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Abstract
Background: Amyotrophic Lateral Sclerosis (ALS) is a lethal disorder characterized by
progressive degeneration of motor neurons in the brain and spinal cord. Diagnosis is mainly based
on clinical symptoms, and there is currently no therapy to stop the disease or slow its progression.
Since access to spinal cord tissue is not possible at disease onset, we investigated changes in gene
expression profiles in whole blood of ALS patients.

Results: Our transcriptional study showed dramatic changes in blood of ALS patients; 2,300
probes (9.4%) showed significant differential expression in a discovery dataset consisting of 30 ALS
patients and 30 healthy controls. Weighted gene co-expression network analysis (WGCNA) was
used to find disease-related networks (modules) and disease related hub genes. Two large co-
expression modules were found to be associated with ALS. Our findings were replicated in a
second (30 patients and 30 controls) and third dataset (63 patients and 63 controls), thereby
demonstrating a highly significant and consistent association of two large co-expression modules
with ALS disease status. Ingenuity Pathway Analysis of the ALS related module genes implicates
enrichment of functional categories related to genetic disorders, neurodegeneration of the nervous
system and inflammatory disease. The ALS related modules contain a number of candidate genes
possibly involved in pathogenesis of ALS.

Conclusion: This first large-scale blood gene expression study in ALS observed distinct patterns
between cases and controls which may provide opportunities for biomarker development as well
as new insights into the molecular mechanisms of the disease.
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Background
Amyotrophic lateral sclerosis (ALS) is a devastating dis-
ease characterized by progressive degeneration of motor
neurons in brain and spinal cord leading to muscle weak-
ness. ALS can occur at anytime in adulthood. Initial man-
ifestations are weakness of limbs, or weakness in the
bulbar region leading to abnormalities of speech, swal-
lowing difficulties and facial weakness. The patient even-
tually becomes paralyzed and approximately 50% of
patients die within 3 years after onset of symptoms, usu-
ally as the result of respiratory failure. The predominant
presentation of ALS is sporadic accounting for >90% of
cases whereas familiar ALS affects less than 10% of the
patients, usually with autosomal dominant inheritance.
Genetic linkage studies have successfully identified several
ALS-related genes in the familial forms of the disease. Up
to 20% of the familial cases are linked to mutations in the
cupper-zinc (Cu/Zn) superoxide dismutase-1 (SOD1)
gene on chromosome 21q22.1. Sporadic and familial ALS
are clinically indistinguishable except for a slightly earlier
age of onset in familial variants.

The pathogenesis of sporadic ALS is largely unknown, but
there is emerging evidence that several distinct molecular
mechanisms may play a role including oxidative stress,
glutamate excitotoxicity, protein misfolding, apoptosis,
inflammation, dysfunction of axonal transport, and mito-
chondrial dysfunction [1]. Recently, four genome-wide
genetic association (GWA) studies have been performed
to identify common genetic variation involved in suscep-
tibility to sporadic ALS [2-6]. The GWA studies resulted in
three new candidate genes for ALS, namely FGGY (FGGY
carbohydrate kinase domain containing), ITPR2 (inositol
1,4,5-triphosphate receptor, type 2) and DPP6 (compo-
nent of type A neuronal transmembrane potassium chan-
nels). Recently, a validation study for DPP6 was reported
[7]. Other initial findings await further genetic validation,
especially given the fact that these studies were performed
in relatively small sample sizes compared to GWA studies
of other, more prevalent, complex traits [8-10].

While there is evidence of genetic heterogeneity underly-
ing disease susceptibility, clinical manifestations of the
devastating ALS phenotype are relatively homogeneous.
The latter suggests that at the cellular and molecular level
only a limited number of pathways may be involved in
disease susceptibility and progression. The identification
of molecular pathways related to ALS remains an impor-
tant challenge, nevertheless. Gene expression studies of
spinal cord tissue from human SOD1 transgenic ALS mice
and autopsied ALS patients have identified upregulation
of genes involved in specific pathogenic pathways such as
antioxidant systems, apoptosis and neuroinflammatory
cascades [7,11-23]

Drawbacks of previous studies include limited sample
size, the use of monogenetic animal models, or human
tissue from autopsy at the very end stage of motor neuron
degeneration.

As many essential genes and signaling cascades are
expressed in blood cells, suggesting that parts of their reg-
ulatory networks also exist in blood, we hypothesized that
blood gene expression profiles could help elucidate path-
ways underlying disease etiology. A number of studies
describe the search for blood markers for diseases without
known clinical phenotypes present in peripheral blood. A
proof-of-principle study of blood gene expression profil-
ing in neurological disease was initially performed in a rat
model in which a number of neurological conditions
(ischemic stroke, hemorrhagic stroke, kainite-induced sei-
zures, hypoxia, or insulin-induced hypoglycaemia) were
induced [24]. Different patterns of gene expression were
observed in peripheral blood cells one day after each
experimental cerebral condition indicating the potential
for applying genomic microarray technology to identify-
ing peripheral markers of neurological disease. More
recent studies show further evidence that peripheral blood
gene expression can be used as a fingerprint of neurologi-
cal diseases, including Huntington's disease, Alzheimer's
disease and autism [25-27].

Results
Standard gene expression analysis based on peripheral 
blood
We collected blood data from three independent patient
sets (Table 1). Controls were matched for age and gender,
with mean age between 62 and 65 at time of blood collec-
tion. We obtained a discovery dataset of 30 patients and
30 controls (dataset 1), a replication dataset of same size
(dataset 2) and a third dataset with 63 cases and 63 con-
trols (dataset 3) amounting to a total of 123 ALS patients
and 123 controls. Datasets 1 and 2 have similar propor-
tions male/females and spinal/bulbar onset in patients.
Dataset 3 has more male subjects (60%) and more spinal
onset patients (78%).

Using a Student t-test for comparing gene expression
between ALS cases and healthy controls, we calculated a
statistical significance level (p-value) for each of the
24365 probes present in the discovery set. At a false dis-
covery rate of 0.05, 2300 probes are differentially
expressed between ALS cases and controls. In Additional
File 1, we report the fold change, the p-value, and the Ben-
jamini Hochberg correction for each of these differentially
expressed probes. A drawback of a standard analysis is
that it ignores the strong correlation patterns between
probes, which may lead to an erroneous estimate of the
false discovery rate. But a more serious drawback of the
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standard analysis is that it fails to see the forest for the
trees. Below, we will show that two large clusters of genes
(modules) relate to ALS disease status. These modules
turn out to be highly enriched with known gene ontolo-
gies which provides insights into the pathogenesis of ALS.

To predict ALS status based on the gene expression pro-
files, we used two alternative prediction methods: a ran-
dom forest predictor and a k-nearest neighbor (with k =
10). Unbiased test set estimates of the prediction accuracy
show that both predictors classify 80% of the samples cor-
rectly. While the accuracy is relatively high (and reflects
the fact that ALS cases are molecularly distinct from con-
trols), it is not clear whether a molecularly predictor of
ALS (versus healthy controls) would be clinically relevant.
A more basic research question is to identify disease
related pathways and gene networks since this may lead to
insights regarding the disease etiology and possible treat-
ment regiments. Gene co-expression network methods
have been successfully applied in a variety of different set-
tings [28-41].

Weighted gene co-expression network analysis
Here we used weighted gene co-expression network anal-
ysis (WGCNA) [42-45] in a first attempt to identify ALS
associated coexpression modules and their key constitu-
ents. WGCNA starts from the level of thousands of genes,
identifies modules of co-expressed genes, and relates these

modules to clinical variables and gene ontology informa-
tion. Because gene modules may correspond to biological
pathways, focusing the analysis on modules (and their
highly connected intramodular hub genes) amounts to a
biologically meaningful data reduction scheme.

Highly correlated module genes are represented and sum-
marized by their first principal component (which is
referred to as the module eigengene [46]). The module
eigengenes are used to define measures of module mem-
bership which quantify how close a gene is to a given
module. Module membership measures allow one to
annotate all genes on the array and to screen for disease
related intramodular hub genes [44,47,48]. As described
below, we use functional enrichment analysis with regard
to known gene ontologies to understand the biological
significance of module genes and to identify putative dis-
ease pathways.

Detection of co-expression modules related to ALS
We applied WGCNA to probes with a significant mean
detection level (p < 0.05). Hierarchical clustering applied
to the discovery set (data set 1) led to the identification of
five co-expression modules ranging in size from 199 to
842 genes (Figure 1A). As can be seen from the color-band
underneath the cluster tree, modules correspond to
branches and are color-coded (Blue, Yellow, Turquoise,
Red and Green module). Grey is used to color background
genes that are not grouped into any module.

To assess the robustness of the co-expression module def-
inition, we replicated module detection in the second and
third dataset (Additional File 2) where we colored the
genes according to the module color in data set 1. The fact
that genes of the same color stay close together in the three
different cluster trees (Additional File 2) shows that the
Blue and Yellow module are highly preserved across the
three data sets.

Differentially expressed genes tend to be in the Blue or 
Yellow module
Our module definition was solely based on the gene
expression levels in peripheral blood and ignored ALS dis-
ease status. To incorporate a clinical outcome into the net-
work analysis, WGCNA makes use of suitably defined
gene significance measure. Here we defined the gene sig-
nificance measure as the Student t-test statistic for testing
differential expression between cases and controls. Thus,
a large absolute value of the gene significance measure
corresponds to a small 2-sided p-value. We found that the
gene significance measures in the three independent data
were highly correlated (Figure 2A–B: r = 0.73 for dataset 1
vs. dataset 2 with p < 2.2 × 10-16 and r = 0.71 for dataset 1
vs. dataset 3 with p < 2.2 × 10-16). Thus, the gene signifi-
cance measures is highly reproducible across the three

Table 1: Clinical information on ALS patients and controls.

Clinical variables Patients Controls

Number
Dataset 1 30 30
Dataset 2 30 30
Dataset 3 63 63

Male gender (%)
Dataset 1 15 (50) 15 (50)
Dataset 2 14 (47) 15 (50)
Dataset 3 38 (60) 40 (63)

Age at blood collection ¶

Dataset 1 63.8 (41.0–76.0) 62.8 (42.8–80.8)
Dataset 2 63.7 (35.3–79.5) 64.8 (36.2–75.8)
Dataset 3 65.0 (23.5–80.8) 64.1 (36.9–81.2)

Age at disease onset ¶

Dataset 1 62.8 (40.5–75.6)
Dataset 2 62.5 (34.2–78.4)
Dataset 3 64.4 (21.5–79.6)

Bulbar Onset (%)
Dataset 1 15 (50)
Dataset 2 15 (50)
Dataset 3 14 (22)

For the three independent datasets, we report sample sizes and 
patient characteristics. The close similarity between patients and 
controls reflects the fact that healthy controls were chosen such that 
they matched the age and gender of the patients.
¶ Median years (range)
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data sets. Figure 2A–B shows that genes that are consist-
ently up-regulated in ALS cases tend to be part of the Blue
module while genes that are consistently down-regulated
tend to be in the Yellow module.

Two co-expression modules are significantly associated 
with ALS
We defined a measure of module significance as average
absolute gene significance across the module genes. Figure
1B shows that the Blue and Yellow module genes were
highly enriched with differentially expressed genes in the
3 independent data sets. The module significance (mean
absolute Student t-test statistic) of the Blue module corre-
sponds to p-values 0.0006, 0.005 and 0.0007 in datasets
1, 2, and 3, respectively. The module significance of the
Yellow module genes corresponds to p values 0.006, 0.01
and 3.5 × 10-7 in datasets 1, 2 and 3, respectively. Combin-
ing all datasets resulted in highly significant p values: 3.0

× 10-6 for the Blue module and 1.3 × 10-8 for the Yellow
module.

An alternative and statistically preferable way of relating a
module to ALS disease status is to correlate disease status
with a suitably defined module representative. As module
representative, we used the module eigengene (ME)
which is defined as the first principal component of the
module expression profiles. The correlations between ALS
status and the module eigengene of the Blue module
(referred to as MEblue) were r = 0.48 (p = 3.6 × 10-5), r =
0.37 (p = 2.6 × 10-3), and r = 0.41 (p = 6.2 × 10-7) in data
sets 1, 2, and 3, respectively. Note that the p-values remain
highly significant even after using the most stringent mul-
tiple comparison correction (Bonferroni correction) since
only 5 comparisons (corresponding to 5 modules) were
carried out. This illustrates a statistical advantage of
WGCNA: instead of correcting the analysis for tens of

Gene co-expression modules in human whole bloodFigure 1
Gene co-expression modules in human whole blood. Detection of gene co-expression modules in human whole blood 
datasets comprised of ALS patients and matched controls. (a) Branches of the cluster dendrogram of the most connected 
genes gave rise to five gene coexpression modules (Blue, Green, Red, Turquoise and Yellow). Genes that could not be clus-
tered into one of these modules were assigned to the Grey module. Every gene represents a line in the hierarchical cluster. 
Distance between two genes is shown as height on the y-axis. (b) Boxplots showing gene significance per module. Module sig-
nificance was calculated by taking the average of the absolute t statistics of all genes within a module. The Blue and Yellow 
module were the only modules that were significant at a Bonferroni corrected significance threshold of 0.05/5 in all 3 datasets.
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Scatterplots showing strong preservation of gene significance across the three independent datasetsFigure 2
Scatterplots showing strong preservation of gene significance across the three independent datasets. The scat-
terplots include the network genes colored by their module assignment in dataset 1. t-test statistic value for dataset 1 (x-axis) 
was compared to the t statistic value for dataset 2 (y-axis A) and dataset 3 (y-axis B). Genes that are highly differentially 
expressed in dataset 1 also tend to be differentially expressed in datasets 2 and 3. Note that Blue genes tend to be over-
expressed in ALS patients while yellow genes tend to be under-expressed.
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thousands of gene comparisons, a module-based analysis
involves orders of magnitudes fewer comparisons. For the
Yellow module eigengene MEyellow we found highly sig-
nificant negative correlations with ALS status: r = -0.61 (p
= 6.2 × 10-9), -0.50 (p = 1.3 × 10-3), -0.61 (p < 1.0 × 10-22)
in data sets 1, 2, and 3, respectively. The negative correla-
tions reflect that most Yellow module genes were under-
expressed in ALS patients.

No significant relationship between modules and other 
clinical variables
We related the module eigengenes to other clinical varia-
bles but did not find any other significant associations. In
particular, MEblue and MEyellow were not significantly
associated with age at time of collection, gender, specific
characteristics of ALS patients such as bulbar or spinal
onset, age at onset or El Escorial criteria at time of collec-
tion. A multivariate Cox regression analysis that regressed
survival time on the module eigengenes, site of onset, sex
and age at onset, resulted in no significant p-values for any
of the covariates.

Using module membership values to annotate the genes 
with regard to module membership in the data sets
As detailed in the Methods section, we made use of a fuzzy
measure of module membership (MM) that can be
defined for each module. The module membership meas-
ure with regard to the Blue module MMblue(i) = Cor(xi,
MEblue) is defined as the correlation between the i-th gene
expression profile xi and the Blue module eigengene. Large
absolute values of MMBlue(i) indicate that the gene is
close to (or part of) the Blue module. In contrast, if MMB-
lue(i) is 0, then the ith gene is uncorrelated with the Blue
module eigengene and is unlikely to be part of the Blue
module. The sign of module membership encodes
whether the gene has a positive or a negative relationship
with regard to the Blue module expression profiles.

We also used a correlation test to compute a correspond-
ing p-value of module membership. We found that the
module membership measures of the Blue and Yellow
modules are highly preserved across the three data sets as
can be seen from Additional File 3.

In Additional File 4, we report the individual module
membership values with regard to the different modules
in each of the data sets and the mean module member-
ship values across the three independent data sets is
referred to as MeanMMblue.

The WGCNA R package also computes a gene selection
score (referred to as p.weighted) based on gene signifi-
cance and module membership [45]. Analogous to a p-
value, the smaller the value of p.weighted the stronger is
the evidence that the gene is a disease related hub gene.

Ingenuity pathway analysis of four top 500 gene lists
As detailed in the Methods section, we used the module
membership values to define four different gene lists. The
first and second gene lists consisted of the top 500 genes
closest to the Yellow and the Blue module, respectively.
The third gene list consisted of 500 genes with the lowest
WGCNA gene selection score p.weighted. For comparison
with a standard differential network analysis, we also
drafted a fourth list of genes according to the average Stu-
dent t of differential expression across the three data sets.

In the Methods section and Additional File 4, we provide
details on these gene lists including p-values and local
false discovery rates (q-values). We used Ingenuity Path-
ways Analysis (IPA, http://www.ingenuity.com) to test for
enrichment with regard to known gene ontologies. A
detailed comparative functional enrichment study of the
four lists is presented in Additional File 5 and a condensed
version involving only the first 3 lists can be found in
Additional File 6.

We find that a standard differential analysis (black hori-
zontal bars in Additional File 5) leads to less significant
findings than those of a module based analysis (see cate-
gories cellular compromise, infectious disease, genetic
disorder, skeletal/muscular disorder, dermatological dis-
eases, connective tissue disorder). This provides indirect
evidence that a module centric analysis of these data leads
to more significant biological findings.

Detailed enrichment analysis results for the Blue module
Here we provide a detailed description of the most impor-
tant functional enrichment of the 500 genes with highest
module membership value in the blue module.

Post-Translational Modification was the most significant
category with p-values ranging between 4.4 × 10-4 and 4.5
× 10-2. Specifically, the following genes are involved in
this category: BTG1, BMI1, CAND1, CD47, CD48, CHUK,
CLK1, CLK4, CUL2, DNAJA2, DPM1, DUSP11, DUSP12,
ELF1, HDAC2, HSP90AA1, MAP3K7, NAE1, PCMT1,
PCNP, PPP1CB, PPP1CC, PPP2CA, PPP3CB, PTPN11,
RB1CC1, SET, SH2D1A, SIAH1, SIRT1, SLC35A1, SUZ12,
UBA3, UBE2N, ZDHHC17. This category included several
subcategories, including modification of protein (p = 4.4
× 10-4), neddylation of protein (5.9 × 10-4), refolding of
protein (8.3 × 10-3), tyrosine dephosphorylation of pro-
tein (8.3 × 10-3), moeity attachment of protein (1.1 × 10-

2), deacetylation of protein (1.5 × 10-2), acetylation of
protein (4.5 × 10-2) and methylation of amino acids (4.5
× 10-2).

Infection Mechanism was also a highly significant cate-
gory with p-value range: 5.9 × 10-4 – 4.8 × 10-2. In partic-
ular, the genes ATG5, BNIP2, CD46, CHUK, DEK, NGLY1,
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PRNP, RAB11A, SFRS1, TBK1, TFRC, UBP1, WASL
(includes EG:8976), WIPF1 and XPO1 were involved in
Infection Mechanism. This category included mobility of
vaccinia virus (5.9 × 10-4), replication of virus (1.9 × 10-2),
binding of virus (4.6 × 10-2), infection of Influenza virus
(2.4 × 10-2), penetration of human herpesvirus 6A (2.4 ×
10-2) and penetration of human herpesvirus 6B (2.4 × 10-

2).

RNA Post-Transcriptional Modification (p-value range 9.5
× 10-4-2.8 × 10-2) included the following genes: DCP2,
DHX15, DNAJB11, DUSP11, EIF4A2, HNRNPH3,
IVNS1ABP, NCBP2, PRNP, RNGTT, SFRS1, SFRS2, SFRS3,
SFRS6 and SFRS7. This category had subcategories includ-
ing modification of RNA (9.5 × 10-4), splicing of RNA (1.7
× 10-3), processing of RNA (3.4 × 10-3), decapping of
mRNA (2.4 × 10-2), dimerization of tRNA-Lys (2.4 × 10-2)
and selection of splice site (2.8 × 10-2)

Neurological Disorder (8.5 × 10-3-4.8 × 10-2) involved
the following genes: ACADM, AP1S2, ATP6AP2, B2M,
CAB39, CDKN1B, CHMP2B, CRBN, DDX1, EIF3E, GALC,
GHITM, GNA13, HMGB2, HMGCR, HSP90AA1, IFNGR1,
IMPA1, ITPR1, IVNS1ABP, L1CAM, NDUFB5, NFE2L2,
OSBPL8, PCMT1, PPP1CB, PPP1R2, PRNP, PTGS2,
RAB1A, RAB11A, RAB3GAP2, RAB5A, SLC9A6 TOMM20
and TRAM1. This category contained subcategories Hunt-
ington's disease (1.6 × 10-2), atrophy of dendrites (2.4 ×
10-2), pseudobulbar paralysis (2.4 × 10-2) and degenera-
tion of myelin figure (4.8 × 10-2).

Detailed enrichment analysis results for the Yellow module
Here we provide a detailed description of the most impor-
tant functional enrichment of the 500 genes with highest
module membership value in the yellow module.

Genetic Disorder was one of the most significant catego-
ries with p-values ranging between 8.3 × 10-7 and 4.7 × 10-

2. Specifically, the following genes are involved in this cat-
egory: ACADVL, ADA, ALG1, ANAPC2, ATXN2, CD4,
CDK9, CDK2AP2, COG1, DPAGT1, FLNA, GSS, GUSB,
IDUA, IKBKB, IL2RG, ITGAL, MAP2K5, MAP4K1, MCM5,
NOD1, NDUFS7, NDUFS8, NDUFV1, SDHA, SIGIR,
SLC35C1, SMPD1 and USP11. This category included sev-
eral subcategories, including psoriatic arthritis (p = 8.3 ×
10-7), congenital disorders of glycosylation (2.0 × 10-4),
Leigh syndrome (2.2 × 10-4), and spinocerebellar ataxia,
type 2 (2.7 × 10-2).

Neurological Disease was another significant category
with p-value range: 2.0 × 10-5 – 2.7 × 10-2. In particular,
the following genes CLCN7, CLN3, DIAPH1, HSD17B10,
HSP90AB1, HD, NDUFS7, NDUFS8, NDUFV1, NFKB2,
SDHA and VAC14 were involved in Neurological Disease.

This category included neurodegeneration of nervous sys-
tem (2.0 × 10-5), neurodegeneration of central nervous
system (2.7 × 10-2), neurodegeneration of peripheral nerv-
ous system (2.7 × 10-2), Leigh syndrome (2.2 × 10-4),
Huntington's disease of nervous syndrome (2.7 × 10-2),
oxidative stress response (2.7 × 10-2), fragmentation of
striatal neurons (2.7 × 10-2) and spinocerebellar ataxia,
type 2 (2.7 × 10-2).

Inflammatory Disease (p-value range 8.3 × 10-7-4.0 × 10-

2) included the following genes: ADA, ANAPC2, CDK9,
CDK2AP2, IKBKB, ITGAL, MAP2K5, MAP4K1, MCM5,
NOD1, POLD1, SIGIRR and USP11. This category had
subcategories including psoriatic arthritis (8.3 × 10-7),
acute pancreatitis (2.7 × 10-2), and keratitis (4.0 × 10-2).

Skeletal and Muscular Disorder (8.3 × 10-7-2.70 × 10-2)
involved the following genes: ANAPC2, BIN1, CDK9,
CDK2AP2, FLNA, IKBKB, ITGAL, MAP2K5, MAP4K1,
MCM5, NOD1, SIGIRR and USI. This category contained
subcategories psoriatic arthritis (8.3 × 10-7), Melnick-Nee-
dles syndrome (2.7 × 10-2), disorganization of myofibrils
(2.70 × 10-2), otopalatodigital syndrome (2.7 × 10-2).

Detailed Ingenuity analysis of the top 500 genes selected 
by WGCNA
The third list of 500 genes with lowest WGCNA score
p.weighted are comprised of genes that are highly related
to ALS status and are highly connected intramodular hub
genes in the Blue and/or the Yellow module. An Ingenuity
analysis of these top 500 genes revealed the following
most significant categories: Cellular Compromise (8.5 ×
10-5 – 2.8 × 10-2) and Post-Translational Modification (9.8
× 10-5 – 5.0 × 10-2). Cellular Compromise included genes
ABCA1, ARHGDIA, CD46, CD55, EXOC7, HMGB2, HD,
NFE2L2, PKN1, PLEC1, TBPL1 and VPS26A. This category
included degeneration of epithelial cells (8.45 × 10-5) and
damage of neuromusclar junctions (2.8 × 10-2).

Post-Transcriptional Modification included 57 genes,
and the following subcategories: modification of protein
(9.8 × 10-5), modification of amino acids (4.7 × 10-4),
modification of L-proline (4.5 × 10-3), modification of L-
amino acid (4.8 × 10-3), moeity attachment of amino
acids (9.7 × 10-4), moeity attachment of L-amino acid
(6.40 × 10-3), hydroxylation of L-amino acid (4.5 × 10-3).

We also applied to the biomarker search option of Inge-
nuity to these top 500 genes.

The results can be found in Additional File 7 which
reports i) tissues where matching genes have been found
to be expressed, and ii) known drugs for matching genes.
We report these preliminary results to illustrate how
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WGCNA coupled with Ingenuity Analysis can be used for
generating hypotheses that may form the starting point of
future studies.

Functional enrichment analysis with DAVID of the top 100 
disease related intramodular hub genes
We also carried out a functional enrichment analysis with
the data base DAVID [49]. Here we selected the top 100
most highly connected genes in both modules. Additional
File 8 reports highly significant gene ontology categories
and representative genes.

The most significant pathway is the Huntington's Disease
pathway (Fisher's exact test p = 8.0 × 10-5). Other interest-
ing significant pathways include mRNA processing, the
neurodegenerative disorders pathway (p = 0.024), the
axon guidance pathway (p = 0.025), and the phosphati-
dylinositol signaling system (p = 0.038).

Figures 3 and 4 visualizes the connectivity patterns of the
100 intramodular hub genes in the Yellow and Blue mod-
ules, respectively. Edges between the intramodular hub
genes indicate significant correlations. Both modules con-
tain hub genes involved in apoptosis and protein ubiqui-
tination. Several hub genes in the Blue module are known
to be involved in response to stress and vesicle transport.
Several hub genes in the Yellow module play an impor-
tant role in mitochondrial functioning [50].

Discussion
We use 3 hitherto unpublished blood gene expression
data sets to provide the following novel insights regarding
ALS. First, both a standard differential expression analysis
and WGCNA show that thousands of genes are differen-
tially expressed between patients and controls in periph-
eral blood even though ALS is a disease primarily affecting
neuronal tissue.

Previous studies have shown similar findings in other
neurological diseases. In Parkinson's Disease (PD) for
example, an assay of eight molecular markers in periph-
eral whole blood results in higher risk scores for PD
patients compared to neurodegenerative disease controls
and healthy controls [51]. In Huntington's Disease, a
monogenetic disease, expression profile clustering in
peripheral blood cells could distinguish not only patients
from healthy controls, but also pre-symptomatic from
symptomatic patients [25]. In neuronal disease, coordi-
nated repression and expression of large chromosomal
regions was found in caudate nucleus and whole blood
[52]. In Alzheimer's Disease, changes were detected in the
transcriptome of blood mononuclear cells of patients
compared to normal controls [26]. These studies and our
results support the hypothesis that complex neurological
diseases may leave gene expression footprints outside

their symptom-related tissue. Since peripheral blood is
easily accessible, identification of disease-specific gene
expression profiles is a promising step toward the devel-
opment of biomarkers that can be used for diagnostic and
therapeutic purposes. However, our study also shows that
more work is needed before blood gene expression profil-
ing will have diagnostic value in clinical practice. We find
that gene expression based predictors of ALS (versus
healthy controls) have moderate predictive accuracy
(80%). Similarly, we find that individual genes have mod-
erate sensitivity, specificity and area under the ROC curve
for distinguishing ALS versus healthy controls. ALS
biomarker development is especially important for distin-
guishing ALS patients from those patients mimicking ALS
symptoms (e.g. multifocal motor neuropathy, Kennedy's
disease and inclusion body myositis) in early stages of dis-
ease. For this reason, future biomarker development
needs to include larger sample sizes as well as patients
with ALS mimic disorders.

Our network analysis reveals that two large co-expression
modules (denoted Blue and Yellow) are significantly asso-
ciated with ALS disease status. In three different and inde-
pendent sample series we consistently observed that genes
within the Blue module were predominantly up regulated
in ALS patients, whereas genes in the Yellow module were
predominantly down regulated in all three datasets. We
did not observe a significant association between modules
and other clinical characteristics of ALS patients such as
gender, age of onset, site of onset or disease progression.
Our analysis does not address whether the two disease-
associated modules are causally involved in ALS suscepti-
bility or reflect reactive molecular mechanisms in
response to onset of disease. We used Ingenuity pathway
analysis to study the functional enrichment of the disease
related modules and ALS related genes. We find signifi-
cant enrichment with regard to functional categories
related to genetic disorders including psoriatic arthritis (p
= 8.3 × 10-7), congenital disorders of glycosylation (p =
2.0 × 10-4), Leigh syndrome (2.2 × 10-4), neurodegenera-
tion of the nervous system (p = 2.0 × 10-5), inflammatory
disease (p = 8.3 × 10-7) and connective tissue disorders (p
= 8.31 × 10-7). There are some reports that skin symptoms
such as bedsores and a loss of normal elasticity do occur
in ALS patients [53] but this has not been observed in
patients that are included in this study. Alternatively, it is
possible that that these functional categories represent a
broader system of inflammation which is thought to be
involved in neurodegeneration in general. We compared
our findings with previously published gene expression
studies of ALS patients. Since these studies were much
smaller in size and often based on post mortem neuronal
tissue, a direct comparison using network analysis is
hardly possible. We therefore compare gene expression
patterns at the level of individual genes from ALS associ-
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Network of hub genes in the Yellow module colored by gene ontology functional informationFigure 3
Network of hub genes in the Yellow module colored by gene ontology functional information. Hub genes are 
connected by an edge if the correlation between their expression profiles is significant.



BMC Genomics 2009, 10:405 http://www.biomedcentral.com/1471-2164/10/405
ated modules. We noticed a diverse functionality of over-
lapping genes, and only two genes belonged to a module
(E2F3 blue and POLD2 yellow module). The largest over-
lap between a previous study and our analysis was found
with expression patterns in motor cortex of 5 sporadic ALS
patients and 3 control subjects [19] with 16 genes coincid-
ing, all down-regulated: ABHD5, PIGB, INTS6, E2F3,
BCL6, MFSD1, SAT1, AGTPBP1, MARCH7, TXN, MTMR6,
OSBPL11, HSPBAP1, TRIB1, CHUK, CCPG1. Down-regu-
lation of ATP6V1A was found in a second study on motor
cortex with 11 sALS patients and 9 control subjects [20].
Overlap with expression data generated from laser cap-
tured motor neuron of the spinal cord consisted of 4
genes, all up-regulated (ABL1, USP11, RELA, SPN) [15].
Homogenate of whole Spinal Cord of both sporadic and
familial ALS showed differential expression of CD74,
CYBA, GYS1, POLD2, ENG, SF1 (upregulated) and
CAMLG, SRPK1 (downregulated) [13] and upregulation
of VIL2 in a second study [23].

To complement the individual gene information data and
to make it a useful resource for others to determine how

correlated their gene of interest is to ALS status and disease
related modules, we provide a module based gene anno-
tation table (Additional File 4). This table represents for
each gene its correlation to the ALS related modules and
how associated it is with ALS status.

Network analysis highlights individual intramodular hub
genes that are centrally located in the disease related mod-
ules. For example, in the Yellow module, Glutathione
Synthetase (GSS) is worthy of note, since earlier studies
have found a decrease of glutathione reductase in erythro-
cytes of sporadic ALS patients [54]. Glutathione is an
important anti-oxidant, mediating defense against lipid
peroxidation, shown to be increased in ALS [55]. Other
stress responsive genes in the Yellow module are STIP1
(Hsp70/Hsp90-organizing protein) and HSP90AB1, func-
tional in the cytoplasm, and IDH3B and ACO2, functional
in the mitochondrion. A decreased ability of motor neu-
rons to mount a defensive response through up regulation
of heat-shock proteins, has been suggested to be part of
ALS pathogenesis [56]. Decreased levels of Aconitase-2
(ACO2) was found a potential sensitive and early biomar-

Network of hub genes in the Blue module colored by gene ontology functional informationFigure 4
Network of hub genes in the Blue module colored by gene ontology functional information. Hub genes are con-
nected by an edge if the correlation between their expression profiles is significant.
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ker for mitochondrial oxidant stress [57]. Several apop-
totic associated genes were found in the Blue and Yellow
modules. ARHGDIA inactivates Rho proteins by prevent-
ing dissociation of GDP. One of the genes that serve as a
Guanine Nucleotide exchange factor for RAB5 is ALSIN.
ALSIN mutations have been reported in a familial ALS
with juvenile onset [58]. DAXX, central in the Yellow
module, is a modulator of apoptosis of motor neurons in
G93A mutant SOD1 transgenic mice [59], and is a media-
tor of the heat-shock protein response [60]. In the Blue
network BNIP2 (BCL-2 interacting protein), is a central
apoptotic gene. BCL-2 is shown to be involved in the
SOD1 mediated cascade leading to motor neuron death
[61].

Two genes in the Yellow module are part of the inositol
1,4,5-triphosphate (IP3) pathway, ITPK and PIP5K1A. IP3
regulates the calcium homeostasis in the cell and a poly-
morphism within a receptor for IP3, ITPR2, is associated
with ALS in a sample from the same population from The
Netherlands [4]. Increased intracellular calcium levels are
shown to be crucial for the induction of motor neuron
death [62].

An important question is how well our findings fit with
current hypotheses of ALS disease pathophysiology. The
most commonly found mutations linked with familial
ALS are those in SOD1. The exact (toxic) pathway targeted
by mutant SOD1 is not known but the primary function
of SOD1 suggests that oxidative stress is involved which
could lead to dysfunction of mitochondria and ultimately
apoptosis of the neuron. Interestingly, the ALS associated
blue and yellow modules are enriched with a number of
genes with oxidative and mitochondrial function, suggest-
ing that similar pathways may be involved in familial and
sporadic ALS. Recently, mutations in TARDBP and FUS
are found in familial ALS [63-65]. These genes both have
RNA processing functionality and this category too was
significantly enriched in the blue module. Whether dys-
function of RNA processing proteins are part of the same
pathogenic pathway as mitochondrial dysfunction is not
known, but in our study we found some evidence that
both pathways play a role in sporadic ALS.

We compare the findings of WGCNA with those of a
standard analysis based on differential expression. As can
be seen from our functional enrichment analysis results of
different gene lists (Additional File 5), keeping track of
module membership leads to statistically more significant
enrichment results. While a standard analysis implicates
thousands of differentially expressed genes, it fails to rec-
ognize that these genes are organized into two large co-
expression modules. As a result, a standard analysis indis-
criminately averages across modules and dilutes the func-
tional enrichment signal inherent in these modules. In

contrast, WGCNA's systems biologic, module-centric
approach hones in on disease related pathways and their
key drives.

Conclusion
Weighted gene co-expression network analysis applied to
blood gene expression data from ALS patients is com-
bined with Ingenuity Pathway Analysis to implicate dis-
ease pathways, molecular mechanisms, and connections
to other disorders. Our results suggest that development
of an ALS biomarker based on gene expression in periph-
eral blood may be possible. Moreover, functional insights
derived from these genes imply involvement of RNA
processing and mitochondrion in sporadic ALS.

For each gene, our module annotation catalogues report
the relationship to ALS disease status and its membership
to the ALS related co-expression modules in blood. Our
results do not point to a single disease pathway. Instead,
we find several highly significant pathways and genes in
the ALS related modules. Our gene and pathway cata-
logues are meant to inform additional biological studies.

Methods
Sample collection and RNA preparation
Between Jan 1, 2004, and December 31, 2006, all newly
diagnosed patients with sporadic ALS at the University
Medical Center Utrecht, a referral clinic in The Nether-
lands, were eligible for recruitment. Diagnosis was made
according to the El Escorial Criteria for 'probable' and
'definite' ALS, after exclusion of other conditions [66].
After written informed consent and according to the Insti-
tutional Ethics Review Board Protocols, ALS patients and
controls were included, frequency matched for age and
gender. We obtained a discovery dataset of 30 patients
and 30 controls (dataset 1), a replication dataset of same
size (dataset 2) and a third dataset with 63 cases and 63
controls (dataset 3) amounting to a total of 123 ALS
patients and 123 controls. Onset of disease was defined as
the time of initial weakness, dysarthria or dysphagia. The
controls are genetically unrelated individuals accompany-
ing the patient during their outpatient visits. Clinical char-
acteristics of patients and controls for the three datasets
are shown in Table 1.

Messenger RNA was obtained from peripheral blood sam-
ples that were drawn when the patients first visited the
motor neuron disease outpatient clinic. Blood from
patients and controls was drawn in the morning. For iso-
lation and purification of mRNA from whole blood the
PAXgene extraction kit (Qiagen) has been used for all
samples. PAXgene tubes contain a proprietary reagent that
immediately stabilizes intracellular mRNA, thus reducing
mRNA degradation and inhibiting gene induction after
phlebotomy. The mRNA isolated with this protocol
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comes from all blood cells, including polymorphonuclear
leukocytes, mononuclear cells, platelets and red blood
cells. Total leukcocyte counts and leukocyte differentia-
tion showed no significant differences between patients
and controls. RNA was isolated according to the manufac-
turer's instructions including an optional DNase digestion
step. The standardized mRNA isolation procedure guaran-
tees high quality non-degraded mRNA. Total mRNA was
quantified using spectrophotometry. Quality of total RNA
was checked using Agilent 2100 Bioanalyzer.

Gene-expression profiling
The Illumina Sentrix HumanRef-8 Expression BeadChip
with >22,000 current RefSeq curated gene targets was used
to obtain gene expression data. Cubic spline normaliza-
tion was performed in Illumina's software package Beads-
tudio. After normalization data was imported into R http:/
/www.r-project.org.

About one third of the genes (8,000 genes) were found to
be significantly expressed in peripheral blood at measura-
ble levels (Bead studio mean detection level of p < 0.05).
These genes were selected as starting point of the co-
expression network analysis described in the following.

Weighted gene co-expression network analysis (WGCNA)
We constructed weighted gene co-expression networks as
previously described [42]. The determination of weighted
co-expression starts by calculating a correlation matrix
containing all pairwise Pearson correlations between all
probe sets across all subjects. We define coexpression net-
works as undirected, weighted gene networks. The nodes
of such a network correspond to gene expressions, and
edges between genes are determined by the pairwise Pear-
son correlations between gene expressions. By raising the
absolute value of the Pearson correlation to a power β ≥ 1
(soft thresholding), the weighted gene coexpression net-
work construction emphasizes large correlations at the
expense of low correlations. Specifically, aij = |cor(xi, xj)|β

represents the adjacency of an (unsigned) weighted gene
co-express network. We used the scale free topology crite-
rion to choose the soft threshold β = 6. A major advantage
of weighted networks is that they are highly robust with
regard to the choice of the parameter β.

Unlike unweighted networks that use a hard threshold to
dichotomize the correlation matrix, the soft thresholding
of weighted gene co-expression networks preserves the
continuous nature of the gene co-expression information,
leading to highly robust results [42] and allowing for a
simple geometric interpretation of network concepts
[44,67]. To organize genes (probes) into modules, we
used the topological overlap measure as a robust measure

of interconnectedness in a hierarchical cluster analysis
[68-70].

Connectivity and module membership measures

Here we focus on connectivity (centrality) measures that
are useful within the WGCNA context. Whole network
connectivity k(i) is the sum of the connection strengths
between a particular gene xiand all other genes in the net-

work , where N refers to the

set of network genes. However, we have found that
intramodular connectivity kq(i) is a biologically more
meaningful measure in the context of our module-based
analysis. It is computed from the sum of the connection
strengths between a particular gene and all other genes in

the module , where q refers

to a specific module. Another measure of connectivity is
the (fuzzy) module membership measure MMq(i), which
is sometimes referred to as eigengene-based connectivity
kME; for the i-th gene, it is defined as the correlation
between the i-th gene expression profile xi and the q-th

module eigengene", MEq.

MMq(i) = Cor(xi, MEq), where larger absolute values indi-
cate greater similarity between a gene xi and the q-th mod-
ule eigengene. One can show that the module eigengene-
based connectivity measure is highly correlated with
intramodular connectivity [44] but the module member-
ship measure enjoys several advantages including that its
definition can be easily extended to genes outside the
original module and that it allows one to use a correlation
test to assess the statistical significance (p-value) of mod-
ule membership. WGCNA also outputs the corresponding
correlation test p-value for module membership (denoted
by PvalueMMblue).

The networkScreening function in the WGCNA R package
computes the gene selection score p.weighted based on
gene significance and on module membership [45]. Anal-
ogous to a p-value, the smaller the value of p.weighted the
stronger is the evidence that the gene is a disease related
hub gene.

Definition of Four Gene Lists
For a comparative functional enrichment analysis with
Ingenuity, we considered four different gene lists: first, a
list of 500 genes with the highest evidence of module
membership in the blue module, an analogous list of 500
genes with high module membership in the yellow mod-
ule, a third list of genes with lowest score p.weighted, and

k i x xi jj N j i
( ) ( , )

,
= ∈ ≠∑ Cor

b

k i x xq
i jj q j i
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a fourth list of 500 most differentially expressed genes
according to a standard analysis.

For the Blue and Yellow modules, we selected gene lists of
500 genes with module membership p-values smaller
than 10-22 and corresponding local false discovery rates
(q-values) smaller than 10-5. Genes on list 1 and 2 were
sorted according to the mean module membership in the
Blue and Yellow Module, respectively. For example, the
500 Yellow module genes had mean membership values
larger than 0.64.

A third list of 500 genes was selected using the WGCNA
gene selection score p.weighted described above.

A fourth list of 500 genes was selected based on the aver-
age Student T-test statistic (of differential expression)
across the 3 independent data sets. Thus, this fourth list of
genes represents the results of a standard differential
expression analysis.

Finding ALS-related modules
To incorporate ALS disease status into the co-expression
network, we first defined a measure of gene significance
(GS). Abstractly speaking, the higher the i-th gene's
|GS(i)|, the greater its biological significance. For the i-th
gene, we define GS.ALS(i) as the absolute value of the Stu-
dent T-test statistic for testing differential expression
between ALS patients and controls. We defined two
related measures of module significance. The first measure
of module significance is simply the average gene signifi-
cance measure across module genes. The second measure
of module significance is defined as the eigengene signifi-
cance, i.e. the correlation between the module eigengene
and ALS status. It turns out that the two measures of mod-
ule membership are highly related [44] but the eigengene
significance measure has the advantage of allowing one to
use a correlation test for computing a corresponding p-
value. Since we found only 5 modules, a Bonferroni cor-
rection of these p-values requires that one multiply the
corresponding p-values by 5.

Replication of module definition
To replicate and validate the existence of these modules,
we mapped the module color assignment of the discovery
dataset into the second and subsequently into the third
independent datasets. Hub genes are defined as genes
with the highest intramodular connectivity, i.e. genes that
are most central within the module. Once modules were
identified, the module eigengene (ME; i.e. the first princi-
pal component of the expression values across subjects)
was calculated using all probe sets in each module. The
MEs were then correlated to relevant clinical traits using
the Pearson correlation and Cox regression. Our custom-
made R software function for weighted gene co-expression
network analysis and the data are available upon request.

Networks of disease related hub genes were generated by
using the R library MetaNetwork to create input files for
Cytoscape http://www.cytoscape.org.

Finding ALS related genes
Differential expression of genes was also calculated with a
multivariate linear regression model including gender,
age and batch. To correct for multiple testing, we used a
5% false discovery rate (Benjamini Hochberg). For each
gene sensitivity, specificity and area under the receiving
operating curve (AUC) was calculated. The first two meas-
urements were calculated using the mean expression as a
cut-off. Combining datasets 1, 2 and 3 was performed
using the R package Lumi. Raw data without background
correction were normalized with the expresso function.

Functional Enrichment Analysis
We used the Ingenuity Pathways Analysis (IPA, http://
www.ingenuity.com) software to determine whether a set
of genes (e.g. top 500 module genes) were significantly
enriched with known gene ontologies. The software com-
putes a Fisher exact test p-value. The IPA p-values are not
corrected for multiple testing.

We also used Gene Ontology http://www.geneontol
ogy.org and Webgestalt to investigate enrichment of spe-
cific functions within modules of co-expressed genes that
were associated with disease status.
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ALS: Amyotrophic Lateral Sclerosis; ME: module eigen-
gene; MM: module membership measure; SOD1: super-
oxide dismutase-1; WGCNA: weighted gene co-expression
network analysis.
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Additional material

Additional file 1
Differentially expressed genes between ALS cases and controls. Stand-
ard differential expression analysis that reports genes that are differen-
tially expressed between ALS and healthy controls in the discovery set. At 
a false discovery rate cut-off of 0.05, 2300 probes were differentially 
expressed between ALS cases and controls.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-405-S1.xls]
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Additional file 2
Reproducibility of co-expression modules across three data sets. 
Robustness of module detection across three networks denoted by R1, R2, 
and R3 corresponding to data sets 1, 2, and 3, respectively. Genes are 
colored according to their module assignment in the discovery set (R1) 
where five distinct branches (modules) were found (colored in Blue, 
Green, Red, Turquoise and Yellow). The fact that most genes of the same 
color tend to cluster together in data sets R2 and R3 reflects that these 
modules can also be found in these test data sets. The ALS related modules 
(Blue and Yellow) are preserved across all three data sets but the Red and 
Green module can only be found in data sets R1 and R2. An alternatively 
way of studying module preservation is afforded by module membership 
measures, see Additional File 3.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-405-S2.pdf]

Additional file 3
Scatterplots of module membership measures between the three data 
sets. Genes are colored by their module assignment in the discovery set. 
The axes correspond to module membership measures in the different data 
sets. MMBlueR1, MMBlueR2, MMBlueR3 denotes the module member-
ship with regard to the Blue module in data sets 1, 2, and 3, respectively. 
Note that genes with high positive (or high negative) Blue module mem-
bership in data set 1 tend to have a similar value in data sets 2 and 3. The 
same applies for module membership with regard to the Yellow module. 
Also note that the Blue genes tend to have negative module membership 
values with regard to the yellow module and vice versa. This reflects the 
fact that the Blue and Yellow module eigengenes are anti-correlated. The 
fact that the Blue and Yellow module membership values are preserved 
across the three data sets reflects the fact that these modules can be 
detected in all three data sets (Additional File 2).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-405-S3.pdf]

Additional file 4
Module membership annotation table. The table provides the module 
membership annotation with regard to different modules in each of the 3 
independent data sets. Values are reported for the 15463 probes for which 
there was significant evidence of presence in blood. MMBlueR1 denotes 
the module membership value to the Blue module in data set 1, i.e. the 
correlation between expression profiles and the Blue module eigengene. 
PvalueMMblueR1 denotes the corresponding correlation test p-value. The 
mean module membership with regard to the Blue module is referred to as 
MeanMMblue.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-405-S4.zip]

Additional file 5
Comprehensive functional enrichment results of an Ingenuity Path-
ways Analysis. The figure shows the functional enrichment results of an 
Ingenuity Pathways Analysis for four different gene lists comprised of 500 
genes each. Specifically, functional enrichment is reported for 500 genes 
with highest membership to the Blue Module (blue horizontal bars), high-
est membership to the Yellow Module (yellow bars), lowest WGCNA gene 
selection score p.weighted (turquoise bars), and most significant Student 
T-test (black bars).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-405-S5.pdf]

Additional file 6
Selected functional enrichment results of an Ingenuity Pathways 
Analysis. This figure represents a selected view of Additional File 5. Inge-
nuity Pathways Analysis shows selected overrepresented categories in the 
3 network related lists comprised of 500 genes each. Specifically, func-
tional enrichment is reported for 500 genes with highest membership to 
the Blue Module, the Yellow Module, and most significant WGCNA gene 
selection score (p.weighted).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-405-S6.pdf]

Additional file 7
Results of an Ingenuity biomarker analysis. This Excel file reports the 
results of an Ingenuity biomarker analysis where we analyzed the top 500 
genes with most significant WGCNA score (p.weighted). The table reports 
in which tissues matching genes are known to be expressed and known 
drug targets for matching genes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-405-S7.xls]

Additional file 8
Intramodular hub genes in the ALS related co-expression modules. The 
table reports hub genes in the Blue and Yellow module with possible func-
tion in pathogenesis in ALS based on Gene Ontology function. Selection 
was made within the top 100 most highly connected genes in both modules 
and genes were categorized by their Gene Ontology (GO) function. Mod-
ule membership is listed as well as fold change, Area Under the ROC 
Curve (AUC), sensitivity (Sensit), Specificity (Specif) and overall p-value 
of differential expression.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-405-S8.doc]
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