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Abstract
Background: The development and maintenance of the prostate is dependent on androgens and
the androgen receptor. The androgen pathway continues to be important in prostate cancer. Here,
we evaluated the transcriptome of prostate cancer cells in response to androgen using long serial
analysis of gene expression (LongSAGE) libraries.

Results: There were 131 tags (87 genes) that displayed statistically significant (p ≤ 0.001)
differences in expression in response to androgen. Many of the genes identified by LongSAGE (35/
87) have not been previously reported to change expression in the direction or sense observed. In
regulatory regions of the promoter and/or enhancer regions of some of these genes there are
confirmed or potential androgen response elements (AREs). The expression trends of 24 novel
genes were validated using quantitative real time-polymerase chain reaction (qRT-PCR). These
genes were: ARL6IP5, BLVRB, C19orf48, C1orf122, C6orf66, CAMK2N1, CCNI, DERA, ERRFI1, GLUL,
GOLPH3, HM13, HSP90B1, MANEA, NANS, NIPSNAP3A, SLC41A1, SOD1, SVIP, TAOK3, TCP1,
TMEM66, USP33, and VTA1. The physiological relevance of these expression trends was evaluated
in vivo using the LNCaP Hollow Fibre model. Novel androgen-responsive genes identified here
participate in protein synthesis and trafficking, response to oxidative stress, transcription,
proliferation, apoptosis, and differentiation.

Conclusion: These processes may represent the molecular mechanisms of androgen-dependency
of the prostate. Genes that participate in these pathways may be targets for therapies or
biomarkers of prostate cancer.

Background
Androgens mediate their effect through the androgen
receptor (AR) and together they play integral roles in the
development and maintenance of the prostate. In the
absence of a functional androgen-axis during develop-
ment, the prostate will fail to form[1]. The size of the pros-

tate increases with the elevation of levels of androgens in
males during puberty[2]. Androgens promote prolifera-
tion, differentiation, and survival of prostate cells[1]. Men
that have used excess androgens in the form of anabolic
steroids have a higher incidence of prostate cancer [3-5].
Association of prostate cancer with levels of androgens
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has also been reported in rodents[6,7]. Reduction of
androgen in humans or dogs before puberty by castration
is associated with decreased incidence of prostate can-
cer[8,9]. Castration of adult males causes apoptosis of
prostatic epithelium, involution and reduction of the
prostate [10-12]. Thus the prostate gland is an androgen-
dependent organ where androgens are the predominant
mitogenic stimulus[13]. The dependency of the prostate
epithelium on androgens provides the underlying ration-
ale for treating prostate cancer with chemical or surgical
castration (androgen-deprivation)[14].

The AR is a ligand-activated transcription factor[15] that
regulates transcription of genes that contain androgen
response elements (AREs) in the upstream or downstream
regulatory regions of the promoter and/or enhancer. Kal-
likrein 3 (KLK3) is an example of a gene that contains
numerous functional AREs that the AR interacts with to
increase transcription in response to androgens [16-19].
KLK3, also known as prostate-specific antigen (PSA), is
the main tumor marker for prostate cancer and has been
used clinically for 15 years[20]. Serum levels of PSA corre-
late with tumor volume[21]. However, as a screening and
monitoring tool for prostate cancer, serum PSA levels are
subject to false positives and false negatives[20].

Identification of the genes that change in expression in
response to androgen in prostate cells is essential for the
understanding of androgen-dependency of the normal
prostate and the proliferation, survival, and hormonal
progression of prostate cancer. There are several studies
that have investigated genes that alter expression in
response to a changing androgen-axis using SAGE [22-
24]. Here we highlight several key differences in the cur-
rent experimental design from previous studies: 1) a phys-
iological concentration of metabolically stable androgen
(R1881) was employed in vitro; 2) the transcriptome was
catalogued using LongSAGE[25] opposed to
(short)SAGE[26] because it generates lengthier tags allow-
ing increased confidence in tag-to-gene mapping, and
leaves fewer tags unmapped[25]; 3) the transcriptome of
human prostate cancer cells was examined instead of
murine cells [22]; 4) sequencing depth was increased by
approximately 1.5-2 times more tags relative to other
studies [23,24] to improve the potential for novel find-
ings; 5) transcript expression was validated using an alter-
native assay as opposed to protein expression [24], and
tens of novel genes were validated as opposed to only
two[23]. Thus, we apply LongSAGE for the first time to
create transcript libraries of prostate cancer cells main-
tained in the presence or absence of androgen. These
libraries are publicly available at Gene Expression Omni-
bus. We describe 24 genes never before identified or vali-
dated to alter expression in response to androgen
treatment. These genes were: ARL6IP5, BLVRB, C19orf48,

C1orf122, C6orf66, CAMK2N1, CCNI, DERA, ERRFI1,
GLUL, GOLPH3, HM13, HSP90B1, MANEA, NANS,
NIPSNAP3A, SLC41A1, SOD1, SVIP, TAOK3, TCP1,
TMEM66, USP33, and VTA1. Statistically significant
changes in expression of ARL6IP5, CAMK2N1, ERRFI1,
HSP90B1, and TAOK3 in response to reduced levels of cir-
culating androgens were measured using in vivo samples.

Results and discussion
Summary of LongSAGE libraries
LongSAGE was employed to obtain quantitative gene
expression profiles of human prostate cancer cells treated
with or without synthetic androgen R1881. LNCaP
human prostate cancer cells were chosen as the model cell
line for evaluating androgen signaling because they
respond to androgens, express a functional although
mutated (T877A) AR, they can be grown in vitro as a mon-
olayer or in vivo as a xenograft or in the Hollow Fiber
model [27-29]. LNCaP cells have been used extensively in
prostate cancer research. The time of 16 hours for treat-
ment and concentration of R1881 (10 nM) were chosen
based upon optimal induction of levels of KLK3 mRNA
[30].

LongSAGE libraries were sequenced to a total of 121,760
(R1881) and 103,391 (vehicle) tags (Table 1). The librar-
ies were filtered on several levels to leave only useful tags
for analysis. First, bad tags were removed if they contained
at least one N-base call in the LongSAGE tag sequence.

Table 1: Composition of LongSAGE libraries

Unfiltered Library R1881 Vehicle

Unfiltered Total Tags 121,760 103,391
No. of Bad Tags 528 383

Minus Bad Tags Total Tags 121,232 103,008
Tag Types 33,385 31,764

No. of Duplicate Ditags 6,763 5,193
% of Duplicate Ditags 5.579 5.041
Average QFr of Tags 8 9.64 89.67

No. of Tags QF<95% 22,816 17,095

QF ≥ 95% Total Tags 98,416 85,913
Tag Types 23,830 24,594

Total Tags Combined 184,329
Tag Types Combined 38,576
No. of LDTss Type I 219 34
No. of LDTs Type II 216 18

Minus LDTs Total Tags 97,981 85,861
Tag Types 23,828 24,592

Total Tags Combined 183,842
Tag Types Combined 38,574

r QF, Quality Factor
s LDTs, Linker-derived Tags
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Notably, when bad tags were filtered the percentages of
duplicate ditags in the R1881 and vehicle LongSAGE
libraries were 6% and 5%, respectively. Early SAGE studies
suggest duplicate ditags likely represent polymerase chain
reaction (PCR) artifacts due to the low probability the
same two tags will ligate together to form ditags[26].
However, with LongSAGE library sequencing and highly
expressed transcripts, this probability becomes signifi-
cant[31]. A recent study[32] suggests that discarding
duplicate ditags in LongSAGE analysis may introduce a
bias affecting the fold differences in tag expression
between libraries for all tags observed at a frequency
>(113-224)/100,000. Therefore, we opted to retain dupli-
cate ditags. PHRED software was used to call bases for the
sequencing of the LongSAGE tags[33,34]. PHRED has a
small, but significant error rate in base-calls. To ascertain
which tags potentially contained these erroneous base-
calls, we calculated a tag sequence quality factor (QF) and
probability[35]. The second line of filtering removed
LongSAGE tags with probabilities less than 0.95 (QF <
95%). Linkers of known sequence were introduced into
SAGE libraries as primers for amplifying ditags prior to
concatenation[26]. These linker sequences were designed
so they do not map to the human genome. At a low fre-
quency, linkers ligate to themselves creating linker-
derived tags (LDTs). These LDTs do not represent tran-
scripts and are removed from the LongSAGE libraries.
After filtering, there were 97,981 total useful tags repre-
senting 23,828 tag sequences in the R1881 LongSAGE
library, and 85,861 total useful tags representing 24,592

tag sequences in the vehicle LongSAGE library. Due to
redundancy in the expressed sequences, the combined
number of useful tag types in the R1881 and vehicle Long-
SAGE libraries was 38,574. The remainder of the data
analysis in this manuscript was carried out using this fil-
tered data.

Tag frequency and transcript abundance
Tag frequency spanned over three orders of magnitude
corresponding to transcript abundance of 5 to 8,746 cop-
ies per cell (based on minimum and maximum observed
tag counts of 1 and 1714; see Table 2 legend)[36]. The dis-
tribution of LongSAGE tag frequencies per 100,000 tags
revealed the majority (64 and 67%) of tag types in each
LongSAGE library (R1881 and vehicle, respectively) were
singletons (tags counted only once). This result was con-
sistent with other published SAGE libraries reporting 66%
singletons[37]. Singletons can represent very low abun-
dance transcripts (≤ 5 transcript copies per cell) or PCR/
sequencing errors. Estimates indicate that less than 17%
of LongSAGE tags in a library contain PCR/sequencing
errors[38]. Coincidently, 17% of the total tags in the
R1881 and vehicle LongSAGE libraries roughly equal the
number of singletons in each LongSAGE library (Table 2).
Although initial estimates suggest 6.8-10% of shortSAGE
tags contain PCR/sequencing errors, more recent experi-
mental evidence suggests the actual error rate is much
lower (≤ 2%)[39]. This implies that an error rate of 17%
may also be an overestimate for LongSAGE tags. Tag types
counted 2-4 times per 100,000 tags (10-20 transcript cop-

Table 2: Characteristics of LongSAGE tag frequency distribution

Tag Frequency & Abundance Tag Count per 100,000t ≤1 2-4 5-9 10-99 100-999 ≥1,000
Transcript Copies per Cellu ≤5 10-20 25-45 50-495 500-4,995 ≥5,000

% Transcript Abundance in Cellv ≤0.001 0.002-0.004 0.005-0.009 0.01-0.099 0.1-0.999 ≥1

R1881 Total Tags 15,141 13,985 11,055 32,800 21,971 3,029
Tag Types 15,141 5,464 1,703 1,417 101 2

Vehicle Total Tags 16,562 1 0,229 11,633 26,466 18,453 2,518
Tag Types 16,562 4,427 2,195 1,313 93 2

% of Tags that Map as Transcription Factorsα, z, δ 9.14 8.94 7.95 6.0 0 0
% of Tags that Mapχ, β, δ 29.40 57.82 76.22 83.1 85 100γ

% of Tags Significantly Differentially Expressedε, a, δ 0.4 1.15 16.17 25.38 58.12 100

t Tag count per 100,000 = (observed tag count/total tags in the library) × 100,000
u Transcript copies per cellw = (observed tag count/total tags in the library) × 500,000
v % Transcript abundance in cellw = (transcript copies per cell/500,000) × 100%
w Calculation based on ~500,000 transcripts in a cell [36]
α % of tags that map as transcription factors = (no. of genes with "transcription regulation acivity"/no. of genes with unambiguous sense mappings 
and GO terms) × 100%
zMapped unambigously sense toRefSeqand subjected to Gene Ontology (GO) analysis
δ Tag types from each tag frequency class of R1881 and vehicle LongSAGE libraries were combined
χ % of tags that map = (no. of genes with sense mappings/combined total tag types) × 1 00%
β Mapped sense (incl. ambiguous) to RefSeq
γ One tag was mapped sense using Ensembl gene
ε % of tags significantly differentially expressed = (no. of significantly differently expressed tag types in class/combined total tag types in class) × 
100%
a Statistics according to the Audic and Claverie test statistic (p ≤ 0.001)
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ies per cell) and 5-9 times per 100,000 tags (25-45 tran-
script copies per cell) were the second and third most
common groups of tag types, respectively. Generally, high
frequency tags were less common. The majority of total
tags in each LongSAGE library were derived from a few tag
types detected between 10-99 times per 100,000 tags (50-
495 transcript copies per cell).

Mapping distribution of LongSAGE tags
When mapped tags (v38 Ensembl) were clustered to amal-
gamate 1-off tags (see Methods, Gene Expression Analysis
for a description) and tags that mapped ambiguously were
removed, the tag types in the R1881 and vehicle Long-
SAGE libraries represented 7,484 genes and 7,441 genes,
respectively (Table 3). Tag types that mapped ambigu-
ously constituted 13% (R1881 and vehicle), while 36%
(R1881) and 35% (vehicle) of tag types did not map to
the genome (Table 3). Due to the fact that these tags were
clustered, the majority of the tags that did not map to the
genome probably represent true unannotated transcripts
rather than PCR/sequencing errors. Approximately 28%
of tags in each LongSAGE library mapped to the opposite
strand of known genes. These LongSAGE tags either repre-
sent transcription from previously undescribed coding
regions or true antisense transcripts. Each LongSAGE
library contained tags representing transcripts from 32%
of the genes in the Ensembl gene database. This percent-
age is indicative of the depth of coverage of the transcrip-
tome achieved with LongSAGE. Alternatively, this
percentage indicates that one third of known Ensembl
genes were expressed in LNCaP cells under these experi-
mental conditions. This percentage is substantial when
considering tag types from the Mouse Atlas Project (8.55
million total LongSAGE tags generated from 72 libraries
of mouse development) mapped to 57% of the Ensembl
transcript database[35]. Approximately 63% (R1881) and
61% (vehicle) of the genes that mapped to Ensembl's
database were associated with more than one tag type to
suggest that most gene expression was represented by
transcript variants which is consistent with previous
observations[35]. When the mapped LongSAGE tags (Ref-
erence Sequence, RefSeq; May 18, 2006) were clustered to
amalgamate 1-off tags and tags that mapped ambiguously
were removed, 53% of tags mapped solely to known
exons, 9% solely to known introns (novel transcript vari-

ants), and 38% to intergenic regions (novel genes or tran-
script variants).

The two most abundant tag types in the LongSAGE librar-
ies were shared by both libraries. The first highly abun-
dant LongSAGE tag mapped to human mitochondrial
NADH ubiquinone oxidoreductase chain 4. This gene is
also highly expressed in other human tissues (i.e., cardiac
tissue; SAGE Genie, http://cgap.nci.nih.gov/SAGE). The
protein product of this gene transfers electrons from
NADH to ubiquinone to generate adenosine triphosphate
as metabolic energy. Using the Ensembl database, the sec-
ond most abundant LongSAGE tag mapped to a non-cod-
ing gene of human mitochondria. In contrast to the
higher abundance classes, the lower abundance classes
were enriched for LongSAGE tags that mapped to genes
with functions in regulating transcription (Table 2). This
is particularly significant because the percentages of Long-
SAGE tags that mapped to the genome in the lower abun-
dance class were reduced compared to the higher
abundance classes (Table 2). Together this implies that
the number of tags that map to genes with a function in
transcription may be underestimated, as low abundance
tags may be underrepresented.

Differential gene expression
Venn analysis identified that 36% and 38% of tag types
were exclusive to the R1881 or vehicle LongSAGE librar-
ies, respectively (Figure 1). The unique expression of tag
types indicates differential expression depending upon
androgen stimulation. The biological relevance of this dif-
ferential expression is complicated by the fact that 85%
(R1881) and 88% (vehicle) of these exclusive LongSAGE
tags were singletons. Consistent with our observation that
low abundance tags did not map as readily to the genome,
the mutually exclusive tags also did not map as readily as
tags shared between both libraries. Only 17% and 15% of
tags exclusive to R1881 and vehicle LongSAGE libraries,
respectively, mapped unambiguously sense to RefSeq, in
contrast to 39% of shared tags. We therefore, concentrated
on genes for which the tag abundance allowed for the
determination of statistically significant changes in tran-
script abundance.

Table 3: LongSAGE tag mappingsx

Library No. of Tag Types that Mapped 
Unambiguously to (Genes)

No. of Tag Types that 
Mapped Ambiguously

No. of Tag Types that 
Did Not Map

Total No. of Tag Types 
(Clustered)y

R1881 14,587 (7,484) 3,754 10,215 28,556
Vehicle 13,626 (7,441) 3,286 9,066 25,978

x Ensembl gene (v38) was used for mapping
y Clustering amalgamated 1-off tags with likely 'parent' tags to improve the mapping capability of LongSAGE tags Clustering altered the number of 
tag types without changing the total number of tags in the libraries
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A scatter plot illustrates observed tag counts in LongSAGE
libraries relative to the confidence intervals (CIs; 95%,
99%, and 99.9%) of respective p-values (p ≤ 0.05, 0.01,
and 0.001) by Audic and Claverie statistics[40] (Figure 2).
891 tags were differentially expressed (p ≤ 0.05) between
the two LongSAGE libraries (Figure 2 and Table 4). Long-
SAGE tags statistically (p ≤ 0.001) differentially repre-
sented between the libraries were enriched in the higher
abundance classes compared to the lower abundance
classes (Table 2). Additionally, 90% of the LongSAGE tags
were statistically (p ≤ 0.001) differentially represented
between the libraries with ≥ 2-fold differences, compared
to only 17% of tags with p-values greater than 0.001 (p >
0.001).

A stringent p-value cutoff (p ≤ 0.001), not corrected for
multiple tests, was employed prior to validation of
changes in expression of a gene in response to androgen.
LongSAGE tags that were differentially expressed, but
mapped ambiguously to more than one gene, and/or dif-

fered by less than 2-fold between the treatment groups,
were excluded from analysis. Application of these criteria
reduced the LongSAGE tags from 131 to 93. These 93 tags
represented 87 genes. Analysis of differentially expressed
LongSAGE tags revealed that 54 LongSAGE tags that
mapped to 52 genes were previously known to change in
expression in the direction observed in response to andro-
gen in prostate cancer cells. Of these, the expression of 41
genes increased as expected, including the well-known
androgen-regulated gene, KLK3 (Table 5). The expression
of 11 genes decreased in response to androgen and were
consistent with previous reports (Table 6). Genes previ-
ously not reported to alter expression in response to
androgen in prostate cancer cells were represented by 39
LongSAGE tags. These tags represented the expression of
20 genes that were increased, excluding mappings to non-
coding and intergenic regions, (Table 7), and expression
of 15 genes that was decreased (Table 8) in response to
androgen. The 93 tags were represented by 87 genes
because one tag did not map to the human genome (Table
7) and two tags mapped to intergenic regions of the
human mitochondrial genome (Tables 7 and 8). Three
genes were represented twice in the tables (CAMK2N1,
PPAP2A, and SORD). One gene, KRT8, was categorized in
both the known and not previously known categories due
to the sense of the mapping (Tables 5 and 8).

Interestingly some antisense tags were identified as differ-
entially expressed in response to androgen. Antisense to
NKX3-1 is of particular note. Transcription of this gene is

Relationship between LongSAGE library compositionsFigure 1
Relationship between LongSAGE library composi-
tions. The Venn Diagram shows the tag types and genes 
exclusive to, and shared by each LongSAGE library, R1881 
and vehicle. Tags were mapped unambiguously sense to Ref-
Seq transcripts and redundant mappings were removed. Sin-
gletons are tags counted only once in each library, but may be 
common to both libraries.
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Table 4: Number of tag types found to be significantly 
differentially expressed between R1881 and vehicle librariesa

Direction of Change p ≤ 0.001 p ≤ 0.01 p ≤ 0.05

Up Regulated 83 196 455
Down Regulated 48 120 436

Total 131 316 891
% of All Tag Types 0.34% 0.82% 2.31%

a Statistics according to the Audic and Claverie test statistic

Confidence intervals highlight expressed tag types with non-linear relationships between LongSAGE librariesFigure 2
Confidence intervals highlight expressed tag types 
with non-linear relationships between LongSAGE 
libraries. Scatter plot dots represent tag types and their 
placement on the axis indicates the frequency of observation 
in either of the LongSAGE libraries. Tag types that fall outside 
the confidence interval (CI) lines are considered statistically 
significantly differentially expressed (Audic and Claverie test 
statistic); outer line, 99.9% CI; middle line, 99% CI; and inner 
line, 95% CI.
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Table 5: LongSAGE tags corresponding to genes known to increase expression in response to androgen in LNCaP cellsa, n

Tags/100,000d, t

LongSAGE Tag 
Sequence

Vehicle R1881 Foldc, d Change RefSeq/Ensembl 
Access. No.

HGNC Gene Symbol Descriptionφ

GTGACAAGTGACAG
AGT

1 19 20 NM_007011 ABHD2 Abhydrolase domain 
containing 2, transcript 
variant 1

ACGTCACCATTTTTA
AC

1 24 20 NM_004457 ACSL3 Acyl-CoA synthetase 
long-chain family member 
3, transcript variant 1

TACTTTATAAGTATT
GG

14 59 4.2 NM_006988 ADAMTS1* ADAM metallopeptidase 
with thrombospondin 
type 1 motif, 1

TAGCTCTATGGGGG
GAG

35 75 2.1 NM_000701 ATP1A1 ATPase, Na+/K+ 
transporting, alpha 1 
polypeptide, transcript 
variant 1

GTTGTGGTTAATCTG
GT

48 109 2.3 NM_004048 B2M Beta-2-microglobulin

ACTTAAGGAACTTAT
CT

14 42 3.0 NM_015415 BRP44 Brain protein 44

AAAGGAAAATAAAA
ATT

3 27 9 NM_018455 CENPN* Centromeric protein N

CTGTGATGTGACTC
CTG

5 30 6 NM_030806 Clorf21 Chromosome 1 open 
reading frame 21

CAGATGAGATGTGA
GCT

5 33 7 NM_130898 CREB3L4* cAMP responsive element 
binding protein 3-like-4

TGTTTATCCTAAACT
GA

21 115 5.5 NM_020548 DEI Diazepam binding 
inhibitor (GAB A 
receptor modulator, acyl-
Coenzyme A binding 
protein)

TCCCCGTGGCTGTG
GGG

106 356 3.36 NM_014762 DHCR24 24-dehydrocholesterol 
reductase

GAAATTAGGGAAGC
CTT

9 34 4 NM_015036 ENDOD1 Endonuclease domain 
containing 1

AGATCCTACTTAGTA
TG

16 51 3.2 NM_004462 FDFT1 Farnesyl-diphosphate 
farnesyltransferase 1

GTTCCAGTGAGGCC
AAG

3 50 20 NM_004117 FKBP5* FK506 binding protein 5

ACCTAGCCACTGCT
GGG

1 24 20 NM_002247 KCNMA1 Potassium large 
conductance calcium-
activated channel, 
subfamily M, alpha 
member 1, transcript 
variant 2

GGATGGGGATGAAG
TAA

50 366 7.3 NM_001648 KLK3* Kallikrein 3, (prostate-
specific antigen), 
transcript variant 1

CCTCCAGCTACAAA
ACA

35 223 6.4 NM_002273 KRT8 Keratin 8

TAAAATATTGAAGTG
TC

NDb 42 40 NM_015541 LRIG1* Leucine-rich repeats and 
immunoglobulin-like 
domains 1

TCCCTGAGCACCAT
TGC

ND 35 40 NM_015261 NCAPD3* Non-SMC condensin 
complex subunit D3

GGACTTTCCTTCCCT
CT

1 72 70 NM_006096 NDRG1 N-myc downstream 
regulated gene 1

TTTAGGTAAACGAAA
GC

19 56 2.9 NM_014445 N/Aq Stress-associated ER 
protein 1

AGGTTTTGCCTCATT
CC

13 38 2.9 ENSG00000196930 N/Aq Similar to Vesicle-
associated membrane 
protein-associated 
protein A mRNA
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regulated by androgen in a time- and concentration- dependent manner [41] with an ARE confirmed in its

ATGCAGCCATATGG
AAG

20 208 10 NM_002539 ODC1 Ornithine decarboxylase 
1

GCCAAGGGGCCAGC
TGC

17 45 2.6 NM_002541 OGDH Oxoglutarate (alpha-
ketoglutarate) 
dehydrogenase 
(lipoamide), nuclear gene 
encoding mitochondrial 
protein, transcript variant 
1

TAATTTTTACTTTGT
AC

5 39 8 NM_017906 PAK1IP1* PAK1 interacting protein 
1

TATGTAATATGCTTT
CT

27 164 6.1 NM_003711 PPAP2A Phosphatidic acid 
phosphatase type 2A, 
transcript variant 1

AAACACCAACAACT
GGG

5 31 6 NM_003711 PPAP2A Phosphatidic acid 
phosphatase type 2A 
isoforms 1 and 2

GTGTTTACGTGATC
CAC

1 18 20 NM_004578 RAB4A RAB4A, member RAS 
oncogene family

TATGTATAAATGGAC
CT

ND 16 20 NM_021205 RHOU* Ras homolog gene family, 
member U

TTTGAAATGAGGTCT
GT

14 48 3.4 NM_002970 SAT Spermidine/spermine N1-
acetyltransferase

GCAACAGCAATAGG
ATT

3 22 7 NM_014302 SEC61G Sec61 gamma subunit, 
transcript variant 1

GCGCTGGAGTGAGA
TGG

59 126 2.1 NM_031287 SF3B5 Splicing factor 3B, subunit 
5, l0kDa

GGATTTGAACATATG
AA

ND 13 10 NM_033102 SLC45A3 Solute carrier family 45, 
member 3

ACCTTGTGCCCGAT
TCT

47 238 5.1 NM_003104 SORD Sorbitol dehydrogenase

AAAATCTGCCACTC
AGG

ND 1 2 10 NM_003104 SORD Sorbitol dehydrogenase

GTGCAGGGAGACAT
CTG

3 55 20 NM_012391 SPDEF SAM pointed domain 
containing ets 
transcription factor

TTAAGGGATGATGG
CTT

ND 1 2 10 NM_024636 STEAP4 STEAP family member 4

TACTACAGCTATATT
TG

1 6 52 3. 3 NM_016192 TMEFF2 Transmembrane protein 
with EGF-like and 2 
follistatin-like domains 2

TGATGTCTGGTCTG
AAT

1 1 7 20 NM_020182 TMEPAI Transmembrane, prostate 
androgen induced RNA, 
transcript variant 1

CAAATAAATTATGCG
AT

5 64 10 NM_005656 TMPRSS2 Transmembrane 
protease, serine 2

TGAAAAGCTTAATAA
AT

7 28 4 NM_005079 TPD52 Tumor protein D52, 
transcript variant 3

TTAAAGATTTAGACA
CC

10 36 3. 6 ENSG00000140416 TPM1 Tropomyosin 1 apha 
chain

TTCTCTACACAATTG
TA

6 36 6 NM_006022 TSC22D1 TSC22 domain family, 
member 1, transcript 
variant 1

a Statistics according to the Audic and Claverie test statistic (p ≤ 0.001)
b ND, not detected
c ND tags were assigned a value of 1 when calculating fold
d Appropriate significant figures are displayed
n Ambiguously mapped tags and tags with a fold change less than 2-fold have been excluded from the table
q N/A = there is no HGNC approved gene symbol for this tag
t Tag count per 100,000 = (observed tag count/total tags in the library) × 100,000
φ In cases where a tag mapped to >1 transcript variant of the same gene the RefSeq accession number for transcript variant 1 was displayed
* Gene further characterized in this paper

Table 5: LongSAGE tags corresponding to genes known to increase expression in response to androgen in LNCaP cellsa, n (Continued)
Page 7 of 19
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002539
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002541
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_017906
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003711
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003711
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004578
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_021205
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002970
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_014302
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_031287
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_033102
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003104
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003104
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_012391
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_024636
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_016192
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_020182
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005656
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005079
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006022


BMC Genomics 2009, 10:476 http://www.biomedcentral.com/1471-2164/10/476
enhancer region [42]. Anti-sense RNA is involved in tran-
scriptional silencing of sense transcript, imprinting con-
trol, post-transcriptional down-regulation of sense
transcript or even stabilizing/promotion of the expression
of the sense transcript [43]. In the case of NKX3-1, anti-
sense transcript may be a negative feedback mechanism;
however, this remains to be determined.

Validation of changes in gene expression in response to 
androgen
Quantitative real time-polymerase chain reaction (qRT-
PCR) was used to validate changes in gene expression in
response to androgen of 39 (13 known; 26 novel) of the
87 total genes identified by LongSAGE. Of the 35 genes

previously not reported to change expression in response
to androgens in prostate cancer cells, only 26 were quan-
tified by qRT-PCR, because technical limitations and gaps
in the transcriptome databases prevented the analysis of 9
genes. That is, specific qRT-PCR primers could not be
designed due to repetition in the genome, or because the
tag mapped to an unannotated transcript variant. There
were 24 of the 26 (92%) novel genes that displayed statis-
tically significant differential expression in response to
androgen as measured by qRT-PCR (Figure 3A). BLVRB,
C19orf48, C1orf122, ERRFI1, GLUL, GOLPH3, HM13,
HSP90B1, NANS, SLC41A1, TAOK3, TCP1, TMEM66, and
USP33 all increased levels of expression in response to
androgen, while ARL6IP5, C6orf66, CAMK2N1, CCNI,

Table 6: LongSAGE tags corresponding to genes known to decrease expression in response to androgen in LNCaP cellsa, n

Tags/100,000d, t

LongSAGE Tag 
Sequence

Vehicle R1881 Fold Changec, d, j RefSeq/Ensembl 
Access. No.

HGNC Gene Symbol Descriptionφ

CAAAAGCTTATTCTT
GT

29 3 -10 NM_016613 C4orf18 Chromosome 4 open 
reading frame 18, 
transcript variant 2

TCACACAGTGCCTG
TCG

19 1 -20 NM_020311 CXCR7* Chemokine orphan 
receptor 1

ACAAACCCCCACCC
CAG

41 7 -6 NM_013330 NME7 Non-metastatic cells 7, 
protein expressed in, 
transcript variant 1, 
Nucleoside diphosphate 
kinase

AATCTCTCAATTATA
GG

34 9 -4 NM_006183 NTS* Neurotensin

ATCAACTGGAGGCT
CAG

15 NDb -20 NM_005013 NUCB2 Nucleobindin 2

CCAAAATTAGGAAA
AAC

15 1 -20 NM_002577 PAK2 p21 (CDKNlA)-activated 
kinase 2k

TTACGTTTGGGAAA
AAT

19 2 -9 NM_032971 PCDH11Y Protocadherin 11 Y-
linked, transcript variant 
ak

TGACTTTGGTGCCG
TTA

12 ND -10 NM_003629 PIK3R3 Phosphoinositide-3-
kinase, regulatory 
subunit 3 (p55, gamma)

AGCAAATATGTCAA
GGG

47 16 -2.9 NM_182948 PRKACB* Protein kinase, cAMP-
dependent, catalytic, 
beta, transcript variant 1

GACTATTCCATATTA
AA

27 1 -30 NM_018412 ST7* Suppression of 
tumorigenicity 7, 
transcript variant A

GAGGGTTTTAAATG
GAG

79 9 -9 NM_001077 UGT2B17 UDP 
glucuronosyltransferase 
2 family, polypeptide B17

a Statistics according to the Audic and Claverie test statistic (p ≤ 0.001)
b ND, not detected
c ND tags were assigned a value of 1 when calculating fold change
d Appropriate significant figures are displayed
j Negative fold change value indicates down-regulation in response to R1881
k Tag has a single base pair permutation, insertion, or deletion with respect to gene
n Ambiguously mapped tags and tags with a fold change less than 2-fold have been excluded from table
t Tag count per 100,000 = (observed tag count/total tags in the library) × 100,000
φ In cases where a tag mapped to >1 transcript variant of the same gene the RefSeq accession number for transcript variant 1 was displayed
* Gene further characterized in this paper
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Table 7: LongSAGE tags corresponding to genes not previously reported to increase expression in response to androgen in LNCaP 
cellsa, n

Tags/100,000d, t

LongSAGE Tag 
Sequence

Vehicle R1881 Fold Changec, d RefSeq/Ensembl 
Access. No.

HGNC Gene Symbol Descriptionφ

TCTTTATTAGAAAAA
AA

NDb 16 20 NM_014265 ADAM28 ADAM metallopeptidase 
domain 28, transcript 
variant 1k

AGGAGCAAAGGAAG
GGG

51 107 2.1 NM_000713 BLVRB* Biliverdin reductase B 
(flavin reductase 
(NADPH))

TTTTGGGGGCTTTTA
GC

16 44 2.8 NM_198446 Clorf122* Chromosome 1 open 
reading frame 122

GGGCCCCAAAGCAC
TGC

22 69 3.1 NM_199249 C19orf48* Chromosome 19 open 
reading frame 48

CCCCAGTTGCTGAT
CTC

24 60 2.5 NM_001003962 CAPNS1* Calpain, small subunit 1, 
transcript variant 2

CTTAAGAAAAATGCA
CT

1 23 20 NM_018948 ERRFI1 * ERBB receptor feedback 
inhibitor 1

TACAGTATGTTCAAA
GT

13 52 4.0 NM_002065 GLUL* Glutamate-ammonia 
ligase (glutamine 
synthetase), transcript 
variant 1g, i

TTAATAGTGGGGCTT
TC

10 39 3.9 NM_022130 GOLPH3* Golgi phosphoprotein 3 
(coat protein)

GCCAGGGCGGGCCA
CTG

ND 16 20 NM_178580 HM13* Histocompatibility 
(minor) 13, transcript 
variant 2

GAGGAAGAAGAAGC
AGC

ND 14 10 NM_003299 HSP90B1* Heat shock protein 
90kDa beta (Grp94), 
member 1

GGCAAGGGGGGTCC
CCA

1 20 20 NM_002273 KRT8 Keratin 8m

ACTCCAAAAAAAAAA
AA

41 81 2.0 XM_376154 N/Aq Similar to 40S ribosomal 
protein S15 (RIG 
protein), transcript 
variant 1

GGGTTGGCTTGAAA
CCA

6 30 5 ENSG00000210151 N/A Non-coding predicted 
mitochondrial gene m

GAGAGCTCCCGTGA
GTG

72 122 1.7 NC_001807P N/A Intergenic region of 
mitochondrial genome

TCGGACGTACATCG
TTA

40 223 5.6 No map N/A N/A

GCAAAAAAATCAAG
TCT

22 66 3.0 NM_018946 NANS* N-acetylneuraminic acid 
phosphate synthase 
(sialic acid synthase)

TCTTTTAGCCAATTC
AG

2 36 20 NM_006167 NKX3-1 NK3 transcription factor 
related, locus 1 m

TACTTTTGGCCTGGC
TG

6 35 6 NM_173854 SLC41A1* Solute carrier family 41, 
member 1

GAGAGCCTCAGAAT
GGG

5 26 5 NM_016281 TAOK3* TAO kinase 3

GAAGTTATGAAGAT
GCT

41 106 2.6 NM_030752 TCP1* T-complex protein 1, 
transcript variant 1

CAGTTCTCTGTGAAA
TC

40 93 2.3 NM_016127 TMEM66* Transmembrane protein 
66

ATGGCTTTGTTTTGG
TT

ND 14 10 NM_201624 USP33* Ubiquitin specific 
protease 33, transcript 
variant 2
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DERA, MANEA, NIPSNAP3A, SOD1, SVIP, and VTA1
decreased in response to androgen (Figure 3A). Under the
experimental conditions and primers used, we did not
measure statistically significant changes in expression of
PRNPIP and CAPNS1. A false discovery rate (FDR)[44] of
29% was expected of the LongSAGE data based on the
Audic and Claverie p-value ≤ 0.001. This FDR represents
the anticipated percentage of type I errors (i.e., false posi-
tives). We observed only 2/26 (8%) false positives, sug-
gesting that the other filter parameters (e.g., ≥ 2-fold
difference in expression level) may have the increased the
chances of validation by qRT-PCR. Moreover, the expres-
sion trends for all 13 genes known to change expression
in response to androgen in prostate cancer cells correlated
between the LongSAGE and qRT-PCR data. ADAMTS1,
CENPN, CREB3L4, FKBP5, KLK3, LRIG1, NCAPD3,
PAK1IP1, and RHOU all increased levels of expression in
response to androgen while CXCR7, NTS, PRKACB, and
ST7 decreased in response to androgen (Figure 3B).

Known or potential AREs in the regulatory regions of 
androgen-regulated genes
AR directly regulates transcription in response to andro-
gen by binding to AREs in the promoter and/or enhancer
regions of target genes. ChIP-chip database mining for
suggested AREs combined with a literature search for
known AREs revealed some of the genes that alter expres-
sion in response to androgen do contain AREs (Table 9).
For the 87 genes identified using the cut-off p-value of
0.001 and 2-fold change in response to androgen, there
were eight genes with AREs in their promoter, enhancer or
intron regions[16,42,45-49]. AREs were detected in the
proximity of seven genes by data mining of ChIP-chip
studies of ARE on chromosomes 19, 20, 21, 22 [50,51].
Additionally, sequence analysis of the promoters [52]
found eight genes from our gene list to contain potential
AREs (Table 9). Identification of potential AREs in the reg-
ulatory regions of the newly identified genes that alter
expression in response to androgen (BLVRB, C19orf48,
HM13, SOD1) may be directly regulated by AR.

Cell-type specificity of gene expression
To determine if expression of candidate genes was unique
to LNCaP cells, we assayed for constitutive levels of
expression of 18 known and novel candidate genes in
prostate cancer cell lines DU145[53] and PC-3[54] using
qRT-PCR (Figure 4). Genes chosen included those that
both increased (ADAMTS1, CAPNS1, CENPN, CREB3L4,
ERRFI1, FKBP5, HSP90B1, KLK3, LRIG1, NCAPD3,
PAK1IP1, and TAOK3) and decreased expression in
response to androgen (ARL6IP5, CAMK2N1, CCNI,
CXCR7, PRKACB and ST7). No obvious trends were
observed depending on whether expression of the genes
increased, or decreased, in response to androgen. All
genes tested, except ERRFI1, were expressed at a lower
level in PC-3 and DU145 cells relative to LNCaP cells. This
suggests that the majority of genes that alter levels of
expression in response to androgen were enriched in
LNCaP cells relative to PC-3 and DU145 cells. These data
are consistent with both DU145 and PC3 cells being
androgen-insensitive and lacking a functional AR[53,54].

In vivo changes in gene expression in response to 
androgen-deprivation
The LNCaP Hollow Fibre model combined with qRT-PCR
was employed to capture in vivo gene expression repre-
sentative of physiological levels and castrated levels of
androgen (Figure 5). We expected that the genes that had
increased levels of expression in vitro in response to andro-
gens, would decrease expression in vivo in response to cas-
tration (androgen-deprivation). Conversely, we expected
that the genes that had decreased levels of expression in
vitro in response to androgens, would increase expression
in vivo in response to castration. These in vivo results
would be consistent with androgen-responsiveness of the
candidate genes. Of the candidate genes examined, 13 of
16 genes showed significant changes in gene expression in
response to androgen-deprivation (Figure 5). As antici-
pated, expression of ARL6IP5, CAMK2N1, CXCR7, and
ST7 increased, while CENPN, CREB3L4, ERRFI1, FKBP5,
KLK3, LRIG1, NCAPD3, PAK1IP1, and TAOK3 decreased

a Statistics according to the Audic and Claverie test statistic (p ≤ 0.001)
b ND, not detected
c ND tags were assigned a value of 1 when calculating fold change
d Appropriate significant figures are displayed
e Gene family, but not this family member, previously described to change expression in response to androgens
g Protein known to change expression in reponse to androgens
h Gene known to change expression in response to androgens, but in the opposite direction as reported here
i Gene known to change expression in response to androgens in cells other than prostate
k Tag has a single base pair mutation, insertion, or deletion with respect to gene map
mTag maps to the strand opposite of the gene
n Ambiguously mapped tags and tags with a fold change less than 2-fold have been excluded from the table
p NC_001807, refers to the complete genome of mitochondria in humans
All mitochondrial genes in the RefSeq database are assigned the same accession number by NCBI q N/A, there is no HGNC approved gene symbol 
or description for this tag t Tag count per 100,000 = (observed tag count/total tags in the library) × 100,000
φ In cases where a tag mapped to >1 transcript variant of the same gene the RefSeq accession number for transcript variant 1 was displayed * Gene 
further characterized in this paper

Table 7: LongSAGE tags corresponding to genes not previously reported to increase expression in response to androgen in LNCaP 
cellsa, n (Continued)
Page 10 of 19
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001807


BMC Genomics 2009, 10:476 http://www.biomedcentral.com/1471-2164/10/476

Page 11 of 19
(page number not for citation purposes)

Table 8: LongSAGE tags corresponding to genes not previously reported to decrease expression in response to androgen in LNCaP 
cellsa, n

Tags/100,000d, t

LongSAGE Tag 
Sequence

Vehicle R1881 Foldc, d, j Change RefSeq/Ensembl 
Access. No.

HGNC Gene Symbol Descriptionφ

GTCTAGAATCTGTA
CCC

29 8 -4 NM_006407 ARL6IP5* ADP-ribosylation-like 
factor 6 interacting 
protein 5

TCAAGAGCCGAAGG
AAT

12 NDb -10 NM_014165 C6orf66* Chromosome 6 open 
reading frame 66

GTATTTGCAAAAATG
CC

118 24 -4.9 NM_018584 CAMK2N1* Calcium/calmodulin-
dependent protein 
kinase II inhibitor 1

AAAAGAGAAAGCAC
TTT

30 5 -6 NM_018584 CAMK2N1* Calcium/calmodulin-
dependent protein 
kinase II inhibitor 1

TTATAACTGAATTTA
GT

51 11 -4.6 NM_006835 CCNI* Cyclin Ii, h

GCCAGGAGAAGGGA
CAG

34 7 -5 NP_775809 CNBD1 N/Am

TGGTACTCATTTCAG
GC

12 ND -10 NM_015954 DERA* 2-deoxyribose-5-
phosphate aldolase 
homolog

AATCATAATGGATTC
TT

16 ND -20 NM_024641 MANEA* Mannosidase, endo-alpha

CTAAGACTTCACCA
GCC

19 2 -10 ENSG00000210082 N/A q Non-coding predicted 
mitochondrial rRN A 
genek

CATTTGGTATTTTCG
TC

30 8 -4 NC_001807P N/A Intergenic region of 
mitochondrial genome

GTATTTCAGTGTCTG
TC

33 9 -4 NM_015469 NIPSNAP3A* Nipsnap homolog 3A

GTGTGTGGTGCCCC
CAG

23 5 -5 NM_024066 PRNPIP* Prion protein interacting 
protein

GTGTTAACCAGCTA
AAG

122 60 -2.0 NM_002948 RPL15 Ribosomal protein L15

GCACAAGAAGATTA
AAA

58 25 -2.3 NR_002746 SNORD47 Small nucleolar RNA, C/
D box 47 on 
chromosome 1

AAAAAGCAGATGAC
TTG

77 37 -2.1 NM_000454 SOD1* Superoxide dismutase 1, 
soluble (amyotrophic 
lateral sclerosis 1 
(adult))

GTTTGGTTATAAATT
CT

26 3 -10 NM_148893 SVIP* Hypothetical protein 
DKFZp313A2432, 
transcript variant 1

TATTAGAGAATGAAA
AG

17 2 -9 NM_016485 WA1* VPS20-associated 1 
homologue

a Statistics according to the Audic and Claverie test statistic (p ≤ 0.001)
b ND, not detected
c ND tags were assigned a value of 1 when calculating fold change
d Appropriate significant figures are displayed
h Gene known to change expression in response to androgens, but in the opposite direction as reported here
i Gene known to change expression in response to androgens in cells other than prostate
j Negative fold change value indicates down-regulation by R1881
k Tag has a single base pair permutation, insertion, or deletion with respect to gene
mTag maps to the strand opposite of the gene
n Ambiguously mapped tags and tags with a fold change less than 2-fold have been excluded from the table
p NC_001807 refers to the complete genome of mitochondria in humans
All mitochondrial genes in the RefSeq database are assigned the same accession number by NCBI q N/A = there is no HGNC approved gene 
symbol for this tag t Tag count per 100,000 = (observed tag count/total tags in the library) × 100,000
φ In cases where a tag mapped to >1 transcript variant of the same gene the RefSeq accession number for transcript variant 1 was displayed * Gene 
further characterized in this paper
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levels of expression in response to castration. No signifi-
cant changes in gene expression in vivo was measured for
ADAMTS1, HSP90B1, or PRKACB, suggesting that in vivo,
other factors may influence their expression. Alternatively,
the expression kinetics of each specific gene and half-life
of its transcript may vary considerably. The time of har-
vesting samples and measuring changes in expression of
genes in response to androgen-deprivation was at 10 days
in vivo compared to 16 hr in vitro in response to addition
of androgens (10 nM R1881). Different levels of androgen
may also have profound effects on proliferation and dif-

ferentiation. Physiological levels of androgen in male
Nude mice may be considerably lower than the levels
used in vitro. Androgen at 10 nM inhibits proliferation of
LNCaP cells in vitro while 0.1 nM is optimal for prolifera-
tion[55].

Conclusion
Androgens are essential for the growth, development and
maintenance of the prostate. Here, we created LongSAGE
libraries to obtain quantitative gene expression profiles of
LNCaP human prostate cancer cells treated with, or with-

Androgen regulation of genes as measured by qRT-PCRFigure 3
Androgen regulation of genes as measured by qRT-PCR. A Candidate genes not previously implicated to change 
expression in response to androgens in prostate cancer cells, and B Genes known to change levels of expression in response 
to androgens. LNCaP cells were treated for 16 hours prior to harvesting RNA, and analysing mRNA levels by qRT-PCR. Fold-
change was calculated by normalizing the mean normalized expression (MNE) of transcripts in R1881-treated cells to the mock 
vehicle-treated cells. In doing this, the vehicle treatment fold-change became one and standard deviation (SD) zero. Error bars 
represent ± SD for biological sextuplets. [*] Asterisk indicates significant differential gene expression according to the Two-
Sample Student's T-test (p ≤ 0.05) for unequal variance.
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out, androgen and revealed the following: 1) 33,385 tag
types in the R1881 LongSAGE library and 31,764 tag types
in the vehicle LongSAGE library; 2) the majority (64% to
67%) of tag types in each LongSAGE library were single-
tons which may represent very low abundance transcripts
(≤ 5 transcript copies per cell); 3); when mapped tags were
clustered and ambiguous mappings were removed, the tag
types in the R1881 and vehicle LongSAGE libraries repre-
sented 7,484 genes and 7,441 genes, respectively; 4) 53%
of tags mapped solely to known exons, 9% solely to
known introns (novel transcript variants), and 38% to
intergenic regions (novel genes or transcript variants); 5)
the most highly abundant LongSAGE tag mapped to
human mitochondrial NADH ubiquinone oxidoreduct-

ase chain 4 involved in metabolic energy; 6) the lower
abundance classes were enriched for genes with functions
in regulating transcription; 7) 87 genes were differentially
expressed by two-fold (p ≤ 0.001) in response to androgen
representing 0.34% of the total tag types (131 differen-
tially expressed tag types/38,574 total tag types); 8) some
of these genes have confirmed or potential AREs; 9) novel
androgen regulated genes (direct or indirect) identified
and validated were ARL6IP5, BLVRB, C19orf48, C1orf122,
C6orf66, CAMK2N1, CCNI, DERA, ERRFI1, GLUL,
GOLPH3, HM13, HSP90B1, MANEA, NANS,
NIPSNAP3A, SLC41A1, SOD1, SVIP, TAOK3, TCP1,
TMEM66, USP33, and VTA1; 9) expression of ADAMTS1,
ARL6IP5, CAMK2N1, CAPNS1, CENPN, CREB3L4, CCNI,

Table 9: Genes with confirmed or potential AREs that change expression in response to androgen

HGNC Gene Symbol Access. No. Expression change by R1881 
stimulation

Chromosome Distance of the ARE from 
TSS* (bp)

Reference

Conventional

B2M NM_004048 2.3 15 -1902 [42]
NKX3-1 NM_006167 20 8 -3013 [42]
KLK3 NM_001648 7.3 19 -170 [16,48]

-4006
-4075
-4115

FKBP5 NM_004117 20 6 65.6 k (Intron 5) [47]
NDRG1 NM_006096 70 8 -984 [45]
TMEPAI NM_020182 20 20 -2134 [45]
TMPRSS2 NM_005656 10 21 -148 [46]
TPD52 NM_005079 4 8 -359 [49]

Identified by ChIP-Chip

BLVRB NM_000713 2.1 19 -56.7 k [51]
C19orf48 NM_199249 3.1 19 -363 k [51]
CAPNS1 NM_001003962 2.5 19 -165 k [51]
HM13 NM_178580 20 20 -330 k [51]
ADAMTS1 NM_006988 4.2 21 276 k [50]

310 k
481 k

TMPRSS2 NM_005656 10 21 -1063 k [50]
-462 k
13.5 k

SOD1 NM_000454 -2.1 21 -496 k [50]

Potential based on the sequence

B2M NM_004048 2.3 15 -440 [52]
NDRG1 NM_006096 70 8 -1018 [52]
NKX3-1 NM_006167 20 8 -1272 [52]
SORD NM_003104 5.1 15 -1995 [52]
TMEPAI NM_020182 20 20 -225 [52]
TMPRSS2 NM_005656 10 21 -771 [52]
TPD52 NM_005079 4 8 -609 [52]
TSC22D1 NM_006022 6 13 -1711 [52]

*TSS: Transcription starting site
Page 13 of 19
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004048
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006167
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001648
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004117
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006096
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_020182
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005656
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005079
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000713
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_199249
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001003962
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_178580
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006988
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005656
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000454
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004048
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006096
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006167
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003104
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_020182
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005656
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005079
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006022


BMC Genomics 2009, 10:476 http://www.biomedcentral.com/1471-2164/10/476

Page 14 of 19
(page number not for citation purposes)

Differential expression of candidate genes in LNCaP, DU145, and PC-3 cellsFigure 4
Differential expression of candidate genes in LNCaP, DU145, and PC-3 cells. Levels of transcripts in LNCaP, 
DU145, and PC-3 cells were analyzed by qRT-PCR. Error bars represent ± standard deviation(SD) for biological triplicates. [*] 
Asterisks indicate the significant differential gene expression in each cell line compared to LNCaP cells according to the Two-
Sample Student's T-test (p ≤ 0.05) for equal (unpaired) or unequal variance as determined appropriate with the F-test.
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CXCR7, FKBP5, HSP90B1, KLK3, LRIG1, NCAPD3,
PAK1IP1, PRKACB, ST7, and TAOK3 was increased in
LNCaP cells compared to prostate cancer cells lacking a
functional AR; and 10) significant differences in levels of
expression of ARL6IP5, CAMK2N1, CENPN, CREB3L4,
CXCR7, ERRFI1, FKBP5, KLK3, LRIG1, NCAPD3,
PAK1IP1, ST7, and TAOK3 were measured in vivo in
response to androgen-deprivation. The products of these
genes are involved in amino acid and protein synthesis,
cofactor transport, protein trafficking, response to oxida-
tive stress, as well as signaling pathways that regulate gene
expression, proliferation, apoptosis, and differentiation.

These genes are potentially critical for the function and
maintenance of the prostate and represent targets for clin-
ical intervention.

Methods
Cell culture
LNCaP human prostate cancer cells (American Type Cul-
ture Collection, Bethesda, MD, USA) were maintained in
RPMI-1640 media (Stem Cell Technologies, Vancouver,
BC, Canada) supplemented with 10% v/v fetal bovine
serum (FBS; HyClone, Logan, UT, USA), 100 units/mL
penicillin and 100 units/mL streptomycin (antibiotics;

Androgen regulation of genes in the in vivo Hollow Fibre model of prostate cancerFigure 5
Androgen regulation of genes in the in vivo Hollow Fibre model of prostate cancer. Levels of transcripts in LNCaP 
cells from the Hollow Fibre model were analyzed by qRT-PCR. Cx, castrated mice, 10 days post castration, n = 12; Pre-Cx, 
pre-castration, day 0 of castration, n = 15. Exception: LRIG1 gene expression in Cx samples was represented by 11 mice. Fold-
change was calculated by normalizing the mean normalized expression (MNE) of transcripts in the Pre-Cx sample to the cas-
trate sample. In doing this, the Cx sample fold-change became one and standard deviation (SD) zero. Error bars represent ± 
SD. [*] Asterisks indicate the significant differential gene expression with respect to Cx according to the Two-Sample Student's 
T-test (p ≤ 0.05) for unequal variance.
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Invitrogen, Burlington, ON, Canada). DU145 and PC-3
human prostate cancer cells were maintained in DMEM
(Stem Cell Technologies) supplemented with 10% v/v
FBS and 5% v/v FBS, respectively with antibiotics. All cells
were maintained at 37°C with 5% CO2.

Long serial analysis of gene expression
RNA sample generation
1 × 106 LNCaP cells were seeded in 10 cm-diameter
dishes. The next day, cells were serum-starved (0% serum)
for 48 hours and then treated for 16 hours with 10 nM
synthetic androgen R1881 (also known as methyl-
trienolone; PerkinElmer, Woodbridge, ON, Canada), or
solvent (vehicle) control, ethanol (final concentration
2.85 × 10-4%). Total RNA was extracted using TRIZOL
Reagent (Invitrogen) following the manufacturer's
instructions. RNA quality and quantity were assessed
using the Agilent 2100 Bioanalyzer (Agilent Technologies,
Mississauga, ON, Canada) and RNA 6000 Nano LabChip
kit (Caliper Technologies, Hopkinton, MA, USA).

LongSAGE library production
LongSAGE[25] libraries were constructed with 5 μg of
total RNA using the Invitrogen I-SAGE Long kit and pro-
tocol with alterations as previously published[35]. Briefly,
double-stranded cDNA was synthesized from total RNA
and digested with Nla III. The sample was split in half and
linkers type I and II were added and ligated to Nla III over-
hangs. An Mme I digestion resulted in 17-21 base-pair
(bp) LongSAGE tags. The tags with unique linkers were
combined and ligated together to form ditags. Ditags (131
bp) were amplified with primers designed to recognize
sequences within linkers type I and II using PCR. This
scale-up PCR was performed in 48 wells of a 96 well plate
(50 μL/well) using a 1/20th dilution of template cDNA
and 25 and 27 cycles of PCR (R1881 and vehicle Long-
SAGE library, respectively). Following an Nla III digestion
to remove the linkers, the 36 bp ditags were concatenized.
Concatemers sized 1300-1700 bp were digested with Nla
III (1 minute) to increase the efficiency of cloning into
pZErO-1 vectors. Cloned concatemers were transformed
into One Shot TOP10 Electrocompetent Escherichia coli
and colonies were picked with the Q-Pix robot (Genetix)
and cultured in 2× Yeast-Tryptone media with 50 μg/mL
zeocin and 7.5% (v/v) glycerol.

Sequencing
Glycerol stocks of transformed bacteria were used to inoc-
ulate larger cultures for alkaline lysis plasmid prepara-
tion[56]. Plasmid preparations were separated by agarose
gel electrophoresis and visualized by ultraviolet light and
sybr green. 1/24th BigDye v3.1 terminator cycle sequenc-
ing reactions were performed with tetrad thermal cyclers
(BioRad, Waltham, MA, USA) and visualized with capil-
lary DNA sequencers, models 3700 and 3730 xl (Applied

Biosystems, Foster City, CA, USA). Each library was
sequenced to a depth of ~100,000 LongSAGE tags. Flank-
ing vector sequences were removed and the LongSAGE
tags were extracted from each sequence read. On average,
34 and 38 LongSAGE tags were sequenced in each read
(R1881 and vehicle libraries, respectively). Sequence data
were filtered for non-recombinant clones.

Gene expression analysis
LongSAGE expression data was analyzed with Discov-
erySpace 3.2.4 and 4.01 software http://www.bcgsc.ca/
bioinfo/software/discoveryspace/. Duplicate ditags (iden-
tical copies of a ditag) and singletons (tags counted only
once) were retained for analysis. Sequence data were fil-
tered for bad tags (tags with one N-base call) and linker-
derived tags (artifact tags). Only LongSAGE tags with a
sequence quality factor (QF) greater than 95% were
included in analysis[35]. Where indicated, a clustering
algorithm was used to amalgamate 1-off tags (tags one bp
incorrect from a complete map to a transcript) with likely
'parent' tags to improve the mapping capability of Long-
SAGE tags by apparently reducing PCR/sequencing
errors[35]. This clustering algorithm altered the number
of tag types (i.e., species) without changing the total
number of tags. In instances where clustering was used,
the 95% QF cutoff was not. To filter data for candidate
transcript validation, a p-value cutoff (p ≤ 0.001) was
employed according to the Audic and Claverie test statis-
tic[40]. The Audic and Claverie statistical method was
used to identify differentially expressed tags between
LongSAGE libraries because the method takes into
account the sizes of the libraries and tag counts. Long-
SAGE tags that mapped ambiguously to more than one
gene, and tags that differed by less than 2-fold were
excluded from the candidate list. LongSAGE tags were
mapped to reference sequence (RefSeq; May 30th, 2005)
and Ensembl Gene (v31.35d), unless otherwise stated.

Quantitative real-time polymerase chain reaction
qRT-PCR was performed on TRIZOL-extracted RNA from
LNCaP (serum-starved ± R1881 or the exception in Figure
4 in 10% serum), DU145 (10% serum) and PC-3 (5%
serum) cells maintained in vitro, and LNCaP cells main-
tained in the in vivo Hollow Fibre model[29] (see below).
Contaminating genomic DNA was removed from in vitro
RNA samples using DNA-free or TURBO DNA-free
(Ambion, Austin, TX, USA). Input RNA (1 μg) was reverse
transcribed with SuperScript III First Strand Synthesis kit
(Invitrogen). A 10 μL qRT-PCR reaction included 1 μl of
template cDNA (0.1 μL for limited LNCaP Hollow Fibre
samples), 1× Platinum SYBR Green qPCR SuperMix-UDG
with ROX (Invitrogen) and 0.3 μM each of forward and
reverse intron-spanning primers that produce products
between 85-115 bp in size (see Additional file 1 for primer
sequences). qRT-PCR reactions were cycled as follows in a
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7900 HT Sequence Detection System (Applied Biosys-
tems): 50°C for 2 min, 95°C for 2 min, (95°C for 0.5
min, 55-56°C for 0.3-0.5 min, and 72°C for 0.5 min) for
40-45 cycles, 95°C for 0.25 min, 60°C for 0.25 min, and
95°C for 0.25 min. All qRT-PCR reactions were performed
in technical triplicates for each of at least three biological
replicates. cDNAs (from different conditions) and genes
[target and reference (glyceraldehyde-3-phosphate,
GAPDH)] to be directly compared were assayed in the
same instrument run. No-template reactions (negative
controls) were run for each gene to ensure that DNA had
not contaminated the qRT-PCR reactions. Only qRT-PCR
data with single-peak dissociation curves were included in
this analysis. Efficiency checks were performed for each
primer pair in each cell line. PCR products were
sequenced to verify the identity of quantified transcripts.
The two-tailed, two-sample Student's T-tests were per-
formed to identify significant differences in transcript
expression. The F-test was used to identify unequal vari-
ance among samples to be compared.

LNCaP Hollow Fibre model
Animals
Five-week-old male athymic BALB/c Nude mice were
obtained from Taconic Farms (Hudson, NY, United States
of America) and kept in the British Columbia Cancer
Research Centre (Vancouver, BC, Canada). Mice were
maintained on a Harlan/Teklad irradiated diet with a con-
stant supply of autoclaved water and housed in cages
(three animals/cage) at 21°C ± 3°C with light/dark
cycling (light between 6 AM and 6 PM). All animal exper-
iments were performed according to a protocol approved
by the Committee on Animal Care of the University of
British Columbia.

Hollow fibre model
Polyvinylidene difluoride hollow fibres (Mr 500,000
molecular weight cutoff; 1-mm internal diameter; Spec-
trum Laboratories, Rancho Dominguez, CA, USA) were
prepared and implanted as previously described[29].
Briefly, LNCaP human prostate cancer cells (3 × 107 cells)
at passage 47 (provided by Dr. L.W.K. Chung at the Emory
University School of Medicine, Atlanta, GA, USA) were
injected into hollow fibres. The fibres were sealed and
subcutaneously (s.c.) implanted into mice. Seven days
post fibre implantation (day zero), mice were either cas-
trated or left intact as controls. Blood was drawn via the
tail vein each week to measure serum KLK3 levels to mon-
itor the response to castration. Serum KLK3 levels were
determined by enzymatic immunoassay kit (Abbott Labo-
ratories, Abbott Park, IL, USA). Bundles of fibres were
removed at day zero (Pre-Cx; four fibres) and day 10 (Cx;
four fibres). Total RNA was isolated immediately from
cells harvested from the fibres. Compromised fibres that
were contaminated with mouse cells, as indicated by an

infiltration of red blood cells that was determined by vis-
ual inspection, were not used in this study.
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