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Abstract
Background: The mature mouse oocyte contains the full complement of maternal proteins
required for fertilization, reprogramming, zygotic gene activation (ZGA), and the early stages of
embryogenesis. However, due to limitations of traditional proteomics strategies, only a few
abundantly expressed proteins have yet been identified. Our laboratory applied a more effective
strategy: one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D SDS-
PAGE) and reverse-phase liquid chromatography tandem mass spectrometry (RP-LC-MS/MS) were
employed to analyze the mature oocyte proteome in depth.

Results: Using this high-performance proteomic approach, we successfully identified 625 different
proteins from 2700 mature mouse oocytes lacking zona pellucidae. This is the largest catalog of
mature mouse oocyte proteins compiled to date. According to their pattern of expression, we
screened 76 maternal proteins with high levels of mRNA expression both in oocytes and fertilized
eggs. Many well-known maternal effect proteins were included in this subset, including MATER and
NPM2. In addition, our mouse oocyte proteome was compared with a recently published mouse
embryonic stem cell (ESC) proteome and 371 overlapping proteins were identified.

Conclusion: This proteomics analysis will be a valuable resource to aid in the characterization of
important maternal proteins involved in oogenesis, fertilization, early embryonic development and
in revealing their mechanisms of action.

Background
Mammalian reproduction is a complicated physiological
process involving many important events, such as genera-
tion of mature gametes, fertilization, zygotic gene activa-
tion (ZGA), and embryonic development. Thus far, the
key molecules and mechanisms involved in these events
remain poorly characterized. Mammalian oocytes, a

highly specialized cell type, play unique roles in reproduc-
tion because only in these cells are maternal proteins and
transcripts crucial for the above-mentioned processes.

During oogenesis, oocytes synthesize and accumulate a
number of maternal proteins. Some of them function in
the formation of follicles and/or the growth of the
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oocytes, including, Figα, GDF9, and BMP15 [1-3]. How-
ever, many maternal proteins stored in oocytes play signif-
icant roles in later stages, namely fertilization and early
embryogenesis. The corresponding genes are called mater-
nal effect genes [4], and we call the proteins they code for
maternal effect proteins. Maternal effect genes/proteins
have been shown to be important in early embryonic
development of Drosophila melanogaster and Xenoupus lae-
vis [5,6]. Several maternal-effect genes/proteins have
recently been identified in mammals, and their impor-
tance in embryonic development has also been demon-
strated. MATER (Maternal antigen that embryos require;
official name Nlrp5) is one of the first characterized
maternal effect proteins in mice, the absence of which pre-
cludes embryonic progression beyond the 2-cell stage [7].
Npm2 is another well characterized maternal effect pro-
tein, which is required for nuclear and nucleolar organiza-
tion during embryonic development [8]. Much research
has been done to identify maternal effect genes or pro-
teins essential for preimplantation or postimplantation
mouse embryo development. Dppa3, Padi6, Tle6 and
Floped were successfully identified in individual studies
[9-11], but there remain many unknown players. There-
fore, the identification and molecular characterization of
novel maternal proteins will be of great significance and
novel proteomic technologies can potentially deduce
most of the maternal proteins in mature oocytes.

There are several recent reports utilizing proteomics
approaches to the study of ooctyes, including the explora-
tion of the bovine, pig and mouse oocyte proteomes [12-
16]. For example, Calvert et al. identified 8 highly abun-
dant heat shock proteins (HSPs) and related chaperones
in the mature mouse egg by two-dimensional electro-
phoresis (2DE) [15]. Vitale et al. used 2DE and mass spec-
trometry (MS) to identify 12 proteins that appeared to be
differentially expressed between germinal vesicle (GV)
and metaphase II (MII) murine oocytes [16]. In our previ-
ous work that demonstrated post-translational modifica-
tions of maternal proteins, we used a similar approach to
perform large-scale protein identification in mature
mouse oocytes, and we successfully identified a total of
380 different proteins corresponding to 869 proteins
spots [17]. The 2DE platform is valuable to analyze heter-
ogeneity of proteins in the forms of alternative splicing,
post-translation modifications, etc [18,19]. Although 2DE
continues to be a very popular tool for studying the pro-
teome, it has some limitations in identifying proteins that
have either high or low molecular masses, those with
extreme isoelectric points (pIs), those are highly hydro-
phobic, and those of low abundance [20]. 1D SDS-PAGE
liquid chromatography tandem mass spectrometry (LC-
MS/MS)a combination of 1DE protein separation and LC-
MS/MS analysishas been used widely and is generally
accepted as a more effective method of studying the pro-

teome [21,22]. It is technically simple and combines
improved protein separation capability that also captures
those proteins typically not accessible via 2D PAGE (nota-
bly large proteins and those with transmembrane
domains) with the well-established sensitivity of gel-
based protein identification using MS for less complex
samples [23]. For the purpose of identifying novel mater-
nal proteins, we employed this high-performance pro-
teomic approach to analyze proteins extracted from 2700
mature mouse oocytes lacking zona pellucidae and we
successfully identified 625 different proteins. The mater-
nal protein compilation provided here is intended to
serve as an important tool for expanding our knowledge
of the regulation of multiple processes in mammalian
reproduction.

Results
Identification of Mature Oocyte Proteins
The mouse oocyte zona pellucida (ZP) is a thick extracel-
lular coat containing, on average, ~3.5 ng of glycoprotein
which contributes approximately 15% of the total egg
protein [24]. Given that high-abundance proteins may
interfere with the identification of other proteins, the ZP
was removed by treating with acid Tyrode solution [25].
In total, 2700 ZP-free MII oocytes were collected and the
integrity of the oocytes was checked rigorously according
to the criteria outlined in the Materials and Methods to
ensure only morphologically normal oocytes were chosen
for further research (Figure 1). Oocytes passing these
selection criteria were lysed and their proteins were sepa-
rated by 1D SDS-PAGE. The gel was then cut into 29 slices,
proteins were in-gel digested with trypsin, and the result-
ing peptides extracted from each gel slice were analyzed by
automated reverse phase LC (RP-LC) coupled with MS/
MS. From 29 LC-MS/MS runs, a total of 42711 MS/MS
spectra were acquired and searched against the IPI Mouse
database v3.30 by SEQUEST. To experimentally verify the
false discovery rate (FDR) in our dataset, all output files
were searched against the reversed IPI Mouse database,
yielding an FDR of ~1.8%. We applied additional filter cri-
teria to exclude proteins identified with low probabilities.
The confidence score of the protein was calculated by
applying the PeptideProphet algorithm using Scaffold
software (v01_07_00; Proteome Software) [26], and only
proteins with confidence scores of more than 90% were
included in our dataset. Identical peptide sequences are
occasionally shared by biologically distinct proteins, thus
it is occasionally difficult to determine the identities of
proteins based on sequenced peptides unless unique pep-
tides are identified. In our analysis, proteins with shared
peptides were organized into a single group (protein
group) in Scaffold. If a protein group comprised only iso-
forms or overlapping database entries indistinguishable
by MS/MS analysis, then the proteins in this group were
counted as a single protein. If these proteins were the
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products of distinct genes, then all the proteins in the
group were discarded from our dataset. Consequently, the
final number of identified proteins was lower than the
actual number of proteins in the sample. In summary, our
dataset included 625 proteins corresponding to 611
known genes and 11 proteins from uncharacterized genes
[see Additional file 1]. MS/MS spectra and fragment
assignments of single peptide-based identifications are
provided [see Additional files 2, 3 and 4].

We were interested to compare the mature oocyte proteins
identified in the present study with those discovered by
other analyses, including the 2DE study conducted in our
lab as well as two other published reports [15-17]. Protein
IDs in the datasets from each study were converted to gene
symbols. As shown in Figure 2, a sum of 369 unique gene
products were reported previously. Of these, 216 (67.7%)
were also found in our present dataset, whereas 395 gene
products were found only in our present study. Therefore
a total of 764 different maternal proteins have been iden-
tified from mature mouse oocytes thus far.

GO and Pathway Analysis of the Identified Proteins
In Figure 3 we have the categorized proteins identified in
this study in terms of cellular components based on Gene

Ontology (GO) analysis. A majority of proteins (393)
were assigned to the cytoplasmic compartment, account-
ing for 35% of the identified proteins. Among the proteins
classified by GO annotation, 16% (178) were membrane
proteins, followed by proteins of unknown localization
(12%), nuclear (11%), and mitochondrial (5%) proteins.

To examine what biologically importantly entries are
enriched in the mouse oocyte, we compared our dataset
with a combined database of multiple mouse tissues as a
reference. Generation of this combined proteomic data-
base was based on the avaliable proteomic data from dif-
ferent tissues or cells created with the same or similar LC-
MS/MS exprimental approach. This strategy can overcome
the biases caused by the experimental approach [27]. As a
result, ~28,600 genes with duplicates were included in the

A representative image of a ZP-free MII oocyte selected for proteomic analysisFigure 1
A representative image of a ZP-free MII oocyte 
selected for proteomic analysis. During the process of 
removing zona pellucidae, the status of oocyte was checked 
rigorously, and only healthy denuded oocytes were chosen 
for further study.

Diagram of proteins identified in different studiesFigure 2
Diagram of proteins identified in different studies. 
Maternal proteins identified in the present study were com-
pared with three recently published proteomics datasets, 
including the 2DE study conducted in our lab [15] and two 
other published reports [16,17]. Numbers represent the 
number of shared proteins in the respective overlapping 
area.

Distribution of oocyte proteins among subcellular compart-mentsFigure 3
Distribution of oocyte proteins among subcellular 
compartments. The classification of the 625 identified 
maternal proteins was performed according to the gene 
ontology term "Cellular component".
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combined dataset. Babelomics http://babelomics.bio
info.cipf.es/EntryPoint?loadForm=fatigo, an advanced set
of tools for the functional profiling of high-throughput
transcriptomic, genomic and proteomic data [28], was
used to carry out the calculation. When compared to the
pooled proteomic database, 3 GO terms (unfolded pro-
tein binding, oxidoreductase activity, acting on CH-OH
group of donors, GTPase activity) for molecular function
appeared to be significantly overrepresented, and none
significantly underrepresented. In the biological process
category, 3 GO terms (RNA metabolic process, transcrip-
tion, regulation of cellular metabolic process) appeared to
be significantly underrepresented, and none significantly
overrepresented (Figure 4). We found that transcription in
the mouse oocyte was also underrepresented. Recent stud-
ies have demonstrated that oocytes undergo large-scale
chromatin modifications in the process of maturation,
including acetylation and methylation of the histone pro-
teins, and finally global transcriptional repression appears
[29]. So, the global transcriptional activity of the MII
oocytes is very low, and this is consistent with our results.

A key function of maternal proteins accumulated in
mature oocyte is the regulation of early embryogenesis. A
detailed analysis of embryonic development influenced
by the protein profile of the mouse oocyte was performed
using Pathway Studio, an automated text-mining tool
which enables the software to generate pathways from
entries in the PubMed database as well as other public
sources. Pathway analysis revealed that 65 (11%) unique
gene products were involved in early embryogenesis
events (Figure 5).

Analysis of High Abundance Proteins
The number of unique peptides identified is generally
accepted as a semiquantitative measure of protein abun-
dance [30,31]. We sorted the 625 proteins in our dataset
according to the number of unique peptides identified.
The highest ranked 23 proteins represented by more than
10 unique peptides are listed [see Additional file 5].
Among the high abundance proteins, some members
have already been well characterized in oocytes. For exam-
ple, DNA methyltransferase 1 (Dnmt1), is the predomi-
nant form of DNA (cytosine-5-)-methyltransferase in
mammals and is essential for embryo development [32].
This protein was represented by 25 unique peptides and
was the second-most abundant protein in our dataset.

Screening for Proteins with Special mRNA Expression 
Patterns
Unique or atypical mRNA expression patterns of maternal
proteins suggest their key roles in oogenesis or early
embryo development and this notion has been validated
by other functional research on maternal effect proteins
[7-11]. We adopted an in silico approach to investigate the
expression patterns of proteins in our dataset by examin-
ing their expression in the mouse transcriptome database
SymAtlas http://symatlas.gnf.org/SymAtlas/, which
describes gene expression patterns in 45 mouse tissues
[33]. Surprisingly, many of the proteins in our dataset
exhibited patterns worthy of note. We were particularly
interested in genes highly expressed in oocytes and ferti-
lized eggs (where expression was 10-fold higher than the
corresponding median values). In total, 76 proteins, rep-
resenting approximately 12% of the entire dataset, were
included in this subset [see Additional file 5]. As expected,
many well known maternal effect proteins in mice were
found in this subset. Included in this subset were the ear-
liest identified maternal protein MATER, as well as the
recently identified TLE6 [11]. In addition to these well-
known maternal effect proteins, many of the proteins we
identified as highly expressed in oocytes and fertilized
eggs have not been characterized.

To explore the functions of the 76 proteins with abundant
mRNA expression levels, we analyzed their domain com-
position with Babelomics. Statistical analysis indicated
that the most significantly overrepresented domain was
the F-box domain (Pfam: 6 proteins, p = 3.9E-05) and the
6 maternal proteins containing F-box domains are listed
[see Additional file 5]. Different F-box proteins, as compo-
nents of the Skp1-Cullin1-F-box (SCF) complex, can
recruit particular substrates for ubiquitination and play
central roles in cell-cycle regulation [34].

Intersection Between the Oocyte and ESC Proteome
Somatic cells can be reprogrammed by transferring their
nuclear contents into oocytes [35] or by fusion with

Over- and underrepresented annotations of the set of identi-fied maternal proteinsFigure 4
Over- and underrepresented annotations of the set 
of identified maternal proteins. The set of identified 
maternal proteins was compared with the combined data-
base of multiple mouse tissues, and significantly GO molecu-
lar function and biological process terms (p < 0,05) are 
illustrated.
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embryonic stem (ES) cells [36,37]. This fact indicates that
unfertilized eggs and ES cells probably contain similar fac-
tors that can confer totipotency or pluripotency to somatic
cells. In order to identify a common set proteins shared
between oocytes and ES cells, mouse MII oocyte proteins
were compared with recently published data for proteins
expressed in mouse ES cells [31]. This analysis resulted in
an overlap of 371 proteins [see Additional file 5]. As
expected, developmental pluripotency associated 5
(DPPA5), which has been implicated in cell pluripotency,
was included in this set. Of the 371 proteins, 108 (29%)
were either exclusively found in mouse ES cells or highly

enriched in ES cells compared to differentiated ES cells
[see Additional file 5] [31]. It is likely that novel factors
associated with reprogramming are included in this sub-
set.

Discussion
Activation of the embryonic genome in mice begins late in
one-cell zygote and is fully underway by the two-cell
cleavage stage [38]. The silencing of nuclear transcription
occurring between meiotic maturation in oocytes and
activation of the embryonic genome implies critical roles
for preexisting stores of proteins and transcripts [39].

Biological pathways deduced for the identified maternal proteins using Pathway Studio softwareFigure 5
Biological pathways deduced for the identified maternal proteins using Pathway Studio software. Proteins 
involved in early embryogenesis events are shown. Proteins are indicated as red ovals and regulated processes are represented 
by yellow squares. Regulation events are displayed with arrows and documented by literature citations.
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Through knockout and knockdown strategies, individual
maternal proteins have been demonstrated as essential for
cleavage stage development in mice. In the present study,
we identified many new and unknown maternal proteins
in mice by constructing an MII oocyte proteome. In-depth
analysis of these maternal proteins will assist us in screen-
ing for a proportion of great interest.

Interestingly, many maternal transcripts deposited in
mammalian oocytes are not polyadenylated and therefore
not translated into proteins [40]. Independent confirma-
tion of the protein expression of maternal genes is there-
fore necessary. This was also an important reason for us to
construct the oocyte proteome. As a case in point,
NALP14, NALP5 (MATER), and NALP4f were included in
our subset of abundantly expressed maternal proteins.
These three proteins belong to the multifunctional
NACHT nucleoside triphosphatase (NTPase) family.
NALP14 and NALP5 were previously reported as maternal
effect proteins and play significant roles in mouse preim-
plantation embryo development [7,41,42]. NALP4f was
represented by 14 unique peptides in our present study
and a previous analysis demonstrated that NALP4f was an
oocyte-specific gene [42]. Our research has independently
confirmed the high protein expression level of NALP4f in
mature oocytes. Assuming that NALP4f has similar roles
to NALP14 and NALP5, it is highly likely that NALP4f is
an important factor necessary for normal embryogenesis
and is a good candidate to be a maternal effect protein. In
addition, we identified NALP2, NALP4b, and NALP9b in
our oocyte proteome. Although the precise functions of

NACHT NTPase family members remain to be deter-
mined, we speculate that these members play significant
roles in early embryo development based on their homol-
ogy to NALP14 and NALP5.A distinguishing characteristic
of maternal effect proteins identified to date is that the
majority of them have an abundant mRNA expression in
oocytes and many are expressed only in oocytes [7-11].
This fact led us to filter maternal products in our protein
list by analyzing their corresponding mRNA expression
patterns. As a result, 76 maternal proteins with high
mRNA expression levels in oocytes and fertilized eggs
were selected out. Of these proteins, we discovered that 9
previously described maternal effect proteins (MATER,
STELLA, DNMT1, ZAR1, NPM2, PADI6, TLE6, TCL1,
FILIA) were enriched in this subset. These maternal effect
proteins have been reported to be absolutely necessary for
oogenesis, fertilization or early embryo development.
Indeed, apart from these well-known examples, the
majority of proteins in this subset have not been previ-
ously studied or reported in oocytes. We suggest that these
proteins are excellent candidates as maternal effect pro-
teins.

A group of proteins belonging to the T-cell leukemia/lym-
phoma 1 (TCL1) protein family was of particular interest
because their corresponding genes had dramatically simi-
lar mRNA expression patterns. Figure 6 demonstrates that
TCL1, TCLB1, TCLB2 are almost oocyte-specific genes.
TCL1 was initially identified as a gene involved in recur-
rent chromosomal translocation in human prolym-
phocytic leukemia (T-PLL) and overexpression of TCL1

mRNA expression patterns of three maternal proteinsFigure 6
mRNA expression patterns of three maternal proteins. GNF SymAtlas database analysis shows that TCL1, TCLB1 and 
TCLB2 are almost solely expressed in the mouse oocyte and fertilized egg.
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played a causative role in T cell leukemias of humans and
mice [43]. However, in TCL1-deficient mice, a female fer-
tility defect was observed. TCL1-deficient females display
normal oogenesis and rates of oocyte maturation/ovula-
tion and fertilization, but the lack of maternally derived
TCL1 impairs the embryo's ability to undergo normal
cleavage and develop to the morula stage, especially under
in vitro culture conditions [44]. The TCL1 loss-of-function
phenotype indicates that maternal protein TCL1 plays a
significant role in early embryo development. Unfortu-
nately the functions of TCLB1 and TCLB2 have not yet
been investigated and we can speculate that the two pro-
teins may play similar or complementary roles in embry-
ogenesis.

Domain composition analysis is an effective way to pre-
dict the functions of proteins identified in a proteomics
analysis. Among 76 proteins singled out because their cor-
responding genes are highly expressed in oocytes, 6 pro-
teins (FBXL10, FBXW14, FBXW16, FBXW19, EG382106,
E330009P21Rik) contained an F-box domain, which was
first described as a sequence motif in cyclin-F that inter-
acts with the SKP1 protein. Different F-box proteins, as
substrate-specific adaptor subunits of the Skp1-Cullin1-F-
box (SCF) complexes, recruit particular substrates for
ubiquitination via specific protein-protein interaction
domains. Coincidentally, three core protein subunits
(SKP1, RBX1, CUL1) of the SCF complex were all defini-
tively identified in our proteome. As one of the major
classes of ubiquitin ligases, the SCF complex plays a cen-
tral role in cell-cycle regulation [34]. In early stages of
embryo development, degradation of maternal proteins is
crucial for the oocyte-to-embryo transition [45]. Our
results suggest that the maternal SCF complex probably
exists in oocytes and may be important for the oocyte-to-
embryo transition by recruiting specific substrates for deg-
radation.

Pluripotent stem cells are of considerable current interest
as they can proliferate indefinitely in vitro and give rise to
many adult cell types, serving as a potentially unlimited
source for tissue replacement in regenerative medicine.
Recently, Takahashi et al. demonstrated that pluripotent
stem cells can be induced from mouse fibroblasts by ret-
roviral introduction of Oct3/4, Sox2, c-Myc and Klf4 [46],
indicating that the combination of these four factors can
induce reprogramming of somatic cells to a pluripotent
state. However, the use of retrovirus-transduced onco-
genes represents a serious barrier to the eventual use of
reprogrammed cells for therapeutic application because of
tumor formation by c-myc reactivation [47]. Therefore it
is necessary to discover factors responsible for reprogram-
ming that would be safer for therapeutic use. We com-
pared the maternal proteins in our oocyte proteome with
a recently published mouse ES cell proteome and identi-

fied an overlap of 371 proteins. In addition to some
pluripotency markers, this group included many unchar-
acterized proteins, some of which may be good candidates
for studying the mechanism of reprogramming. A good
example is translationally-controlled tumor protein
(Tpt1), which facilitates the first step of somatic cell repro-
gramming [48]. Recent studies on Tpt1 demonstrate that
this protein activates transcription of oct4 and nanog in
transplanted somatic nuclei [49]. We believe that further
analysis of these candidate proteins at the functional level
will uncover novel proteins that are essential for repro-
gramming and indirectly promote the application of ther-
apeutic cloning.

Conclusion
In this study, we used 1D SDS-PAGE and RP-LC-MS/MS to
investigate the maternal proteins stored in mature mouse
oocytes. This high-performance strategy allowed us to
define a set of 625 different mouse MII oocyte proteins.
This is the largest catalog of mature mouse oocyte proteins
compiled to date. We believe that this study will help us
to understand the diverse biological processes occurring
in mouse oocytes and during early embryo development.
However, compared with proteomic analyses of other
cells and tissues, such as embryonic stem cells and liver,
the proteins identified in mature mouse oocytes were lim-
ited. This was mainly because of the fact that mature
oocytes obtained from each mouse were very limited. We
believe that the catalog of maternal proteins present in
this article is a starting point and we anticipate that more
research on the oocyte proteome will deduce most of the
maternal proteins.

Methods
All experiments requiring the use of animals received
prior approval from Nanjng Medical University and were
performed according to USDA-approved protocols.

Reagents
Urea (Cat. No. 17-1319-01), 3-[(3-Cholamidopropyl)
dimethylammonio]-1-propanesulfonate (CHAPS) (Cat.
No. 17-1314-01), iodoacetamide (Cat. No. RPN6302),
and Dithiothreitol (DTT) (Cat. No.17-1318-02) were
from GE Healthcare (Uppsala, Sweden); Thiourea (Cat.
No. T7875), acetonitrile (ACN) (Cat. No. 34851), ammo-
nium bicarbonate (NH4HCO3) (Cat. No. A6141), and
trifluoracetic acid (TFA) (Cat. No. T0274) were from
Sigma Chemical (St. Louis, MO); Protease inhibitor cock-
tail (Cat. No.78437) was purchased from Pierce Biotech-
nology (Rockford, IL).

Oocyte collection and protein extraction
Mature oocytes were obtained from ICR female mice
weighing 2530 g. The mice were superovulated by intra-
peritoneal injection of 10 IU pregnant mare serum gona-
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dotropin followed by 10 IU human chorionic
gonadotropin after 48 h. After 1416 h, oocyte-cumulus
cell complexes were collected from the ampulla of the ovi-
duct, and the cumulus cells were removed by brief expo-
sure to 1 mg/ml hyaluronidase (Sigma Chemical, St.
Louis, MO, USA). Zona pellucidae (ZP) were removed by
treating oocytes for a few seconds with acid Tyrode solu-
tion (pH 2.5) followed by mechanical shearing. During
this process, oocyte morphology was monitored rigor-
ously and the oocytes with shape abnormalities or with
cytoplasmic abnormalities (dark cytoplasm, granular
cytoplasm, and refractile body) were discarded. Only the
denuded oocytes with normal morphology were selected
for further investigation. ZP-free oocytes were washed 3
times in 0.01 M PBS, and stored in lysis buffer at -80°C
until needed. The lysis buffer consisted of 7 M urea, 2 M
thiourea, 4% (w/v) 3-[(3-cholamidopropyl)dimethylam-
monio]-1-propanesulfonate (CHAPS), 65 mM dithiothre-
itol (DTT), and 1% (v/v) protease inhibitor cocktail.

One-dimensional SDS-PAGE and in-gel digestion
In brief, proteins extracted from the 2700 MII oocytes
were dissolved in SDS-PAGE loading buffer, boiled for 5
min, and loaded in a single lane on a 1-mm-thick 10%
polyacrylamide gel. After separation, the gel was visual-
ized by silver staining according to a published procedure
[50], except that glutaraldehyde was omitted in the sensi-
tizing solution. Thereafter, the gel was cut into 29 slices,
and each slice was cut into 1-mm3 gel particles for in-gel
digestion. In-gel digestion was performed as follows: gel
particles were washed 3 times in deionized water and sub-
sequently dehydrated with 100% acetonitrile (ACN) for
10 min. The particles were incubated with 10 mM DTT in
25 mM ammonium bicarbonate for 1 h at 56°C for pro-
tein reduction. The resulting free thiol (-SH) groups were
subsequently alkylated by incubating the samples with 55
mM iodoacetamide in 25 mM ammonium bicarbonate
for 45 min in the dark. Gels were washed with 25 mM
ammonium bicarbonate and 50% ACN solution and
dehydrated with 100% ACN sequentially. The gel pieces
were rehydrated with 10 ng/μl trypsin (Promega, Madi-
son, WI, USA) in 25 mM ammonium bicarbonate and
incubated for 12 h at 37°C for protein digestion. Superna-
tants were transferred to fresh tubes, and the remaining
peptides were extracted by incubating the gel pieces twice
with 30% ACN in 3% trifluoroacetic acid (TFA), followed
by dehydration with 100% ACN. The extracts were com-
bined and lyophilized to dryness, and the resulting pep-
tides were used for mass spectrometric analysis.

Online reverse-phase LC-MS/MS
For capillary reverse-phase LC (cLC) and mass spectro-
metric analysis, 29 fractions were sequentially loaded
onto a Michrom peptide CapTrap (MW 0.550 kD, 0.5 × 2
mm; Michrom BioResources, Inc., Auburn, CA) at a flow

rate of 50 μl/min with buffer A (see below). The trap col-
umn effluent was then transferred to a reverse-phase
microcapillary column (0.1 × 150 mm, packed with Magic
C18, 5 μm, 100 Å; Michrom Bioresources, Auburn, CA).
The reverse-phase separation of peptides was performed
using the following buffers: 5% ACN, 0.1% formic acid
(buffer A) and 95% ACN, 0.1% formic acid (buffer B); a
56-min gradient (545% buffer B for 41 min, 90% buffer B
for 5 min, and 5% buffer B for 10 min) was used. Peptide
analysis was performed using Finnigan LTQ ORBitrap
(ThermoFinnigan, San Jose, CA) coupled directly to an LC
column. An MS survey scan was obtained for the m/z
range 4001800, and MS/MS spectra were acquired from
the survey scan for the 10 most intense ions (as deter-
mined by Xcaliber mass spectrometer software in real
time). Dynamic mass exclusion windows of 60 s were
used, and siloxane (m/z 445.120025) was used as an
internal standard.

Database search and bioinformatics
DTA files (Bioworks version 3.3) in ASCII format for each
MS/MS spectrum with a minimum ion count of 8 were
generated from the raw data for the peptide mass range of
4008,000. The resulting spectra were independently
searched against the International Protein Index Mouse
database (ipi.MOUSE.v3.30, downloaded from http://
ftp.ebi.ac.uk/pub/databases/IPI) containing 56450
entries by using SEQUEST analysis software (Bioworks
version 3.3, ThermoFinnigan). Carbamidomethylation of
cysteine was set as a fixed modification, and oxidized
methionine was sought as a variable modification. The
initial mass tolerances for protein identification on MS
and MS/MS peaks were 10 ppm and 0.6 Da, respectively.
Two missed cleavages were permitted. The criteria used for
filtering peptides with low confidence scores were the fol-
lowing: cross-correlation values (Xcorr) greater than 2.0
and 2.5 were used for doubly charged ions and triply or
higher charged ions, respectively; ΔCn values (difference
in Xcorr with the next highest value) less than 0.1 were
removed from the matched sequences. Singly charged
ions were discarded because they were small in number.
All output files were searched against the forward and
reversed IPI mouse database separately, and FDR for all
peptide-to-spectrum matches was calculated as FDR = # of
False peptides/(# of True peptides + # of False peptides).

For bioinformatics analysis, each IPI accession number
was converted to an Entrez Gene ID according to the IPI
protein cross-references file downloaded from http://
ftp.ebi.ac.uk/pub/databases/IPI. We used Babelomics to
find statistically over- and underrepresented GO catego-
ries in our oocyte proteome dataset. To compare the
mouse oocyte proteome with other mouse tissue pro-
teomes, we generated a combined database for the mouse
based on the following mouse tissues and cell cultures
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characterized by LC-MS/MS: mouse heart [51], liver [51-
53], brain [51,54], lung [51,55], kidney [51], spleen [56],
placenta[51], cortical neurons cell culture[57], sperm
[58], islet alpha-cell culture [59]. For enrichment analysis,
our identified oocyte proteome was set as a test dataset
and the combined mouse proteome was set as a reference.
The enrichment analysis was done using 'fisher exact test',
and all GO terms that were significant with adjusted P <
0.05 (after correcting for multiple term testing by using
the FDR procedure of Bonferroni-Hochberg) were
selected as overrepresented. An analysis of cellular proc-
esses influenced by the protein profile obtained was per-
formed using PathwayStudio (v5.00) software (Ariadne
Genomics, Inc., Rockville, MD). PathwayStudio includes
an automated text-mining tool which enables the soft-
ware to generate pathways from the PubMed database and
other public sources. Each identified cellular process was
confirmed through the PubMed/Medline hyperlink
embedded in each node. The domain annotations were
assigned using the Pfam database.
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