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Abstract

Background: Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the
enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions.
Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular
permeability. However, the role of EGC on other important barrier functions and the signalling
pathways involved in their effects are currently unknown. To achieve this goal, we aimed at
identifying the impact of EGC upon IEC transcriptome by performing microarray studies.

Results: EGC induced significant changes in gene expression profiling of proliferating |IEC after 24
hours of co-culture. | 16 genes were identified as differentially expressed (70 up-regulated and 46
down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing
functional analysis of the |16 identified genes using Ingenuity Pathway Analysis, we showed that
EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion
as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant
increase in cell adhesion. EGC also regulated genes involved in cell motility towards an
enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved
in cell proliferation and cell survival, although no clear functional trend could be identified. Finally,
important genes involved in lipid and protein metabolism of epithelial cells were shown to be

differentially regulated by EGC.

Conclusion: This study reinforces the emerging concept that EGC have major protective effects
upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC
phenotype towards increased cell adhesion and cell differentiation. This concept needs to be

further validated under both physiological and pathophysiological conditions.

Page 1 of 20

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19883504
http://www.biomedcentral.com/1471-2164/10/507
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2009, 10:507

Background

The intestinal epithelial barrier (IEB) is the first boundary
between the organism and the luminal environment. It
plays a dual role by allowing the passage of nutrients and
electrolytes but preventing the passage of pathogens. The
maintenance of its homeostasis is of utmost importance
for the survival of the organism. The IEB is formed by a
monolayer of specialized intestinal epithelial cells (IEC)
under constant renewal and maintained together via vari-
ous cell-to-cell and cell-to-matrix interactions. The IEB is
part of a complex network of specialized cell types consti-
tuting its microenvironment such as immune cells, subep-
ithelial fibroblasts, endothelial cells or luminal bacteria.
Emerging evidences suggest that under physiological con-
ditions, the IEB's functions are actively regulated by its cel-
lular  microenvironment  [1-3]. For instance,
myofibroblasts have been shown to enhance epithelial
cell proliferation and intestinal epithelial restitution [4].
In addition, microbiota have been shown to control both
the maturation and the maintenance of the IEB [5].

The enteric nervous system (ENS) is also a major constit-
uent of the cellular microenvironment of the IEB. Indeed
IEB and, in particular, the proliferative compartment of
the crypts are densely innervated by nerve fibres originat-
ing mainly from the submucosal plexus. Recent data have
shown that, besides controlling secretory processes, acti-
vation of enteric neurons can reduce IEC proliferation and
barrier permeability, in particular via the release of vasoac-
tive intestinal peptide (VIP) [6-8]. Enteric neurons inner-
vating the IEB are also closely associated with enteric glial
cells (EGC), the major constituent of the ENS.

For many years, EGC have been considered as mainly pas-
sive and structural cells supporting neurons and gangli-
ons. However, this concept has lately been revisited
mainly focused on the role played by astrocytes in the cen-
tral nervous system (CNS) [9-11]. Besides controlling and
regulating neuronal functions, increasing evidence sug-
gests that EGC could be major regulators of IEB functions,
similar to astrocytes controlling blood brain barrier func-
tions [10]. Supporting this concept, recent data have dem-
onstrated that EGC can profoundly inhibit IEC
proliferation, in part via the liberation of TGF-f1 [12].
EGC also decrease IEB paracellular permeability via the
release of S-nitrosoglutathione (GSNO) [13]. Further-
more, in vivo lesions of EGC network increase IEB paracel-
lular permeability and IEC proliferation and, at term, lead
to major lethal intestinal inflammation [13-15]. How-
ever, the role of EGC in the control of other major IEC
functions such as cell differentiation, cell-to-cell or cell-to-
matrix adhesion, and the associated regulatory pathways
remains largely unknown.

http://www.biomedcentral.com/1471-2164/10/507

Therefore, in our study, we combined transcriptomic stud-
ies as well as functional studies to determine the impact of
EGC on the regulation of major genes and functions
involved in IEB homeostasis. Microarray approach was
used to identify EGC-induced modifications in gene
expression profiling of proliferating Caco-2. The identi-
fied genes and related functional pathways are consistent
with the concept that EGC are a major constituent of the
IEB microenvironment favoring barrier protection.

Results and Discussion

Enteric glial cells modulate intestinal epithelial cells
transcriptome

Microarray experiments

We performed microarray analysis of EGC influence on
the transcriptome of Caco-2 cells using oligonucleotide
chips (Cancerochips) developed at West Genopole tran-
scriptome core facility of Nantes. These microarrays con-
tain around 6,864 genes and are dedicated to gene
expression studies in Caco-2 cell line as well as to gene
expression signature studies of multiple tumors. Caco-2
cells were cultured onto Transwell filters in the absence or
presence of EGC seeded at the bottom of the wells for 8 or
24 hours. The Transwell filters did not allowed any con-
tact between IEC and EGC, thus implicating only para-
crine communication between the two cell types.

Hierarchical clustering of the whole data showed the
impact of the time of culture as well as the impact of the
presence of EGC on the transcriptional profiling of IEC,
i.e. Caco-2 cells (Figure 1). We observed changes in IEC
transcriptome over the 24 hours of culture in control con-
dition. At 8 hours, differences in transcriptome profiling
already existed in control condition as compared to t = 0.
In general, the observed changes in differentially
expressed genes between t = 0 and t = 8 hours in control
conditions were increased in the same way of regulation
when reaching t = 24 hours (Figure 1). These changes
might be due to the growth and differentiation of the pro-
liferating IEC over the 24 hours of culture. We observed
no major differences in gene expression profiling between
IEC cultured alone and IEC cultured in presence of EGC at
8 hours of culture. In contrast, at 24 hours, EGC presence
led to consistent and major changes in IEC gene expres-
sion profiling (Figure 1).

Gene expression modulated by EGC

Using Genespring software, we aimed to identify statisti-
cally significant differences in gene expression profiling
between Caco-2 cells cultured alone or in presence of
EGC. After 8 h of culture, no significant difference in gene
expression profiling was found between IEC cultured
alone (control condition) or in presence of EGC ("glia"
condition). However, after 24 hours of culture, we identi-
fied 116 genes differentially expressed between control
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Figure |

Hierarchical clustering of expression data. Four individual microarrays were used per condition. Hierarchical clustering
was performed on genes using Gene Cluster. Each ratio was normalized to the median of the t = 0 hour-condition values of
the corresponding gene. Each column represents an individual array (TO: t = 0 hour condition samples; T8control: t = 8 hours
of culture without EGC; T8glia: t = 8 hours of culture in presence of EGC; T24control: t = 24 hours of culture without EGC;
T24glia: t = 24 hours of culture in presence of EGC). Each line represents one individual gene. The clustering shows the impact
of the time of culture on gene expression profiling in Caco-2 cells. The EGC-induced modulation of IEC transcriptome is highly
visible at t = 24 hours.
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and EGC conditions by using two different strategies. Ben-
jamini and Hochberg False Discovery Rate method was
used to determine 98 differentially expressed genes
between control and glia conditions at t = 24 hours, and
we also selected 27 genes with a two-fold change and Stu-
dent's t-test p-value less than or equal to 0.05. Among the
116 differentially expressed genes, 46 genes were down-
regulated and 70 were up-regulated in IEC cultured with
EGC as compared to control (Table 1, 2). Quantitative
PCR was also performed on various genes to validate the
microarray results. In particular, results showed an EGC-
induced increase of CDH1, FN1, LAMAS5, PPARG, PTK2
mRNA expression in IEC and a decrease of E2F1, FGFR2,
GPX2 and SMAD3 mRNA expression in [EC, similar to the
data obtained with microarrays (Figure 2A). We next
sought to determine the specificity of EGC effects upon
IEC transcriptome by characterizing the impact of fibrob-
lasts on the expression of these genes in IEC. Under iden-
tical culture conditions, we showed that fibroblasts
increased expression of PTK2 but did not significantly
modify gene expression of CDH1, FN1, LAMAS5, PPARG,
E2F1, GPX2 and SMAD3 in IEC (Figure 2B).

Hierarchical clustering of differentially expressed genes
Hierarchical clustering was used to visualize the expres-
sion profile of the 116 genes induced or repressed by EGC
after 24 hours of culture (Figure 3).

All these genes exhibit a differential expression between
control and EGC conditions at t = 24 hours. Furthermore,
some of them already exhibited a slight difference in
expression profile between control and EGC conditions at
8 hours. These results indicate that EGC effects on genes
identified as differentially expressed in IEC at 24 hours
probably started as early as at 8 hours, even though the
modifications were not statistically significant.

Two groups of samples exhibited a very different profile
from other samples: EGC condition at t = 24 hours and
controls at t = 24 hours (Figure 3). These observations
confirm that 1) no major changes existed between control
and EGC conditions at t = 8 hours and 2) that the 24 hour-
time of culture impacted on gene expression profiling in
IEC, likely reflecting differentiation of IEC over the time of
culture.

EGC regulate IEC functions

Gene network interactions

Biological interactions among the 116 genes of the gene
set provided by Genespring analysis were identified using
Ingenuity Pathways Analysis. Among the 116 genes differ-
entially expressed, Ingenuity identified 92 genes contrib-
uting to a total of 10 functional networks (Table 3). Each
of the 6 first networks contained at least 14 genes that
were associated with cell-to-cell signalling and interac-
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tion, cellular growth and proliferation, cell morphology,
cellular movement, cell death and cell cycle. The 116
genes were also classified into Ingenuity cellular and
molecular pathways as well as into Ingenuity signalling
pathways (Table 4 and 5). All the functions described
above and identified by building functional networks
among our gene set were found in the 25 cellular and
molecular functions obtained with Ingenuity (Table 4).
Moreover, these 6 functions were among the 10 first func-
tions presenting the highest score (Table 4). Finally, the
signalling pathways identified by the Ingenuity analysis of
our gene set were also relevant to those 6 functions (Table
5). The limit of Ingenuity analysis for our study is that it is
not restricted to one specific organ or cell, so that all the
results of Ingenuity analysis could not be transposed
directly to the regulation of IEC functions by EGC. We
therefore performed an "epithelial" specific analysis of the
major functions identified with Ingenuity.

Cell-to cell and cell-to-matrix interaction

EGC regulated the expression of numerous genes involved
in the control of IEC adhesive processes. In particular,
EGC induced an up-regulation of the expression of all 7
genes with pro-adhesive functions and a down-regulation
of the 2 genes with anti adhesive properties, among the
gene set found to be differentially expressed in IEC cul-
tured in presence of EGC (Table 6). These genes are cru-
cially involved in the control of cell-to-cell and cell-to-
matrix adhesion.

First, EGC concomitantly increased the expression of
CDH-1, which encodes E-cadherin, and decreased the
expression of CDK5R1. E-Cadherin is the major compo-
nent of the adherent junction complexes and the level of
E-Cadherin in IEC is to be correlated to adhesion com-
plexes formation between IEC [16,17]. Further evidences
confirming a pro-adhesive influence of EGC on IEC is the
EGC-induced down-regulation of CDK5RI expression.
Indeed, CDK5R1 encodes p35, a regulator of CDK-5 (cyc-
lin-dependent kinase), which induces the degradation of
E-Cadherin precursor [18]. In addition, EGC also up-reg-
ulated IQGAP2 expression in IEC. This gene encodes for a
protein member of IQGAP family that interacts with sev-
eral molecules controlling cytoskeleton organization, cell
adhesion and cell motility such as CDC42 and Rac [19].
Interestingly, IQGAP2 has been shown to mediate E-Cad-
herin-based cell-to-cell adhesion during development
[20]. All these results suggest that EGC enhance cell-to-cell
adhesion in IEC.

Our data also demonstrate that EGC modulate the expres-
sion of genes that are involved in cell-to-matrix interac-
tions. First, EGC increased expression of several genes
encoding proteins of the extracellular matrix such as
LAMAS5, LAMCI and FN1. LAMA5 and LAMCI encode
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Table I: List of the genes up-regulated by enteric glial cells in intestinal epithelial cells.

Gene Symbol Genbank Description % up-regulation (/control) Fold difference
TXNIP NM_006472 thioredoxin interacting protein 217,60 3,18
ANKRD| NM 014391 ankyrin repeat domain | (cardiac muscle) 169,22 2,69
FNI U42593 fibronectin | 152,16 2,52
TUBB3 NM_006086 tubulin, beta 3 149,94 2,50
MGLL AJ270950 monoglyceride lipase 135,97 2,36
METTL7A NM_014033 methyltransferase like 7A 132,96 2,33
PKN2 NM_006256 protein kinase N2 128,33 2,28
/ XM_166201 synonyms: KIAA0056, MGC10467; Homo 115,09 2,15
sapiens KIAA0056 protein (hCAP-D3), mRNA.
EPB41L2 NM_001431 erythrocyte membrane protein band 4.1-like 2 110,50 2,11
AASS AJ007714 aminoadipate-semialdehyde synthase 110,15 2,10
ACTG2 NM 001615 actin, gamma 2, smooth muscle, enteric 102,56 2,03
B4GALT5 NM_004776 UDP-Gal:betaGIcNAc beta 1,4- 102,38 2,02
galactosyltransferase, polypeptide 5
SNX2 NM_003100 sorting nexin 2 102,38 2,02
VIP NM_003381 vasoactive intestinal peptide 102,33 2,02
EIF4A2 NM_001967 eukaryotic translation initiation factor 4A, 102,14 2,02
isoform 2
/ NM_019027 RNA-binding protein 101,66 2,02
POLR3F NM_006466 polymerase (RNA) lll (DNA directed) 94,46 1,94
polypeptide F, 39 kDa
PNRCI NM_006813 proline-rich nuclear receptor coactivator | 93,24 1,93
NPPB NM_002521 natriuretic peptide precursor B 83,97 1,84
/ BC017857 Homo sapiens cDNA clone IMAGE:4690793, 82,20 1,82
with apparent retained intron.
KRT8 NM 002273 keratin 8 81,96 1,82
SATI NM_002970 spermidine/spermine N -acetyltransferase | 80,24 1,80
ASSI NM_000050 argininosuccinate synthetase | 76,73 1,77
SI00AIIP NM_021039 / 75,22 1,75
SLC7A7 NM 003982 solute carrier family 7 (cationic amino acid 72,31 1,72
transporter, y+ system), member 7
HAGH NM_005326 hydroxyacylglutathione hydrolase 69,54 1,70
BNIP3L AF536326 BCL2/adenovirus EIB 19 kDa interacting protein 69,19 1,69
3-like
/ AF195968 PRR5-ARHGAPS fusion 68,01 1,68
BNIP3 NM_ 004052 BCL2/adenovirus EIB 19 kDa interacting protein 67,84 1,68
3
IL18 NM 001562 interleukin 18 (interferon-gamma-inducing factor) 67,14 1,67
RDMI BC038301 RADS52 motif | 67,11 1,67
FAMI07B NM_031453 family with sequence similarity 107, member B 65,70 1,66
PLACS8 NM_ 016619 placenta-specific 8 63,77 1,64
SMARCAI NM 139035 SWI/SNF related, matrix associated, actin 63,72 1,64
dependent regulator of chromatin, subfamily a,
member |
PLOD2 NM_000935 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 62,87 1,63
2
TMSB4Y NM 004202 thymosin, beta 4, Y-linked 62,77 1,63
SCPEPI NM_021626 serine carboxypeptidase | 60,96 1,61
LAMAS NM_005560 laminin, alpha 5 60,53 1,61
LAMCI NM_002293 laminin, gamma | (formerly LAMB2) 59,89 1,60
METAPI BC030054 methionyl aminopeptidase | 59,55 1,60
IQGAP2 NM_006633 1Q motif containing GTPase activating protein 2 58,98 1,59
Clorf43 NM_015449 chromosome | open reading frame 43 56,86 1,57
CASP4 NM 001225 caspase 4, apoptosis-related cysteine peptidase 55,71 1,56
BTGI NM_001731 B-cell translocation gene |, anti-proliferative 54,63 1,55
SLC2AI K03195 solute carrier family 2 (facilitated glucose 54,34 1,54
transporter), member |
DCTN2 NM_006400 dynactin 2 (p50) 52,68 1,53
TOP2A NM 001067 topoisomerase (DNA) Il alpha 170 kDa 52,42 1,52
KRTI8 NM 000224 keratin 18 51,16 1,51
LAMCI M55210 laminin, gamma | (formerly LAMB2) 50,37 1,50
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Table I: List of the genes up-regulated by enteric glial cells in intestinal epithelial cells. (Continued)

PRCI BC005140 protein regulator of cytokinesis | 50,13 1,50
IMPDH2 NM_000884 IMP (inosine monophosphate) dehydrogenase 2 49,46 1,49
/ AF202922 LRPI6 protein 48,20 1,48
PLD3 NM_012268 phospholipase D family, member 3 46,99 1,47
RNF4 NM_002938 ring finger protein 4 44,88 1,45
/ AC060225 Homo sapiens 3 BAC RPI11-23]16 complete 42,10 1,42
sequence.
SMARCAI NM_003069 SWI/SNF related, matrix associated, actin 41,18 1,41
dependent regulator of chromatin, subfamily a,
member |
DYNLT3 NM_006520 dynein, light chain, Tctex-type 3 40,06 1,40
PPARG NM 015869 peroxisome proliferative activated receptor, 38,92 1,39
gamma
GLRX AF069668 glutaredoxin (thioltransferase) 37,78 1,38
PTK2 NM_153831;NM 005607 PTK2 protein tyrosine kinase 2 37,72 1,38
CDHI NM_004360 cadherin |, type |, E-cadherin (epithelial) 36,87 1,37
RNASE4 NM_002937 ribonuclease, RNase A family, 4 31,40 1,31
CTSH NM_004390 cathepsin H 29,45 1,29
MKI67 NM_002417 antigen identified by monoclonal antibody Ki-67 29,28 1,29
EIF2A NM_032025 eukaryotic translation initiation factor 2A, 65 kDa 26,54 1,27
TGFBI BC000097 transforming growth factor, beta-induced, 68 kDa 25,95 1,26
MLLT3 NM 004529 myeloid/lymphoid or mixed-lineage leukemia 22,42 1,22
(trithorax homolog, Drosophila); translocated to,
APOBEC3B NM_004900 apolipoprotein B mRNA editing enzyme, catalytic 22,20 1,22
polypeptide-like 3B
ADD3 NM 019903 adducin 3 (gamma) 20,82 1,21
FTHI NM_002032 ferritin, heavy polypeptide | 15,97 1,16

respectively for laminin o5 and y1 chains which, together
with laminin 1 chain, compose laminin-10 [21]. Lam-
inin-10 has been shown to be the most adhesive substra-
tum of laminin isoforms when studying abilities of
laminin-2,-5 and -10 in modulating Caco-2 cell adhesion
[22]. Furthermore, EGC up-regulated FN1 expression,
encoding the fibronectin protein. Interestingly, fibronec-
tin has recently been shown to enhance Caco-2 cell attach-
ment and wound healing [23]. EGC down-regulated
KLK14 expression, which encodes KLK (kallikrein) 14, an
extracellular serine protease which has been shown to
cleave and digest various extracellular matrix proteins
such as collagen IV, laminin and fibronectin [24]. In addi-
tion, EGC up-regulated PTK2 expression in IEC which
may result in increased expression of FAK (Focal Adhesion
Kinase) protein, a major regulator of focal adhesions turn-
over and maturation [25]. Finally, EGC induced an up-
regulation of KRT8 expression whose increased expression
has recently been shown to cause enhanced adhesion of
human breast tumor cells to their extracellular matrix
[26].

In conclusion, our data suggest that EGC regulation of IEC
transcriptome leads to an increase in cell adhesion. In
order to functionally validate this hypothesis, we per-
formed in vitro experiments using established adhesion
assays. Under these conditions, we first showed that IEC
global adhesion was increased after 24 hours of culture
with EGC as compared to control (Figure 4A). We next

confirmed whether these effects were in part associated
with an increase in cell-to-matrix adhesion as the majority
of IEC genes regulated by EGC presence appeared to favor
cell-to-matrix adhesion. Indeed, cell-to-matrix adhesion
assays revealed that EGC significantly increased IEC adhe-
sion to the filter as compared to control (Figure 4B).

Cell differentiation

EGC also regulated the expression of numerous genes
involved in IEC differentiation. In particular, EGC up-reg-
ulated the expression of 6 genes enhancing differentiation
and down-regulated 3 genes known to inhibit IEC differ-
entiation (Table 7).

EGC induced an up-regulation of the expression of pro-
differentiative genes or genes associated with enhanced
differentiation of IEC such as PPARG, LAMAS5, PTK2,
CDH-1, DCTN2 and DYNLT3. Indeed, PPARy, encoding
the well-described nuclear receptor superfamily member
peroxisome  proliferator-activated receptor gamma
(PPAR-y) has been shown to regulate IEC differentiation
and its expression has been positively correlated with level
of differentiation of Caco-2 and HT29 cells [27,28]. More-
over, a diminution of laminin-a5 in a murine model
resulted in a transformation from a small intestinal to a
colonic mucosal architecture, suggesting that laminin-a5
has a crucial role in establishing and maintaining the
architecture of the small intestine [29]. In addition, it has
already been shown that the differentiation of Caco-2
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Table 2: List of the genes down-regulated by enteric glial cells in intestinal epithelial cells.

Gene Symbol Genbank Description % down-regulation (/control) Fold difference
CARDI2 AF376061 caspase recruitment domain family, member 12 83,43 6,04
KLK 14 NM_022046 kallikrein 14 62,46 2,66
FGFR2 NM_022970 fibroblast growth factor receptor 2 57,12 2,33
BDPI NM_018429 B double prime 1, subunit of RNA polymerase Il 56,58 2,30
transcription initiation factor IlIB
SFRP4 NM_003014 secreted frizzled-related protein 4 55,26 2,24
Cé NM_000065 complement component 6 54,78 2,21
PRKCD NM 006254 protein kinase C, delta 54,67 2,21
/ XM_066534 Homo sapiens diacylglycerol kinase, kappa (DGKK), 52,44 2,10
mRNA.

C200rf133 NM 001033086 chromosome 20 open reading frame 133 52,36 2,10
PRKCQ NM 006257 protein kinase C, theta 50,50 2,02
CDK5RI NM_ 003885 cyclin-dependent kinase 5, regulatory subunit | (p35) 50,42 2,02

RPP40 NM 006638 ribonuclease P 40 kDa subunit 47 41 1,90

SLC30AI AF323590 solute carrier family 30 (zinc transporter), member | 46,22 1,86
TIMMSA NM_004085 translocase of inner mitochondrial membrane 8 41,07 1,70

homolog A (yeast)

EBNAIBP2 NM_006824 EBNAI binding protein 2 36,39 1,57

ITGAE NM_002208 integrin, alpha E 36,17 1,57

(antigen CD 103, human mucosal lymphocyte antigen I;
alpha polypeptide)

NOLI NM_006170 nucleolar protein |, 120 kDa 33,86 1,51
Céorf66 NM 014165 chromosome 6 open reading frame 66 33,81 1,51
NOLSA NM_006392 nucleolar protein 5A (56 kDa with KKE/D repeat) 33,30 1,50

BAGI U46917 BCL2-associated athanogene 32,19 1,47

/ AF123534 nucleolar protein NOP5/NOP58 32,14 1,47
ASAHI AKO025211 N-acylsphingosine amidohydrolase (acid ceramidase) | 29,98 1,43
TINAGLI AF236150 tubulointerstitial nephritis antigen-like | 29,62 1,42
AADAC NM 001086 arylacetamide deacetylase (esterase) 29,48 1,42
HSPAI4 AF112210 heat shock 70 kDa protein 14 29,34 1,42
PSMCé NM_002806 proteasome (prosome, macropain) 26S subunit, 29,31 1,41

ATPase, 6

HNRPDL D89678 heterogeneous nuclear ribonucleoprotein D-like 28,40 1,40
SAMHD | NM_015474 SAM domain and HD domain | 28,12 1,39
TP53RK NM 033550 TP53 regulating kinase 26,99 1,37

MARK?2 NM_004954 MAP/microtubule affinity-regulating kinase 2 26,41 1,36

CCR9 NM_031200 chemokine (C-C motif) receptor 9 24,74 1,33

RGLI NM_015149 ral guanine nucleotide dissociation stimulator-like | 24,20 1,32

E2FI NM 005225 E2F transcription factor | 23,90 1,31
PSMCI NM 002802 proteasome (prosome, macropain) 26S subunit, 23,75 1,31

ATPase, |
IMP3 NM 018285 IMP3, U3 small nucleolar ribonucleoprotein, homolog 23,48 1,31
(yeast)
RNU3IP2 BC023662 RNA, U3 small nucleolar interacting protein 2 23,41 1,31
SMAD3 NM 005902 SMAD, mothers against DPP homolog 3 (Drosophila) 21,49 1,27

GPX2 NM_002083 glutathione peroxidase 2 (gastrointestinal) 21,27 1,27

LSPI NM_002339 lymphocyte-specific protein | 21,21 1,27

FGG NM_021870 fibrinogen gamma chain 18,37 1,23

C200rf94 NM 001009608 chromosome 20 open reading frame 94 16,04 1,19

PPILI NM_016059 peptidylprolyl isomerase (cyclophilin)-like | 14,74 1,17
HOXB2 NM_002145 homeobox B2 13,91 1,16
APOH NM_000042 apolipoprotein H (beta-2-glycoprotein I) 13,17 1,15
PRSS23 NM 007173 protease, serine, 23 10,41 1,12

I1ARS2 NM_018060 isoleucine-tRNA synthetase 2, mitochondrial 10,02 LI

cells was accompanied by an increase in FAK expression  involved in the establishment of a differentiated pheno-
[30]. E-Cadherin, whose corresponding gene CDH-1 is  type for IEC. Notably, E-Cadherin has been described to
up-regulated by EGC, has been largely demonstrated tobe  be less expressed at the bottom of the crypts where IEC are
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Enteric glial cells EGC) and fibroblasts differentially modulated intestinal epithelial cell (IEC) transcriptome.
(A). Real-time quantitative PCR studies on CDH/(n = 5), FNI (n = 7), LAMAS5 (n = 6), PPARG (n = 5), PTK2 (n =5), E2FI (n=7),

FGFR2 (n = 6), GPX2 (n = 8), SMAD3 (n =

7) gene expression in IEC cultured for 24 hours alone (- EGC) or in presence of

EGC(+ EGC) confirmed that EGC significantly modulate the level of expression of genes identified by the microarrays data
analysis as differentially expressed in IEC cultured in presence of EGC (*p < 0.05; Mann-Whitney test). (B). In contrast, real-
time quantitative PCR studies on CDH/[ (n = 5), FNI (n = 5), LAMAS (n = 5), PPARG (n = 5), PTK2 (n = 5), E2FI (n =5), GPX2 (n
=5), SMAD3 (n = 5) gene expression in I[EC cultured for 24 hours alone (- fibroblasts) or in presence of fibroblasts (+fibrob-
lasts) showed a differential regulation of gene expression as compared to EGC effects (*p < 0.05; Mann-Whitney test).

undifferentiated [16,31,32]. The down-regulation by EGC
of CDK5R1 expression, leading to enhanced levels of E-
Cadherin (see previous paragraph), might also further
enhance EGC-induced cell differentiation. EGC also
increased DCTN2 and DYNLT3 expression, two genes
encoding a subunit of dynactin (p50 or dynamitin) and
dynein light chain rp3, respectively. Both are involved in
post-Golgi movement of vesicles towards apical surface of
differentiated enterocytes [33-35], and could therefore
reflect increased differentiation of IEC induced by EGC.
Intriguingly, although differentiation of the Caco-2 cell
line has been shown to be correlated with a down-regula-
tion in fibronectin expression [36], EGC induced an up-
regulation in FN1 expression in IEC in our study.

EGC decreased the expression of genes that encode pro-
teins implicated in anti-differentiative pathways such as
E2F1, BAGI and CDK5RI1 (discussed above). E2F1 is a
gene encoding a protein member of the E2F family of
transcription factors and has been shown to be down-reg-
ulated in confluent human IEC and differentiated entero-
cytes [37]. BAGI, encoding a Bcl-2 non-homologous
associated molecule, has also been shown to present a
decreasing gradient of expression from the base of the

crypts to the apex of the villi, suggesting that the down-
regulation of BAG1 might reflect a differentiation state of
IEC [38].

In conclusion, based on our analysis, EGC-mediated reg-
ulation of IEC transcriptome appears to strongly favor IEC
differentiation.

Cell motility

EGC regulated in IEC the expression of genes encoding
proteins that are known to play a role in IEC motility
(Table 8). In particular, EGC induced an increase in FN1
expression in IEC. FN1 has been demonstrated as a major
factor in promoting cell migration of IEC and subepithe-
lial fibroblasts, thus favoring epithelial wound healing
[39,40]. Interestingly, EGC induced a down-regulation in
LSP1 expression in IEC. LSP1 gene encodes for LSP1, a
cytoplasmic actin-binding protein, whose overexpression
in melanoma cells has been described to inhibit cell
motility [41]. EGC-induced up-regulation of PTK2 expres-
sion also supports a role of EGC in promoting IEC motil-
ity. Indeed, increased FAK protein level promoted
epithelial restitution via an increased IEC migration
[42,43]. Similarly, the increased PPARy expression could
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Figure 3

Hierarchical clustering of the 116 identified genes expression data. Four individual microarrays were used per condi-
tion. Hierarchical clustering was performed on conditions and on the | |6 genes identified with Genespring. Each ratio was nor-
malized to the median of the t = 0 hour-condition values of the corresponding gene. Each column represents an individual array
(TO: t = 0 hour condition samples; T8control: t = 8 hours of culture without EGC; T8glia: t = 8 hours of culture in presence of
EGC; T24control: t = 24 hours of culture without EGC; T24glia: t = 24 hours of culture in presence of EGC). Each line repre-
sents one individual gene. The clustering reveals clusters of genes with similar pattern of expression among the different condi-
tions. The cluster also shows the distance between the five conditions demonstrating major changes induced by the culture
with EGC at t = 24 hours.
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Table 3: Lists of differentially expressed genes involved in functional networks regulated in intestinal epithelial cells by enteric glial

cells.

Ingenuity® top functions

Genes list Score

Cell-To-Cell Signaling and Interaction
Cell Morphology
Tissue Development

CDHI, FNI, ITGAE, KRT8, KRT18, MGLL, NPPB, PKN2, PPARG, PRKCD, 26

PSMCI, PSMCé, PTK2, SAT, SMAD3, TGFBI, VIP

Cellular Growth and Proliferation
Cancer
Gene Expression

B4GALTS, BAGI, BNIP3 (includes EG:664), CCR9, DCTN2, EBNAIBP2, 24
HCAP-D3, LSPI, MLLT3, PNRCI, PPILI, PRCI, RNF4, SAT, SLC30Al,

TP53RK

Cell Morphology
Cellular Development
Cardiovascular System Development and Function

AASS, ACTG2, BNIP3L, BTGI, CTSH, DYNLT3, EIF4A2, GLRX, MKI67, 20

PLOD2, RNASE4, SLC2AI, SLC7A7, TXNIP

Cellular Movement
Hematological System Development and Function
Immune Response

Cell Death
Cancer
Gastrointestinal Disease

APOBEC3B, ASAHI, Cé, FTHI, IL18, IQGAP2, LAMAS, LAMCI, NOLS5A, 20

NOP5/NOP58, PLD3, PRKCQ, PRSS23, SCPEPI

APOH, ASS, BDPI, BTGI, CARDI2, CASP4, E2FI, FGFR2, FGG, NOLI, 20

RGLI, SMARCAI, SNX2, TOP2A

Cell Cycle
Gastrointestinal Disease
Developmental Disorder

ADD3, ANKRDI, CDK5RI1, EPB41L2, GPX2, HNRPDL, HOXB2, IMPDH?2, 20

MARK?2, PKN2, PLACS8, POLR3F, SFRP4, TUBB3

RNA Post-Transcriptional Modification IMP3 2
RNA Post-Transcriptional Modification EIF2A 2
Protein Trafficking TIMMSA |
Cellular Compromise

Auditory and Vestibular System Development and Function

RNA Post-Transcriptional Modification RPP40

RNA Damage and Repair

enhance cell motility as inhibitors of PPARy inhibit epi-
thelial cell migration [44-46].

Cell proliferation

Expression of genes involved in cell proliferation was dif-
ferentially regulated in IEC cultured in presence of EGC as
compared to control (Table 9). In fact, EGC appeared to
modulate the expression of anti-proliferative and pro-pro-
liferative genes toward a dominant anti-proliferative effect
(Table 9).

The expression of major anti-proliferative and pro-prolif-
erative genes was found to be up-regulated and down-reg-
ulated, respectively, by EGC. In particular, PPARG, TXNIP
and BTG1 expressions in IEC were up-regulated by EGC.
PPARy activation has been described both in vivo and in
vitro to inhibit intestinal epithelial cell proliferation
[47,48] and to induce a G1 phase cell cycle arrest [27].

Furthermore, TXNIP encodes the thioredoxin-interacting
protein, a negative regulator of thioredoxin. Thioredoxin
is an important growth-promoting factor of IEC [49].
Moreover, TXNIP has also recently been suggested to be a
tumor suppressor gene in hepatocellular carcinoma [50]
and interestingly, TXNIP expression is decreased in color-
ectal cancer and ulcerative colitis [51]. Similarly, BTG1
has been shown to negatively regulate cell proliferation
and to present a maximal expression during GO/G1
phases of the cell cycle in fibroblasts [52]. Further rein-
forcing the anti-proliferative effects of EGC on IEC is the
EGC-induced down-regulation of the expression of pro-
proliferative genes such as E2F1, FGFR2 and PPIL1. E2F1
is a gene encoding a protein member of the E2F family of
transcription factors that regulate cell cycle progression by
modulating expression of proteins required for the G1/S
transition. It has been well described that growth stimula-
tory signals lead to active E2F1 accumulation and S-phase
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Table 4: Lists of differentially expressed genes involved in cellular and molecular functions regulated in intestinal epithelial cells by

enteric glial cells.

Ingenuity® cellular and molecular functions Genes list Score
RNA Post-Transcriptional Modification NOP5/NOP58, NOL5A, EBNAIBP2, RNU3IP2, IMP3 5.17
Cell Death GPX2, SAT, PRKCD, B4GALTS, TXNIP, TOP2A, CDHI, PKN2, ASAHI, LSPI, 4.85

BNIP3L, NPPB, CDK5RI, ANKRDI, VIP, CASP4, GLRX, FGFR2, KRT I8, BAGI,

PRKCQ, BTGI, PPARG, C60RF66, SLC2A|, CARD 12, SMAD3, FTHI, LAMAS,

PTK?2, ILI8, MLLT3, FNI, PLACS8, KRT8, TGFBI, BNIP3, E2FI, SFRP4
Cell-To-Cell Signaling and Interaction APOH, PRKCD, SMAD3, CDHI, PKN2, LAMAS, PTK2, VIP, ILI8, FNI, FGG, KRT8,  3.92
KRTI8, BAGI, ITGAE, LAMCI, PPARG, TGFBI, E2FI
Cellular Development SMAD3, PRKCD, CDHI, LAMAS, VIP, PTK2, ILI8, CDK5RI, FGFR2, FNI, PLACS, 3.92
PRKCQ, LAMCI, PPARG, E2FI
Cell Morphology SMAD3, PRKCD, CDHI, LAMAS, LSPI, DCTN2, VIP, IL18, PTK2, CDK5RI, FNI, 3.88
KRT8, KRTI8, PPARG, TGFBI, E2FI
Cellular Assembly and Organization APOH, PRKCD, SMAD3, TOP2A, CDHI, DCTN2, EBNAIBP2, NPPB, PTK2, 3.88
CDK5RI, HCAP-D3, FNI, FGG, KRT8, KRT18, MARK2, LAMCI, PPARG, BNIP3,
E2FI

Carbohydrate Metabolism FNI, B4GALTS, NPPB, PTK2, IL18 3.1
Cellular Movement HOXB2, CCR9, C6, B4GALTS5, SMAD3, PRKCD, MGLL, CDHI, LSPI, LAMAS, 3.08

DCTN2, NPPB, CDKS5RI, VIP, PTK2, IL18, FNI, BAGI, ITGAE, PPARG, TGFBI
Cellular Growth and Proliferation SAT, PRKCD, TXNIP, SMAD3, CDHI, FTHI, LAMAS, SLC30AI1, EBNAIBP2, VIP, 3.05

IL18, PTK2, MLLT3, FGFR2, FNI, PLACS8, BAGI, PRKCQ, BTGI, LAMCI, PPARG,
BNIP3, E2FI, SFRP4
Cell Cycle HCAP-D3, FNI, TXNIP, PRKCD, TOP2A, DCTN2, PPARG, EBNAIBP2, E2FI, VIP 2.57
Molecular Transport FGFR2, SAT, FNI, PRKCD, MGLL, BAGI, FTHI, PPARG, NPPB, PTK2, VIP, ILI8 245
Nucleic Acid Metabolism SAT, BAGI, NPPB, VIP 2.45
Small Molecule Biochemistry APOH, SAT, PRKCD, B4GALTS5, MGLL, FTHI, ASAHI, NPPB, PTK2, IL18, VIP, ASS,  2.45
GLRX, FGFR2, FNI, BAGI, PPARG
Cellular Function and Maintenance CCR9, SMAD3, CDHI, SLC30AI, PTK2, IL18, CDK5RI, FNI, FGG, KRT18, ITGAE,  2.25
PPARG, BNIP3
DNA Replication, Recombination, and Repair HCAP-D3, FNI, SMAD3, PRKCD, TOP2A, FTHI, DCTN2, EBNAIBP2 2.17
Gene Expression APOH, SMAD3, PRKCD, CDHI, PKN2, VIP, ILI8, FN1, BAGI, PRKCQ, RNF4, 2.13
PPARG, E2FI

Cell Signaling ASS, FNI, PRKCD, PPARG 2.02
Amino Acid Metabolism ASS, FTHI 1.94
Cellular Compromise PRKCD, KRT18, TIMM8A, PPARG, E2FI 1.94
Drug Metabolism GLRX, FTHI, NPPB, IL18, VIP 1.94
Lipid Metabolism FGFR2, APOH, SAT, FNI, MGLL, ASAHI, PPARG, NPPB, VIP 1.94
Post-Translational Modification PRKCD, BAGI, PRKCQ 1.94
Protein Folding BAGI 1.94
Protein Synthesis BAGI, ILI8 1.94
Vitamin and Mineral Metabolism FGFR2, FTHI, PPARG 1.94

entry [53,54]. FGFR2 encodes a member of the FGF
(Fibroblast Growth Factor) receptor family with high
affinity for KGF (Keratinocyte Growth Factor) which is a
major actor in the mesenchymal stimulation of epithelial
cell proliferation [55,56]. Finally, PPIL1, which encodes a
cyclophilin-related protein, PPIL1 (peptidyl prolyl iso-
merase-like protein), implicated in spliceosome activa-
tion, has recently been described to be overexpressed in
colon tumors and PPIL1 silencing led to an inhibition of
colon cancer cell growth [57,58].

These global anti-proliferative effects of EGC upon IEC
have to be associated with the EGC-induced modulation
of genes that would tend to be pro-proliferative, although
these are clearly in reduced numbers. For instance, EGC
increase MKI67 expression, which encodes the prolifera-

tion marker Ki-67. Indeed, Ki-67 is increasingly expressed
during the cell cycle phases [59], excepted in GO or in cells
just escaping from GO [60]. Its function is still unclear but
knock-down for Ki-67 in cancerous cells leads to an inhi-
bition of proliferation mainly via an induction of apopto-
sis [61,62]. Interestingly, EGC reduced the expression of
TP53RK and SFRP4 in IEC that encode proteins involved
in anti-proliferative pathways. TP53RK encodes PRPK
which is a short kinase that phosphorylates p53, enhanc-
ing its transcriptional activity [63] and suppressing cell
cycle transition G1/S [64]. SFRP4 encodes the protein
sFRP4 (secreted frizzled-related protein), which is an
inhibitor of the Wnt-signaling cascade through binding
and sequestering Wnt ligand and, thus, has been shown to
decrease cell proliferation in many cell lines [65-67].
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Table 5: Lists of differentially expressed genes involved in signalling pathways regulated in intestinal epithelial cells by enteric glial

cells.

Ingenuity® Signalling Pathway Genes Ratio
Circadian Rhythm Signaling VIP 0.046
Cell Cycle: GI/S Checkpoint Regulation SMAD3, E2FI 0.041

Integrin Signaling ACTG2, FNI, LAMAS, LAMCI, PTK2 0.03

Actin Cytoskeleton Signaling TMSB4Y, FGFR2, FN I, ITGAE, IQGAP2, PTK2 0.029
Cell Cycle: G2/M DNA Damage Checkpoint Regulation TOP2A 0.029
VEGF Signaling ACTG2, PTK2 0.029
Complement and Coagulation Cascades FGG, Cé6 0.028
Amyloid Processing CDK5RI 0.028
ERK/MAPK Signaling PRKCD, PPARG, PTK2 0.024
Whnt/B-catenin Signaling CDHI, MARK?2, SFRP4 0.022
FGF Signaling FGFR2 0.018
Chemokine Signaling PTK2 0.018
TGF- Signaling SMAD3 0.016
Protein Ubiquitination Pathway PSMC6, PSMCI, BAGI 0.016
PPAR Signaling PPARG 0.015
IGF-1 Signaling PTK2 0.015
Apoptosis Signaling PRKCQ 0.015
Neuregulin Signaling CDK5RI 0.015
PTEN Signaling PTK2 0.014
Fc Epsilon RI Signaling PRKCD 0.014
T Cell Receptor Signaling PRKCQ 0.014
Xenobiotic Metabolism Signaling PRKCD, PRKCQ 0.010
NF-«B Signaling PRKCQ 0.009
B Cell Receptor Signaling PRKCQ 0.009
Ephrin Receptor Signaling PTK2 0.009
Leukocyte Extravasation Signaling PTK2 0.008
Huntington's Disease Signaling CDKS5RI 0.007
Axonal Guidance Signaling PTK2 0.004

Taken together, these data suggest that EGC tend to shift
IEC transcriptome toward an anti-proliferative pheno-
type. These results could lead to the identification of spe-
cific targets responsible for the anti proliferative effects of
EGC previously reported [12]. In addition, this global
effect is supported further by the observation that EGC
inhibit cell proliferation in part by inducing a cell cycle
arrest in GO/G1 phase [11].

Cell survival

EGC differentially regulated in IEC the expression of genes
involved in cell death. EGC appeared to modulate the
expression of anti-apoptotic and pro-apoptotic genes
toward a dominant pro-apoptotic effect (Table 10).

Indeed, expressions of pro-apoptotic and anti-apoptotic
genes were found to be up-regulated and down-regulated,
respectively, by EGC. In particular, BNIP3 and CASP4
expression in IEC were up-regulated by EGC. CASP4, cod-
ing for the caspase-4 pro-apoptotic protein has been

Table 6: Genes controlling intestinal epithelial cells adhesion and modulated by enteric glial cells.

Pro-adhesive

Anti-adhesive

Gene Symbol Regulation of gene expression by EGC
CDHI up-regulated
IQGAP2 up-regulated
LAMAS up-regulated
LAMCI up-regulated

FNI up-regulated
PTK2 up-regulated
KRT8 up-regulated

Gene Symbol Regulation of gene expression by EGC
CDK5RI down-regulated
KLK 14 down-regulated
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Enteric glial cells (EGC) induced an increase in intestinal epithelial cells(IEC) adhesion. (A):EGC induced a signifi-
cant increase in |EC total adhesion (i.e. without discriminating cell-to-matrix and cell-to-cell adhesion) after 24 hours of co-cul-
ture in presence of EGC (+ EGC) as compared to control (- EGC) (n = 5; p = 0.008; Mann-Whitney test). (B): IEC were
significantly more attached to their matrix when they were cultured for 24 hours with EGC (+ EGC) as compared to control

(- EGC) (n = 13; p < 0.001; Mann-Whitney test).

shown to induce cell death [68,69], like BNIP3 which
encodes a pro-apoptotic protein member of Bcl-2 family
[70,71]. Conversely, ASAH-1, GPX2 and BAG-1 were
down-regulated by EGC. BAG-1 encodes a known anti-
apoptotic protein implicated in Bcl-2 signalling pathway
[72,73]. ASAH-1 encodes acid ceramidase, an enzyme that
catabolizes ceramide into sphingosine by deacylation.
Overexpression of acid ceramidase in cells confers on
them an increased resistance to cell death induced by var-
ious factors such as TNF (tumor necrosis factor) or anti-
cancerous drugs [74,75]. Finally, GPX2 encodes a member
of the glutathione peroxidase (GPX) family and is a
selenoprotein and a glutathione peroxidase. GPX2 is
expressed in IEC [76] and inhibits oxidative stress-
induced apoptosis in the human breast adenocarcinoma
cell line MCF-7 [77].

These global pro-apoptotic effects of EGC upon IEC have
to be considered also in view of the EGC-mediated regu-
lation of genes which would tend to be anti-apoptotic,
although these are in reduced number. In particular, EGC
up-regulated the expression of TUBB3, a gene encoding
the class III isotype of B-tubulin. Silencing of class III B-
tubulin by siRNA reverted anti-cancer agent-resistant cells

to a sensitive phenotype and promoted apoptosis [78,79].
Conversely, EGC inhibited the expression of CARDI12
which encodes the CARD12 protein, a member of the
CED4/Apaf-1 family and known to induce apoptosis
when expressed in cells [80,81].

EGC-induced regulation of genes involved in cell death
has probably no clear consequences on IEC survival. This
is consistent with a previous study showing that EGC did
not modify IEC survival [12].

Conclusion

The present study described the impact of EGC upon the
transcriptome of proliferating Caco-2 cells in a validated
non-contact co-culture model of EGC and IEC [12,13].
The results obtained confirmed the known role of EGC in
the control of some IEB functions and, more interestingly,
extended their role in the control of novel major IEB and
IEC functions. This study further reinforced the emerging
concept that EGC are an important component of the IEB
environment with major protective effects. Indeed, the
major pathways regulated by EGC in IEC identified with
microarrays lead to enhanced cell adhesion, differentia-

Table 7: Genes controlling intestinal epithelial cells differentiation and modulated by enteric glial cells.

Pro-differentiative

Anti-differentiative

Gene Symbol Regulation of gene expression by EGC
CDHI up-regulated
PPARG up-regulated
LAMAS up-regulated
PTK2 up-regulated
DCTN2 up-regulated
DYNLT3 up-regulated

Gene Symbol Regulation of gene expression by EGC
E2FI down-regulated
BAGI down-regulated
CDKS5RI down-regulated
FNI up-regulated
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Table 8: Genes controlling intestinal epithelial cells motility and modulated by enteric glial cells.

Pro-motility
Gene Symbol Regulation of gene expression by EGC
PPARG up-regulated

FNI up-regulated
PTK2 up-regulated

Anti-motility
Gene Symbol Regulation of gene expression by EGC
LSPI down-regulated

tion, and motility, which could favor repair, and reduced
cell proliferation.

An important result of this study is the putative identifica-
tion of genes involved in the anti-proliferative effects of
EGC. Indeed, EGC have been shown to have potent anti-
proliferative effects upon IEC [11,12]. Interestingly, these
effects were associated with an induction of a cell cycle
blockade in the GO/G1 phase [11] but were not associated
with significant cell death [12]. These results are globally
confirmed, as there was no clear trend in the EGC-induced
modulation of genes controlling cell survival in [EC but a
trend toward an up-regulation of the expression of genes
involved in anti-proliferative pathways.

A major finding of our study is that EGC regulated the
expression of genes involved in cell adhesion and differ-
entiation toward a global increase of IEC adhesive proper-
ties. These results can be analyzed in view of the known
effects of EGC upon IEB. Indeed, in vitro studies have
shown that EGC increase IEB resistance and decrease IEB
paracellular permeability [13]. In the present study, we
also demonstrated that EGC could increase global IEB
adhesion, in part by increasing cell-to-matrix adhesion.
These results are in agreement with in vivo data showing
that selective lesions of EGC lead to increased paracellular
permeability and major IEB breakdown associated with
the development of intestinal inflammation. However,
the role of the molecular actors involved in these proc-
esses such as fibronectin, laminin or cytokeratin remains
to be investigated. EGC might also favor barrier integrity
by increasing its resistance to inflammatory stress either
by its ability to down-regulate inflammatory genes such as
CARD12 or by increasing IEC production of anti-inflam-
matory mediators such as VIP [82,83].

Another important finding of this study is the observation
that EGC might regulate IEC metabolism. In particular,
EGC up-regulated genes involved in lipid metabolism
such as AADAC, MGLL or APOH, encoding respectively
the arylacetamide deacetylase, monoglyceride lipase
(MGL) and Apolipoprotein H [84-86]. Interestingly,
inhibitors of MGL which is a serine hydrolase that con-
verts 2-arachidonoylglycerol, a ligand of canabinoid
receptors, to fatty acids and glycerol, increased gut transit
time [87] but its impact on IEB functions remain
unknown. EGC also modulated the expression of genes
involved in protein metabolism such as CTSH that
encodes cathepsin H, a lysosomal cysteine proteinase
[88]. In addition, EGC increased the expression of genes
involved in arginine metabolic pathway that are SLC7A7
and ASS, which encode respectively for the cationic amino
acid transporter y(+)LAT1 and the argininosuccinate syn-
thetase, enzyme catalyzing the penultimate step of the
arginine biosynthetic pathways. The functional impact of
EGC upon IEC metabolism needs to be investigated in
future studies.

Regulation of IEB functions by EGC occurs mainly via
paracrine pathways. The majority of EGC effects upon IEB
functions are reproduced by glial-derived conditioned
medium. In addition, various mediators have been iden-
tified as being involved in the control of cell proliferation
or paracellular permeability. Our study supports the role
of mediators such as TGF-f1 as a regulator of gene path-
ways modulated by EGC in IEC. In fact, TGF-B1 has been
shown to increase the expression of FAK [43], TGFBI [89]
or VIP [90]. EGC have also been shown to produce IL-6
[91]. IL-6 has recently been identified as a key molecule
involved in IEB barrier protection via increasing both
cytokeratin 8 and cytokeratin 18 proteins expression [92],
whose mRNA expression were induced by EGC in IEC in

Table 9: Genes controlling intestinal epithelial cells proliferation and modulated by enteric glial cells.

Pro-proliferative

Anti-proliferative

Gene Symbol Regulation of gene expression by EGC
E2FI down-regulated

FGFR2 down-regulated
PPILI down-regulated
MKl67 up-regulated

Gene Symbol Regulation of gene expression by EGC
TXNIP up-regulated
BTGI up-regulated
TP53RK down-regulated
SFRP4 down-regulated
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Table 10: Genes controlling intestinal epithelial cells survival and modulated by enteric glial cells.

Pro-apoptotic

Anti-apoptotic

Gene Symbol Regulation of gene expression by EGC
BNIP3 up-regulated
CASP4 up-regulated
CARDI2 down-regulated

Gene Symbol Regulation of gene expression by EGC
BAGI down-regulated
ASAHI down-regulated
GPX2 down-regulated
TUBB3 up-regulated

our study. In this context, knowledge of genes modulated
by EGC could direct future efforts aimed at identifying
novel glial mediators involved in EGC control of IEB func-
tions. Our data also further suggest that EGC differentially
regulate some IEB functions as compared to fibroblasts,
although comparison has only been performed on a lim-
ited set of genes and one cannot fully rule out that species
differences could also be involved (fibroblasts of human
origin vs. enteric glia of rat origin). However, these differ-
ences are consistent with the observation that while EGC
have anti-proliferative effects on both human and rat [EC
[12], fibroblasts increase IEC proliferation [93].

Collectively, our data support the concept that EGC play a
key protective role upon IEB homeostasis by reinforcing
global barrier functions. Additionally, our study rein-
forces data suggesting that enteric glia lesions and/or func-
tional defects could be involved in the development of
pathologies with altered barrier (such as inflammatory
bowel diseases or colorectal cancer) and also be associated
with increased barrier susceptibility to pathogen aggres-
sion.

Methods

Cell culture

CRL2690 (ATCC), a transformed EGC line isolated from
adult rat myenteric plexus, was cultured in DMEM (4.5 g/
L glucose; Gibco) supplemented with 10% heat-inacti-
vated FBS, 2 mM glutamine (Gibco), 50 IU/mL penicillin
and 50 pg/mL streptomycin. EGC were seeded at a con-
centration of 30,000 cells/mL in 6- and 12-well plates
(Corning, Avon, France). EGC were cultured for an addi-
tional 24 hours after having reached confluence prior co-
culture with IEC. CCD-18Co, a human colonic fibroblast
cell line, was cultured in MEM Alpha Medium (Gibco)
supplemented with 10% heat-inactivated FBS, 2 mM
glutamine (Gibco), 0.1 mM MEM NEAA (Gibco), 50 IU/
mL penicillin and 50 pg/mL streptomycin. Fibroblasts
were seeded at a concentration of 130,000 cells/mL in 12-
well plates (Corning). Fibroblats were cultured in EGC
medium, as described above, for an additional 24 hours
after having reached confluence prior co-culture with IEC.
Caco-2 cells (ATCC), isolated from a human colonic ade-
nocarcinoma, were cultured in DMEM (4.5 g/L glucose;
Gibco) supplemented with 10% heat-inactivated FBS, 2

mM glutamine (Gibco), 50 IU/mL penicillin and 50 pg/
mL streptomycin and were seeded at a concentration of
140,000 cells/mL onto porous Transwell filters (6-well
and 12-well Transwell clear, 0.40 um porosity, Corning).
Caco-2 cells were processed for experiment 1 day after
their seeding. To characterize EGC impact onto IEC tran-
scriptome and functions, IEC seeded onto filters were cul-
tured in presence of EGC seeded at the bottom of the 6-
well or 12-well plates.

Microarray experiments

Transcriptomic analysis was performed with a microarray
of 6,864 genes called "Cancerochip" and available from
the West Genopole transcriptome core facility of Nantes.
These Cancerochips contained 6,864 probes (50-mers oli-
gonucleotides), each specific of a single gene. These genes
were selected to be preferentially and/or differentially
expressed in Caco-2 cells and in various tumours. Three
replicates of each probe were spotted onto Cancerochips.
This allowed the measurement of the probes reproducibil-
ity within the array.

Total RNA was extracted from Caco-2 cells cultured on 6-
well filters alone or in presence of EGC at t = 0, 8 and 24
hours. Each condition was performed in 4 replicates
allowing the measurement of the reproducibility of the
cell culture experiments. RNA extraction was performed
with RNeasy mini kit (Qiagen) according to the manufac-
turer's recommendations.

The protocols used for subsequent amplification and
labelling were described in the DNA chips platform pro-
tocols. Each individual sample was compared to a refer-
ence pool consisting of Caco-2 cells transcripts of the four
replicates extracted at t = 0 hour. Total RNA (0.5 pg) was
amplified and labelled using the Amino Allyl Mes-
sageAmp II aRNA Amplification kit (Ambion) and CyDye
Post Labelling Reactive Dyes (Amersham). After reverse
transcription to synthesize first strand cDNA, second
strand cDNA was subsequently synthesized following the
manufacturer's protocol. In vitro transcription was then
achieved in order to amplify the initial transcripts quan-
tity, concomitantly with aminoallyl-dUTP incorporation
to perform labelling with cyanins (Cy5 for the reference
and Cy3 for samples). The hybridization of the chips was
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performed following the protocol of the West Genopole
transcriptome core facility of Nantes. After washing, the
chips were scanned (Scanexpress- Perkin Elmer).

Data analysis

After acquisition, the scanned images were analyzed using
GenePix Pro v5.1 software (Axon). Raw signals were proc-
essed using the MADSCAN package http://cardios
erve.nantes.inserm.fr/mad/madscan/. Spots with weak,
saturated signal or badly shaped were considered as miss-
ing values. Print-tip lowess was applied to raw signals to
normalize both channels (Cy3 and Cy5) of a same array.
Fitting coefficients were calculated on rank invariant
spots, assuming that they correspond to ubiquitous genes
(genes that did not vary between samples). Sample to ref-
erence ratios (Cy3/Cy5) were further calculated, and Log
transformed (Expression Logratios). Probes with more
than 25% of missing values were rejected.

In order to identify differentially expressed genes, Expres-
sion Logratios were analyzed using Genespring v7.0 soft-
ware (Agilent Technologies). Genes differentially
expressed between Caco-2 cells cultured alone or in pres-
ence of EGC were searched with Benjamini and Hochberg
False Discovery Rate method with a significance threshold
of 0.05. This method includes a correction for multi-test-
ing and has been widely used for microarray data [94].
This analysis led to the identification of 98 genes differen-
tially expressed in IEC cultured in presence of EGC as
compared to control, i.e. IEC cultured alone at t = 24
hours and none at t = 8 hours. Analysis of variance
(ANOVA) using time of culture and presence/absence of
ECG as parameters gave very similar results. Data visuali-
zation using hierarchical clustering and Volcano-Plot sug-
gested that this strategy might have missed some
differentially expressed genes at t = 24 hours; we thus
selected an additional set of genes based on expression
fold-changes. Twenty seven genes with a fold-change
threshold of 2 and a t-test p-value < 0.05 without multi-
testing correction were found. Altogether 116 unique
genes were found differentially expressed in IEC at t = 24
hours of culture in presence of EGC as compared to con-
trol.

Hierarchical clustering was performed after normalization
on medians of the ratio values of the t = 0 hour-condition
samples. Hierarchical clustering was performed using the
Cluster software. It was applied to order either genes and
samples or genes only. It creates a visualization of the
grouping of genes and samples based on profile similar-
ity, even if it does not provide robustness assessment of
the classification.

Among the 116 genes identified with Genespring analysis,
17 of them did not present reliable values at t = 0 hour.

http://www.biomedcentral.com/1471-2164/10/507

Thus, these 17 genes were excluded from hierarchical clus-
tering analyses. As a consequence, clustering analyses only
involved 99 genes.

Microarray data were uploaded to GEO database http://

www.ncbi.nlm.nih.gov/geo/ and are available under the
access number GSE17027.

RT-quantitative PCR

Extraction of total RNA from Caco-2 cells cultured alone,
in presence of EGC or fibroblasts for 24 hours was per-
formed with RNeasy Mini kit (Qiagen) according to the
manufacturer's protocol. For reverse transcription, 1 ug of
purified total RNA was denatured and subsequently proc-
essed for reverse transcription using SuperScript Il Reverse
Transcriptase (Invitrogen) according to the manufac-
turer's recommendations. PCR amplifications were per-
formed using the Absolute Blue SYBR green fluorescein kit
(ABgene) according to the manufacturer's protocol and
run on MyiQ thermocycler (Biorad). The expression of the
gene S6 was analyzed in parallel as an internal control.
CDH1 [GenBank: NM_004360]

Forward primer:
5'-GACCAGGACTATGACTACITGAACG-3'

Reverse primer:
5'-ATCTGCAAGGTGCTGGGTGAACCTT-3'

E2F1 [GenBank: NM 005225]

Forward primer:
5'-CCGCTCGAGGAGAAGTCACGCTATGA-3'

Reverse primer:
5'-CCCAAGCTITTTGGTGATGTCATAGATGC-3'

FN1 [GenBank: NM_054034]

Forward primer:

5'-GCAGGCTCAGCAAATGGITCAG-3'

Reverse primer:

5'-AGGTAGGTCCGCTCCCACTG-3'

FGFR2 [GenBank: NM_022970]

Forward primer:
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5'-GTCCTGCCAAAACAGCAAG-3'
Reverse primer:
5'-CCCCTATGCAGTAAATGGCTA-3'
GPX2 [GenBank: NM_002083]
Forward primer:
5'-gtccttggctteccttge-3'

Reverse primer:
5'-tgttcaggatctcctcattctg-3'

LAMAS5 [GenBank: NM_005560]
Forward primer:
5'-CCCACCGAGGACCTITTACTGC-3'
Reverse primer:
5'-GGTGTGCCITGTTGCTGTTGG-3'

PPARG [GenBank:
NM_138711/NM_015869]

NM 138712/NM 005037/

Forward primer:
5'-ttgctgtcattattctcagtgga-3'
Reverse primer:
5'-gaggactcagggtggttcag-3'

PTK2 [GenBank: NM_153831/NM_005607]

Forward primer:

5'- GAGATCCTGTCTCCAGTCTAC-3'
Reverse primer:

5'- TGCACCTGCTATTITTAGTTG-3'

SMAD3 [GenBank: NM 005902]

Forward primer:
5'-CCAAGCITAGAACGGGCAGGAGGAG-3'

Reverse primer:

http://www.biomedcentral.com/1471-2164/10/507

5'-CACTCGAGTGGTGGCTGTGCAGGTC-3'
S6 [GenBank: NM_001010]

Forward primer:
5'"TGGCAAGATGATCCCAATGA-3'

Reverse primer:
5'-AGCTTCTTTGGGACACCTGCT-3'

Adhesion experiments

Global adhesion assay

IEC adhesion was estimated by performing a "global
adhesion assay" that evaluated total IEC adhesion to their
environment, i.e. adhesion to neighboring IEC and adhe-
sion to matrix. IEC were cultivated on filters (12-well
Transwell clear, 0.40 pm porosity, Corning) alone or in
the presence of EGC for 24 hours. IEC were then
trypsinized with 0.01% trypsin-EDTA free (Sigma) allow-
ing gentle trypsinization for 30 minutes at 37°C. Non-
adherent IEC were harvested and counted in a blind fash-
ion using Malassez slides (VWR international). IEC
remaining adhered on filters were trypsinized with 2.5%
trypsin with EDTA (Gibco), harvested and counted.
Results are expressed in percentage of remaining adherent
IEC normalized to the total number of counted IEC (i.e.,
adherent IEC and non-adherent IEC). Only those series in
which the percentage of IEC total adhesion in control con-
dition was comprised between 20 and 70% were ana-
lyzed.

Cell-to-matrix adhesion assay

IEC were cultivated on filters (12-well Transwell clear,
0.40 pm porosity, Corning) alone or in presence of EGC
for 24 hours. IEC were then trypsinized for 10 minutes
with a 2.5% trypsin-EDTA (Gibco). Trypsin was neutral-
ized with IEC culture medium (see above). IEC were sub-
sequently reseeded on filters and incubated for 3 hours at
37°C. Time of incubation has been defined to allow 50%
of seeded IEC to adhere to filters in control condition. Fol-
lowing incubation, unseeded cells were harvested and
counted in a blind fashion using Malassez slides (VWR
international). IEC that had adhered on filters were
trypsinized and counted. Results are expressed in percent-
age of adherent IEC normalized to the total number of
counted IEC (i.e., adherent IEC and non-adherent IEC).
Only those series in which the percentage of IEC total
adhesion in control condition was comprised between 20
and 70% were analyzed.

List of abbreviations
CNS: Central nervous system; EGC: Enteric glial cells;
ENS: Enteric nervous system; FAK: Focal adhesion kinase;
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IEB: Intestinal epithelial barrier; IEC: Intestinal epithelial
cells; PPARy: Peroxisome proliferator-activated receptor
gamma; TGF-B1: Transforming growth factor beta-1; VIP:
Vasoactive intestinal peptide.
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