors,
tumors from transgenic mice, and in vitro cell lines (Table
1) [37-41,64-73]. Six signatures were developed in the
context of prognostic or diagnostic studies ('prognostic'
signatures) while eighteen were reported to monitor the
activation status of pathways associated to oncogenesis
(‘oncogenic' signatures). While being derived independ-
ently, each of the signatures can be represented as a set of
genes whose up-or down-regulation is associated with a
given phenotype, such as the activation/engagement of a
pathway or a defined clinical prognosis. Because the clin-
ical phenotype of a tumour is closely related to the under-
lying biology and ultimately depends on the activation
status of a complex network of oncogenic genes and path-
ways, the distinction between 'oncogenic' and 'prognostic'
signatures has to be intended as purely indicative. To pro-
vide a metric that can be uniformly applied to all signa-
tures, we defined a simple quantitative 'signature score' by
using for each sample the weighted average of the gene
expression levels of all genes composing a signature (see
Methods). Setting this metric allowed us to investigate all
pair wise relationships between different prognostic sig-
natures, both in human and dog tumor samples. For each
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Table I: Oncogenic and prognostic gene signatures
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Signature Type Model system

Akt Majumder 2004 Oncogenic  Transgenic mouse prostate over-expressin human AKT |

Androgen Chen 2004 Oncogenic  Treatment of LNCaP prostate cells with R1881

Androgen DePrimo 2002 Oncogenic  Treatment of LNCaP prostate cells with R1881

fB-catenin Bild 2006 Oncogenic  Adenovirus infection of human primary mammary epithelial cells (HMECs)
Cell cycle Whitfield 2002 Oncogenic  Synchronized Hela cell cultures

CyclinD| Lamb 2003 Oncogenic  Adenovirus infection of MCF-7 breast cancer cells

E2F3 Bild 2006 Oncogenic  Adenovirus infection of human primary mammary epithelial cells (HMECs)
EGFR Creighton 2006 Oncogenic  Stable transfection of MCF-7 breast cancer cells

Hypoxia Chi 2006 Oncogenic  Human cells from different tissues

MAPK Creighton 2006 Oncogenic  Stable transfection of MCF-7 breast cancer cells

MEK Creighton 2006 Oncogenic  Stable transfection of MCF-7 breast cancer cells

Myc Bild 2006 Oncogenic  Adenovirus infection of human primary mammary epithelial cells (HMECs)
Myc Coller 2000 Oncogenic  Conditional Myc-estrogen receptor fusion protein in human primary fibroblast cells
Rafl Creighton 2006 Oncogenic  Stable transfection of MCF-7 breast cancer cells

Ras Bild 2006 Oncogenic  Adenovirus infection of human primary mammary epithelial cells (HMECs)
Src Bild 2006 Oncogenic  Adenovirus infection of human primary mammary epithelial cells (HMECs)
Tamoxifen Chanrion 2008 Oncogenic  Human primary breast tumors

PTEN Saal 2007 Oncogenic  Human primary breast tumors

70 poor prognosis van't Veer 2002 Prognostic ~ Human primary breast tumors

ERBB2 Creighton 2006 Prognostic  Stable transfection of MCF-7 breast cancer cells

Grade |-3 Ivshina 2006 Prognostic ~ Human primary breast tumors

Proliferation signature Dai 2005 Prognostic ~ Human primary breast tumors

Wound Chang 2004 Prognostic ~ Response to serum exposure in fibroblasts from ten anatomic sites

pair wise comparison the genes common to the respective
signature pair were excluded from the computation of
Pearson's correlation. This way we insured that signature
correlation values were not driven by intrinsically similar
gene contents. Starting with the analysis of the prognostic
signatures, we observed that most pairs are positively cor-
related with each other in the human tumor data set
(Pearson's correlation > 0.48, P value < 0.0001) (Figures 5
and 7). In some cases, these results reproduce what was
also observed elsewhere, regarding the relationships
between 'Wound' signature and poor prognosis [41],
'Hypoxia' and poor prognosis [71], Proliferation' and
'Van't Veer' signatures [37].

Similar relationships were observed in the dog tumor
samples, again underlining the close resemblance of the
dog tumor samples to their human counterparts (Figures
5 and 7). To establish how prognostic and oncogenic sig-
natures are related in the two species, the same analysis
was extended to the complete set of signatures of the com-
pendium, including now also the 'oncogenic' signatures.
Each signature was split into the up- and the down-regu-
lated arm and, after computing all pair wise correlations
independently for human and dog samples, signature
were clustered accordingly and the results represented in
the form of squared heat maps (Figure 8 and Additional
files 7 and 8). Coherent clusters of closely correlated sig-
natures emerged, visible in tumours of both species. Look-
ing more closely at the results, it can be noticed that
signatures monitoring the same pathway, for example

'Myc' and 'Response to androgens' represented by two
independently developed signatures, cluster close to each
other, as expected.

Three major clusters of signatures showing close recipro-
cal correlations are visible in both tumor types (Figure 8).
'Down', or 'Up' arms of the 'SRC',' B-catenin', 'MEK,
'ERBB2' and 'androgen' (both arms) signatures appear in
cluster 1 in agreement with previous studies on the respec-
tive pathways. For example, ERBB2 and MEK (MAP2K1
and MAP2K2) are part of the larger 'MAPK pathway' [70]
related to the response to androgens [74] and it is there-
fore unsurprising that these three signatures appear to be
co-regulated. Likewise, the 'SRC' and 'B-catenin’ pathways
are known to be co-regulated in breast cancer and associ-
ated with poor survival [67,75]. Most signatures initially
defined as 'prognostic'’ (‘'Van't Veer', 'Gradel-Grade3',
'Proliferation’, 'Wound'), appear in cluster 2, together
with additional signatures such as 'Cell Cycle', 'Cyclin
D1', 'Resistance to Tamoxifen' and 'PTEN'. This cluster
therefore mirrors the reciprocal association between loss
of PTEN and cancer progression, cell cycle, poor prognosis
and resistance to Tamoxifen [37-41]. Moreover, the pres-
ence of both the 'Myc' and the 'Wound' signature in clus-
ter 2 is consistent with the notion that activation of the
Wound signature in primary breast cancer is prominently
associated with over-expression of MYC due to gene on
chromosome arm 8q [76]. The 'ERBB2' signature,
although present in cluster 1, nevertheless shows strong
correlation with other prognostic signatures, as expected
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Relationships between prognostic signatures. Scatter plots showing the pair wise relationships between the prognostic
signatures. For each signature the score was calculated as the weighted average of the expression level of the genes in the sig-
nature (see Methods). To compensate for the possibility that different signatures might show high correlation merely as a
result of a common gene composition, the overlapping genes between each signature pair were not taken into account in the
computation of the scores. Each point in the scatter plots represents a single tumor analyzed in the human and the dog dataset,
respectively represented by squares and triangles. The Pearson's correlations and the corresponding p-values between each
pair of expression signatures across the human (n = 68) and canine (n = 26) tumor datasets are indicated in each panel.

for the important role of ERBB2 over-expression in cancer
prognosis [77]. Cluster 3 contains co-regulations of the
'Response to androgens' and 'MAPK' signatures, whose
corresponding pathways are also reported to be correlated
[74]. In addition, the 'Rafl’, 'EGFR' and 'E2F3' signatures
also fall into this cluster, confirming their known associa-
tions with the MAPK pathway[74]. Most importantly, the
same reciprocal pair wise correlations were maintained in

the two species, providing again strong evidence for a con-
served relationship between the underlying networks of
genes related to the establishment, progression and clini-
cal outcome of breast tumors.

Discussion
We present the first genome-wide comparative analysis of
transcriptional changes occurring in spontaneous mam-
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Correlation between prognostic and oncogenic signatures. Heat map representation of the pair wise Pearson's corre-
lations between a selection of "oncogenic" and "prognostic” signatures described in Table 1. (a) Hierarchical clustering of signa-
tures based on the pair wise correlation in human tumor samples. (b) Pair wise Pearson's correlations in the dog tumor dataset
are represented. Signatures are ordered as in (a). In yellow are highlighted the three major clusters of correlated signatures

described in the text.

mary tumors of human and dog. Accumulation of multi-
ple mutations and alterations in cancer genomes
promotes the deregulation of individual genes and com-
plex cell-signaling pathways controlling essential cellular
functions such as proliferation, differentiation and apop-
tosis. To assess the extent to which deregulation of these
processes are similar in canine and human mammary
tumors, we have used gene expression analysis following
an "incremental" approach. Starting from the analysis of
individual genes, the analysis was extended to explore glo-
bal perturbations in gene pathways and ultimately to
establish global relationships between large sets of cancer
related gene signatures. Shifting the focus from individual
genes to pathways and gene signatures allows for a more
comprehensive and interpretable view of human and dog
tumors. In addition, it compensates for the limited resolu-
tion of the dog data set, caused by the reduced sample size
and by the intrinsically lower quality of the canine micro-
array. In fact, more recently assembled genomes like that
of dog tend to have a lower quality of gene annotation
translating into lower microarray data quality due to miss-
ing or incorrectly designed gene probes. By using a high-
level multi-gene-focused analytical approach we believe
we have overcome many of these potential limitations.
Our analysis provides a global picture of oncogenic path-

way deregulation and establishes a relationship between a
large panel of cancer-related gene signatures in tumors of
both species. By applying principal component cluster
analysis we have shown the global transcriptional profiles
of both tumor types to be dominated by their tumor/nor-
mal origin and, only to a minor degree, by their species
membership. This analysis also revealed clear evidence for
a close similarity between human and dog tumors regard-
ing the perturbation of many cancer-related gene sets and
pathways. Examples are 'PI3K/AKT', 'KRAS', 'PTEN,
'WNT-beta catenin' and 'MAPK signaling' pathways, as
well as a group of genes specific of human tumor initiat-
ing cells (CD44+CD24-). Since pathway deregulation is
closely linked to sensitivity to therapeutic agents targeting
components of the pathway [67], our data emphasize the
high potential value of the dog as a preclinical model to
test therapeutic agents targeting pathways commonly
deregulated in mammary tumors of the two species.
Importantly, the close similarity observed between the
tumors should also greatly facilitate the development of
biomarkers to evaluate and measure drug response. An
ultimate proof will however have to await experimental
data confirming that signatures developed in dog main-
tain their predictive value in a human cancer setting. In
the present study we tried to provide a preliminary answer
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to this question by systematically exploring the expression
level of a large set of breast cancer related gene signatures
derived from human tumors in samples from dog mam-
mary tumors. The advantage of such an analytical
approach is two-fold: firstly, it allows the unbiased discov-
ery of new relationships between different oncogenic and
prognostic transcriptional signatures; secondly, it opens
the possibility of assessing on a high level how relation-
ships and deregulations of pathways and signatures are
maintained across difference cancer settings. Our results
show that most of the prognostic signatures are strongly
correlated with each other, both in human and dog
tumors. Despite different gene compositions and different
approaches used for their development, these signatures
apparently track common sets of biological features
present in tumors of both species. We further show that
relationships observed in the human tumors, e.g. activa-
tion of an oncogenic pathway and prognostic outcome,
can be monitored by the respective gene signatures con-
served in the dog tumor samples. This suggests the same
networks of signaling circuitries govern the biology of
mammary cancer in the two species and that signatures
derived from human breast tumors are likely to monitor
equivalent biological phenomena in the corresponding
canine tumors. Importantly, our data also suggest the pos-
sibility of the reverse path, i.e. the development of tran-
scriptional biomarkers in dogs to be applied subsequently
to humans.

Conclusion

These results provide the basis for considering spontane-
ous canine mammary tumors as a valuable and predictive
model for human breast cancer. If confirmed by addi-
tional experimental efforts, this data would open up the
possibility to perform in a more systematic and, most
importantly, more predictive way, the preclinical develop-
ment of cancer therapeutics and associated biomarkers of
drug response.

Methods

Canine and human mammary samples

The canine dataset consists of 26 tumors (17 malignant, 5
benign and 4 intermediate) and 7 normal mammary
glands from 10 different donors. Tumors derived from the
same animal were always extracted from different glands.
Detailed pathological information for each canine sample
are available in Additional file 1.

The 33 canine mammary tissues samples were classified
applying the diagnostic criteria proposed by the World
Health Organization (WHO) [19] while histological grad-
ing was performed according to [78]. Therefore, the over-
all grade was obtained assessing three morphological
features: degree of tubular formation, degree of nuclear
and cellular pleomorphism, and mitotic count. Morpho-
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logical diagnosis allowed identification of normal mam-
mary glands (7 samples), hyperplastic/dysplastic lesions
(3 samples), adenomas (2 samples), and malignant
tumours (17 samples). All samples were snap-frozen in
liquid nitrogen after collection.

Samples were assigned to 4 different classes, as follows
(see Additional file 1): Class 0: 'normal' samples; Class 1:
'hyperplastic/dysplastic lesions' (representing benign pro-
liferative lesions) and 'adenomas' (benign tumors); Class
2: 'in situ carcinomas' (malignant tumor with a better
prognosis as compared to other malignant lesions) and
‘tubular carcinomas' (showing well differentiated mor-
phology and no evidence of infiltration); Class 3: 'simple
carcinomas' and ‘complex carcinomas' (representing
aggressive forms of malignant tumors). Classes 0, 1, 2 and
3 are respectively referred in the text as 'normal’, 'benign’,
'intermediate' and 'malignant’' samples.

The human dataset included 68 infiltrating ductal mam-
mary carcinoma and 61 adjacent non-involved tissues.
After surgical removal, only samples with greater than
70% tumor cells were retained. Information regarding
tumor stage and percentage of tumor cells are provided in
Additional file 2. All samples were snap-frozen in liquid
nitrogen after collection. Human samples were purchased
from Genomics Collaborative, Inc., which was acquired
by SeraCare Life Sciences. The samples were appropriately
consented for the purposes of our study, in compliance

with the Helsinki Declaration http://www.wma.net/e/
policy/b3.htm (see Additional files 9 and 10).

Collection of dog samples was submitted for approval to
IRBM TACUC (Institutional Animal Care & Use Commit-
tee) and then to the Italian Regulatory Agency for
approval (Italian Ministry of Health). IRBM is in compli-
ance with European Legislation for the Protection of Ani-
mal Used for Experimental & Scientific Purposes (EEC 86/
609) and received FULL AAALAC Accreditation with no.
1242. All samples were obtained from client-owned
bitches undergoing routine mastectomy. To obtain the
histological samples, no experimental protocols were
applied. Nevertheless, a written informed consent was
obtained from all dog owners.

Microarray experiments

RNA was isolated, labelled and hybridized as in [40].
Briefly, total RNA was isolated with RNAzolB and finally
dissolved in RNase-free water. Then 25 pg of total RNA
was treated with DNase using the Qiagen RNase-free
DNase kit and RNeasy spin columns. Total RNA was dis-
solved in RNase-free water to a final concentration of 0.2
pg/ul. cRNA was generated by in vitro transcription using
T7 RNA polymerase on 5 pg of total RNA and labelled
with Cy5 or Cy3 (Cy Dye, Amersham Pharmacia Biotech).
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5 ug of labelled-RNA from each sample were co-hybrid-
ized with 5 pg of a normal reference pool, consisting of an
equal amount of cRNA extracted from mammary healthy
samples of the corresponding species.

Labelled cRNAs were fragmented to an average size of 50—
100 nucleotides by heating the samples to 60°C with 10
mM of zinc chloride and then adding an hybridization
buffer containing 1 M NaCl, 0.5% sodium sarcosine, 50
mM MES, pH6.5, and formamide to a final concentration
of 30%. The final volume was 3 ml at 40°C.

The human samples were hybridized on a Human 25K
array containing 23,720 unique probes for ~21,000
human genes. Canine samples were hybridized on a Dog
44k array containing 39,558 unique probes correspond-
ing to ~30,000 canine genes. Based on 3' end distance and
cross-hybridization in-silico assessment, potentially unre-
liable probes were removed from the analysis. This filter
yielded a final number of 28,541 and 17,888 probes for
dog and human respectively. The selection of reliable
probes was done using the genomic assembly hg18 and
canFam2 for human and dog respectively. The array
designs Human 25k (v 3.0 A1) and Dog 44k 1.0 were sub-
mitted to GEO with accessions GPL3991 and GPL7198
respectively. Both human and dog arrays were manufac-
tured by Agilent (Agilent Technologies Inc., Santa Clara,
CA, USA). The probes were 60 bp in length and were
selected based on the oligonucleotide probe design pro-
gram [79]. Each sample was hybridized in duplicate with
fluor reversal to systematically correct for dye bias. After
hybridization, slides were washed and scanned using a
confocal laser scanner (Agilent Technologies). The inten-
sities obtained after scanning were quantified, back-
ground-corrected and normalized. Expression changes
between each sample (tumours and normals) and the cor-
responding normal reference pool were quantified as the
log,, of the expression ratio. The Rosetta error model [80]
was applied to dye-swapped pairs of hybridizations to
compute a weighted average ratio per gene and the corre-
sponding p-value indicating the probability a gene is
falsely classified as deregulated. All microarray data were
submitted as a unique data series to GEO, with accession
GSE14999.

Clustering of canine mammary samples

Prior to clustering the dog mammary dataset was filtered
for non variable genes by removing those genes that
showed significant changes in expression (fold-change > 3
or < 1/3) in less than 3 samples. For each gene, fold
change was calculated as the ratio between each sample
and the corresponding normal reference pool. Therefore
for human samples the fold change was the ratio against
the pool of human normal samples while for the dog sam-
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ples the fold change was the ratio against the pool of dog
normal samples.

Using these criteria, 2,008 genes were selected for an aver-
age linkage hierarchical clustering based on Pearson cor-
relation coefficients. The overrepresentation of normal,
benign-intermediate and malignant samples in each clus-
ter was assessed by hypergeometric test.

Identification of group-specific genes in canine mammary
samples

Starting from the whole set of 28541 reliable dog probes,
we selected the genes differentially expressed among the
three groups of samples (M, malignant; I-B, intermediate
and benign; N, normal) by applying one-way ANOVA test
on gene expression ratio values, calculated against the ref-
erence pool of normal samples. The resulting p-values
were corrected for multiple testing by converting them
into the corresponding g-values using the qvalue package
[81] of the R statistical programming language [82]. The
g-value corresponds to the false discovery rate (FDR).
Therefore a g-value threshold of 0.001 implies that 0.1%
of the genes identified as differentially expressed are false
positive. Using the conservative g-value cutoff of 0.001 we
selected 1043 genes (Additional file 3). The selected genes
have then been submitted to t-test, in which genes were
individually tested for up- or down-regulation in each
class of samples against the others. In this way it was
determined in which sample class each selected gene was
found to be differentially expressed. Genes could there-
fore be classified in 6 groups, according to their pattern of
expression. For display purposes, the groups of samples
(M, I-B and N) and genes (A to F) were clustered sepa-
rately using an average linkage hierarchical clustering and
the Pearson correlation as similarity measure.

Combining human and dog datasets

To compare human and dog datasets, we have identified
the set of genes orthologous between the two species.
Based on conservative criteria (E-value of homolog rela-
tionship < 1E-10; the homologous gene is the best BLAST
match in both species; conserved synteny), we defined a
set of 9,963 orthologs (the ratio Tumor vs Pool of Nor-
mal, the error and the corresponding p-value for the com-
bined dataset are available as Additional files 11, 12 and
13). Prior to combining the dog and human datasets for
hierarchical clustering, we selected the subset of most var-
iable genes having a three fold-change (or greater) in at
least 3 human and dog samples. This filter yielded 600
orthologs. Genes were then standardized (mean 0 and
standard deviation 1) independently in each dataset.
Finally, the combined dataset was clustered using an aver-
age linkage algorithm based on Pearson correlation coef-
ficients.
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Identification of tumour deregulated genes

Differences in average gene expression between the set of
malignant tumours and normal samples were computed
independently in the human and canine datasets by t-test.
P-values were adjusted for multiple comparisons and
genes differentially up- or down- regulated compared to
the normal counterpart (q-value < 0.001) were identified.
Canine samples classified as intermediate or benign were
removed from the analysis.

Gene set enrichment analysis

Groups of genes identified in previous steps were com-
pared to annotated gene sets in order to identify the func-
tional classes that were significantly over-represented.
Enrichment p-values were computed according to the
Fisher's exact test. A total number of about 12,000 anno-
tated gene sets were obtained from publicly available
sources (Gene Ontology [83], KEGG [84], Interpro [85],
Panther [86], oPOSSUM [87]), gene sets of relevance to
cancer taken from published references
[37,39,44,45,68,88-92]) and commercial sources
(GeneGo (GeneGo Inc., St Joseph, MI, USA), Ingenuity
(Ingenuity Systems Inc, Mountain View, CA, USA),
TRANSFAC [93]).

In light of a number of considerations, we decided to use
and report the uncorrected p-values and do not correct for
multiple testing. First, the effective number of gene sets
effectively taken into account to generate the presented
results is significantly lower the complete set used to run
the automated analysis. Second, there is a very high degree
of overlap between different gene sets. Third, as we also
demonstrated in the signature correlation analysis, many
gene sets are closely related to each other in terms of tran-
scription. As a consequence, single tests performed on the
individual gene sets are strongly dependent on each other,
violating the assumption of independence required by
standard correction methods such as 'Bonferroni', 'Holm'
and 'FDR'. Thus in this context, standard correction for
multiple testing would have resulted as too conservative.
To be noticed also that most of the discussed pathways
have a p-value much lower than the standard threshold of
0.05.

Computation of the pair wise correlations between
prognostic and oncogenic signatures

We analyzed the expression patterns of 24 published tran-
scriptional signatures of breast cancer collected from dif-
ferent studies (see Table 1 for details). All signatures
include genes up- and down-regulated. A signature is then
composed of one or two 'arms', containing perturbed
genes either down- and up-regulated. In the analyses
shown in Figures 5 and 7 a global 'signature score' was
assigned to each sample by using the weighted average of
the gene expression level of all the genes of the signature.

http://www.biomedcentral.com/1471-2164/10/135

For each gene, the weight was respectively -1 and +1
depending whether the gene was part of the down- or the
up-regulated arm of the signature. In the analysis of Figure
8, when signatures were composed of two arms, individ-
ual arm scores were computed and analyzed separately for
each sample, by averaging the corresponding gene expres-
sion levels.

In all correlation analyses pair wise Pearson correlations
between signatures were computed independently for the
human and dog datasets, after removing the normal sam-
ples. For each signature pair, genes in common were
excluded from the computation of the scores. In this way
we insured that observed correlations could not be
ascribed to a similar gene composition of the different sig-
natures.

In Figure 8 all signature arms were clustered using the cal-
culated correlation values and the clustering results were
represented as squared heat maps.
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Additional material

Additional file 1

Description of 33 canine mammary samples. Pathological information
and classification (normal, benign, intermediate, malignant) of 33
canine mammary samples extracted from 10 different animals. Malig-
nant mammary tumours were further classified based on the tumour
aggressiveness in M1 (infiltrating/solid), M2 (simple) and M3 (com-
plex).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S1.xls]

Additional file 2

Description of 129 human mammary samples. Information regarding
sample classification, tumour size, tumour stage and percentage of tumor
cells of the 129 human mammary samples.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S2 xls]
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Additional file 3

List of 1043 group-specific genes selected by ANOVA in dog dataset. —
worksheet '1043 ANOVA': genes identified as differentially expressed
among the three groups of dog mammary samples (M, malignant; I-B,
intermediate-benign; N, normal) (ANOVA, g-value < 0.001). - work-
sheet 'enrichment analysis': results of the gene set enrichment analysis sep-
arately run on each of the six groups identified based on their pattern of
expression.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S3.xls]

Additional file 4

Identification of genes most correlated to the 1st principal component
and results of gene set enrichment analysis. Results of the gene set
enrichment analysis of the genes most correlated to the 1+ principal com-
ponent. The correlations of the genes with the 15 principal component
were transformed to SDs from the mean, then genes with values > 1.5
(positive correlation) or < -1.5 (negative correlation) were selected. These
genes were analyzed separately by gene set enrichment analysis.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S4 xls]

Additional file 5

Tumour deregulated genes in human and dog datasets. Genes identi-
fied as differentially expressed between tumor and pool of normal samples
in human and dog datasets (t-test, g-value < 0.001).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S5.xls]

Additional file 6

Gene set enrichment analysis of tumor deregulated genes. Results of
gene set enrichment analysis of tumor deregulated genes in human and
dog. Gene sets that were enriched (p < 0.05) in at least one dataset are
shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S6.xls]

Additional file 7

Correlation between prognostic and oncogenic signatures in human
breast tumors. Graphical representation of the pair wise Pearson correla-
tion in the human tumor dataset between all the "oncogenic" and "prog-
nostic" signatures described in Table 1. Signatures are ordered by
agglomerative hierarchical clustering based on Pearson coefficients.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S7.tiff]

Additional file 8

Correlation between prognostic and oncogenic signatures in canine
mammary tumors. Graphical representation of the pair wise Pearson cor-
relation in the canine tumor dataset between all the "oncogenic" and
"prognostic" signatures described in Table 1. Samples are ordered accord-
ing to the hierarchical clustering computed on human tumors (Additional
file 9).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S8.iff]

Additional file 9

Consent guidelines. Guidelines followed by Genomics Collaborative, Inc.
for obtaining patients informed consent.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S9.doc]

Additional file 10

Consent Module. Informed consent module delivered by Genomics Col-
laborative, Inc to patients who contributed to the collection human tissue
samples.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-510.doc]

Additional file 11

Log10 of the ratio Tumor vs Pool of Normal for 9,963 dog-human
orthologous genes. Contains a tab-delimited file with the normalized
log, jratio for the 9,963 dog-human orthologous genes across the 162 sam-
ples.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S11.zip|

Additional file 12

Error associated to the log10 of the ratio Tumor vs Pool of Normal for
9,963 dog-human orthologous genes. Tab-delimited file with the error
associated to the log,ratio for the 9,963 dog-human orthologous genes
across the 162 samples.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-S12.zip|

Additional file 13

Rosetta p-value associated to the log10 of the ratio Tumor vs Pool of
Normal for 9,963 dog-human orthologous genes. Tab-delimited file
with the Rosetta p-values of differential expression for the 9,963 dog-
human orthologous genes across the 162 samples.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-135-513.zip]
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