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Abstract

Background: Atypical tRNAs are functional minimal tRNAs, lacking either the D- or T-arm. They
are significantly shorter than typical cloverleaf tRNAs. Widespread occurrence of atypical tRNAs
was first demonstrated for secernentean nematodes and later in various arachnids. Evidence
started to accumulate that tRNAs of certain acariform mites are even shorter than the minimal
tRNAs of nematodes, raising the possibility that tRNAs lacking both D- and T-arms might exist in
these organisms. The presence of cloverleaf tRNAs in acariform mites, particularly in the house

dust mite genus Dermatophagoides, is still disputed.

Results: Mitochondrial tRNAs of Dermatophagoides farinae are minimal, atypical tRNAs lacking
either the T- or D-arm. The size (49-62, 54.4 + 2.86 nt) is significantly (p = 0.019) smaller than in
Caenorhabditis elegans (53-63, 56.3 + 2.30 nt), a model minimal tRNA taxon. The shortest tRNA
(49 nt) in Dermatophagoides is approaching the length of the shortest known tRNAs (45-49 nt)
described in other acariform mites. The D-arm is absent in these tRNAs, and the inferred T-stem
is small (2-3 bp) and thermodynamically unstable, suggesting that it may not exist in reality. The
discriminator nucleotide is probably not encoded and is added postranscriptionally in many

Dermatophagoides tRNAs.

Conclusions: Mitochondrial tRNAs of acariform mites are largely atypical, non-cloverleaf tRNAs.
Among them, the shortest known tRNAs with no D-arm and a short and unstable T-arm can be
inferred. While our study confirmed seven tRNAs in Dermatophagoides by limited EST data, further
experimental evidence is needed to demonstrate extremely small and unusual tRNAs in acariform

mites.
Background of the normal tRNA, with the exception that the interstem
Atypical, non-cloverleaf tRNAs were first demonstrated  angle slightly increases [5]. Apparently atypical tRNAs
computationally and experientially for secernentean nem-  retain normal function, thus exemplifying the concept of

atodes [1-4]. Despite the loss of either the D- or T- arm,  a minimal tRNA [2,6], a structure approaching the mini-
these tRNAs preserve the L-shaped tertiary conformation = mal level of simplicity necessary for a functional transla-
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tional system. Minimal tRNAs were later found in
vinegaroons, buthid scorpions, spiders and acariform
mites [7-15], although in Dermatophagoides and some
other taxa, cloverleaf tRNAs were also inferred. The distri-
bution of minimal tRNAs across distantly related taxa is
attributed to multiple independent evolutionary events
[7]. In secernentean nematodes, non-cloverleaf tRNAs
were believed associated with the presence of minimal
rRNA [1], however, a recent study links modifications of
tRNAs and the enzyme EF-Tu delivering aminoacyl-tRNAs
to the ribosome [16,17].

Two major tRNA detection programs, tRNAscan-SE [18]
and ARWEN [19], implemented the 'bizarre' tRNAs [1] of
nematodes, however, the performance of these programs
is not expected to be perfect when applied to mites. In the
first acariform taxon where tRNAs were characterized
(Leptotrombidium pallidum), most of them are even shorter
than atypical tRNAs of nematodes [9]. This is also true for
Dermatophagoides, where several tRNAs could not be con-
fidently recovered by the two programs and probably rep-
resent even more 'bizarre' structures as compared to
secernentean nematodes. On the other hand, short and
unstable structures or cloverleaf structures were also
inferred previously in Dermatophagoides, suggesting the
need of their independent verification. In another acari-
form mite, Steganacarus magnus, only 8 tRNAs could be
detected [11]. Another potential difficulty with the infer-
ence of tRNA genes may involve mismatches in their
acceptor stems that can be edited and corrected after tran-
scription [7,20,21]. With these mismatches, tRNA genes
may not be different from a random DNA sequence, and,
therefore, may be difficult or impossible to infer. Posttran-
scriptional editing of the tRNA acceptor stem was hypoth-
esized for spiders having highly destabilized and
divergent acceptor stems in contrast to well paired and
evolutionary conserved D- and anticodon arms [7,22,23].
Mismatches in the acceptor stem do occur in acariform
mites, including Dermatophagoides, although to a much
lesser extent, indicating that a similar mechanism may
exist in these organisms.

A few examples given above suffice to show that inference
of mite mitochondrial tRNAs may be extremely difficult
and error prone, especially when comparative data are
absent. Therefore, we verified previously published anno-
tation of Dermatophagoides pteronyssinus [12], the only
other member of Astigmata, then-studied for tRNA struc-
ture, with our data on D. farinae and a few other astigma-
tid taxa. Various lines of evidence were used: (i)
comparative sequence conservation, including compensa-
tory mutations; (ii) RNAscan-SE and ARWEN analyses;
(iii) similarity with GenBank data (to account for atypical
tRNAs, only anticodon arm sequences were used in BLAST
searches); (iv) polyadenylation sites (EST data), which
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may indicate the 5' end of a tRNA; (v) thermodynamic sta-
bility, especially when alternative structures where
inferred. In the analyses below we call four unusually
short tRNAs "non-canonical" because they can not be
confidently inferred by available tRNA search programs.

Results and Discussion

Mitochondrial genome of Dermatophagoides farinae
Similarly to most bilaterians, the mitochondrial (mt)
genome of Dermatophagoides farinae is a covalently closed
circular DNA (14,266 nt) encoding 13 polypeptides, 2
ribosomal RNAs, and 22 tRNAs on two strands. All trans-
lation products are members of the multi-subunit com-
plexes that couple oxidative phosphorylation [24],
whereas the ribosomal RNAs and tRNAs are part of mito-
chondrial protein biosynthesis machinery [25]. The
majority strand forms 2 mt-rRNAs (I-rfRNA and s-rRNA),
15 mt-tRNAs and encodes 9 polypeptides (nucleotide fre-
quencies: T 0.447, C 0.110, A 0.267, G 0.176; GC-skew
0.2314, AT-skew -0.2531) (Additional file 1). The minor-
ity strand forms 7 tRNAs and encodes 4 polypeptides (Fig.
1). However, unlike many other bilaterians, the majority
strand is the light strand (as defined by molecular weight).
Available EST data suggest that the mitochondrial genes
are transcribed as polycistronic (multigenic) transcripts,
which are cleaved and polyadenylated to yield mature
mRNAs [26]. Processing of the majority of polycistronic
units is probably governed by the precursor mt-tRNA
structures as found elsewhere [27]. Most of tRNAs are very
short and do not have either the T- or D-arm (Fig. 2; Table
1). Similar short tRNAs were found in vinegaroons, spi-
ders, scorpions, and other acariform mites, but typical clo-
verleaf tRNAs were also recovered in these taxa [7-15].
Polyadenylation sites in the mRNA mark the 5' ends of a
tRNA, suggesting that precursor tRNAs are cleaved pre-
cisely at their 5' end (see below). We hypothesize that the
discriminator nucleotide at the 3' end is not encoded and
added posttranscriptionally in many tRNAs (see below).
The small and large subunit rRNA show many features
common for minimal rDNA previously only known for
two model organisms, the nematode Caenorhabditis ele-
gans and the trypanosome Leishmania tarentolae [28-30].
The most striking similarity shared by these organisms is
the absence of several large helices in the GTPase region in
the large subunit rRNA (our data, unpublished). The most
frequent codon on the majority strands is TIT (Phe), and
on the minority strand is ATA (Met), highlighting asym-
metric strand bias. There is a clear preference for GT-rich
codons on the majority strand, while AC-rich codons were
more frequent on the minority strand. However, only at
the third position were the differences statistically signifi-
cant (Additional file 2). As indicated by EST data, poly(A)
stretches were implicated in the creation of complete stop
codons from incomplete T codons [31] in ND3, NDG6,
ND4, and ND5. Alternative polyadenylation is found in
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Table I: Transfer tRNAs in Dermatophagoides farinae and D. pteronyssinus

An2 Cnb  tRNA Stre Lend Ante  Strf TRNz ARWh BLAST Previ Cf< 5'overlap! 3'overlap™m
1-3 y Asp/D + 54 GTC v Y D y - ATP8 (1)
4-7 y Gly/G + 57 TCC tv Y Y G y - ND3 (1)
8-14 n Arg/R + 49 TCG d - y R tvn ND3 (1) -
1518y Met/M + 52 CAT vy - M - -

1925 y  Ser2/s2 + 52 TGA d - y $2, W tvo - -

26-28 y Cys/C - 53 GCA d Y Y C A - -

29-32 y Pro/P + 57 TGG tv Y y P - -

3340 n Tyr/Y + 55 GTA d - y Y ) ; K (10)
4144  y Lys/K + 6 TTT o y y KW, C L2 tva Y(10) N(1).-
4547  y Asn/N + 5 GIT w Y Y N y  K() -

48-53 n Val/vr + 52 TAC d - V, Y, I-rRNA I-rRNA s-rfRNA(3,2) -
5457y Trp/W + 58 TCA v Y Y W, S2,F y - -

58-61 - -s + 44  'GGT' - - - - Y - -

62-67 y Thr/T - 55 TGT w Y y T - ND6 (1)
68-70 y His/H + 5% GIG tv Y Y H y - ND5 (1)
71-77 y Phe/F + 55 GAA tv Y Y F, W y - -

78-80  y Serl/sl - 52 TCT d = y sI,s2 du Q@) -

81-83 y GIn/Q - 54 TTG v Y Y QW S 1@y - SIQ2)"
84-88 lle/l - 53 GAT v y - [ - - Q@)
89-92 y  GluE - 54 TTC w  y Y EW tww y - ND2 (1)
93-95 y Leul/LI - 55 TAG tv Y Y LI tvx - -

96-100 n Ala/Ay + 50 TGC d - y -z Caa - -
101-103 y Leu2/L2 + 57 TAA tv Y Y L2 - COXI(I)

arefers to IDs from the detailed analyses (Additional file 5)

b Canonical, can be found confidently either in tRNAscan-SE or ARWEN

¢ Strand

d Length (D. farinae only)

e Anticodon

ftRNA secondary structure: tv = TV-replacement loop tRNA, d = D-replacement loop tRNA, c = cloverleaf tRNA

8 tRNAscan-SE analysis: Y = high score or unambiguous tRNA; y = low score or ambiguous tRNA,; - = failed to find any tRNAs

h ARWEN analysis: designations as for tRNAscan-SE

i BLAST similarity search of tRNA anticodon helix restricted to mitochondrial genomes of arthropods

i Previously inferred for D. pteronyssinus, if either gene region (bold) or its secondary structure is different from our reconstruction

kThe 5' end of a tRNA is confirmed by EST data (a polyadenylated site immediately upstream of the tRNA 5' end). For others tRNAs these data are
not available. Approximated if EST data are missing in one species.

lin all cases overlaps with the 3' end of a gene. The overlap length (nt) is given in parentheses. tRNAs genes are given using single letter
designations. If different in the two species, given as two values separated by a comma, for D. farinae and D. pteronyssinus, respectively.

™ In all cases overlaps with 5' end of a gene; format as in previous column

n 17 nt overlap with ND3 3' end

° |2 nt overlap with 3' end tRNA-Met

P5' end overlaps with 5' of tRNA-Lys by 7 nt, 3' end overlaps with 3' end of tRNA-Pro by | | nt

93' part is different from our structure

r putative; alternatively part of I-rRNA start where it forms stable secondary structure with 6-nt "anticodon", variable loop, and 5-nt stem.
snot a tRNA, non-coding region between tRNA-Trp and ND |/

talso tRNA-Ser2

u3'acceptor and T-stems are separated by | nt. These two stems are not separated in our structure (as in the typical tRNA)

v D. pteronyssinus only

w 5" acceptor stem and D-stem (3 bp) are separated by | nt. These two stems are separated by 2 nt (as in the typical tRNA); D-stem is 4 bp-long in
our structure; and the acceptor stem is situated at n-| position in our structure

x3-bp D-stem (4-bp in our structure)

Y alternatively non-coding region between tRNA LI-tRNA LI-L2 structure

zone hit on Steganacarus magnus may represent tRNA-Ala (originally designated as non-translated intergenic spacer).

2 cloverleaf, 3' end overlaps with tRNA-Leul by 5 nt.

the transcript of gene NDG in D. pteronyssinus (Additional =~ tRNA-Asp

files 3, 4). The D-loop of D. farinae is variable in length in ~ Dermatophagoides retains the presumed ancestral chelicer-

a single individual (heteroplasmy), with two indels (0-34  ate gene order "Asp-ATP8-ATP6-COX3-Gly", and this TV-

and 0-4 nt, respectively) occurring inside two major AT-  loop tRNA is part of it. In D. farinae, the acceptor stem has

repeats (Additional file 3). 2 mismatches (Fig. 2), while D. pteronyssinus has only one
mismatch. Two putative compensatory mutations were
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Figure |

Mitochondrial genome of Dermatophagoides farinae. Distances (nt) between genes regions (coding sequences and struc-
tural RNA) are indicated by numbers; overlaps are indicated by negative numbers. For transport RNAs, single-letter abbrevia-

tions are used.

detected in the anticodon stem (Fig. 2). The 5' end of this
structure is confirmed by EST data for D. pteronyssinus
[GenBank: EX162413MW DP0389]. For D. pteronyssinus
only, BLAST search returned a positive alignment with the
anticodon arm of a collembolan (Additional file 5, 1). It

is interesting that in the same position of the oribatid
mite, Steganacarus magnus, ARWEN suggests tRNA-Asp (as
a D-loop) (Additional file 5, 3), and BLAST search aligns
it with the same collembolan mentioned above. However,
this tRNA has 2 mismatches in the anticodon stem and is
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vidual mRNA (as found by a polyadenylated tail in ESTs) is immediately contiguous to a tRNA gene [27], then the 5' end of this

Transfer tRNAs of Dermatophagoides farinae. Compensatory mutations are indicated by circles. If the 3' end of the indi-

Figure 2

tRNA is indicated by the "confirmed by EST". ESTs are not available for all regions. Residues forming tertiary interactions in

tRNA-Phe are annotated after [3]. tRNA-Ala of D. pteronyssinus and the consensus between D. farinae and D. pteronyssinus are

also given.
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thermodynamically unstable. We refrain from inferring
this structure in S. magnus.

tRNA-Gly

The position of tRNA-Gly represents the presumed ances-
tral chelicerate gene arrangements (see above for tRNA-
Asp), and this tRNA (TV-loop) was inferred with relatively
high support by tRNAscan-SE and ARWEN. No significant
structural differences were detected, except for the 7-bp
acceptor stem predicted by the former program, as
opposed by the 8-bp stem inferred by ARWEN. EST data
[GenBank: CB284188DF0911] provide evidence that this
structure may be a functional structure, however, the exact
5' end of it cannot be determined because the polyade-
nylation site is located inside of a 4A (D. farinae) or 3A (D.
pteronyssinus) homopolymeric region. We present a con-
servative reconstruction having a 7-bp acceptor stem (Fig.
tRNA), which is consistent with the canonical tRNA. The
discriminator nucleotide (the 3' dangling end) of this
tRNA may be the first position of a possible start codon
(TTG) for the gene ND3. Two compensatory mutations
occurred in the acceptor stem and one such mutation
occurred in the anticodon stem. BLAST search of the anti-
codon helix of this tRNA returned many positive matches,
including that of an acariform mite (Leptotrombidium
deliense [GenBank: NC 007600]). In S. magnus, ARWEN
suggests tRNA-Gly (cloverleaf) at this position. Similarly
to many putative tRNAs of this species, this tRNA has mis-
matches in the anticodon stem and is thermodynamically
unstable (Additional file 5, 7). Nevertheless its anticodon
arm sequence returned numerous positive hits for other
arthropods, including ticks (Additional file 5, 7), indicat-
ing that at least this sequence is evolutionarily conserved
and has a biological function.

tRNA-Arg (non-canonical)

In accordance with tRNAscan-SE, this structure was
inferred as a TV-loop for D. pteronyssinus, with highly
unstable D- and acceptor stems having 1 (out of 2) and 3
(out of 7) unpaired base pairs, respectively [12]. Further-
more, it has a very large overlap with the coding gene
ND3, thus violating the tRNA punctuation model of RNA
processing [27]. The program mfold renders this structure
as having a positive minimum free energy (4.00) (Addi-
tional file 5, 8), indicating that even without isolated base
pairs this structure is unlikely to be formed at the standard
temperature. Similarly, the acceptor stem of D. farinae is
thermodynamically unstable and its position does not
correspond to that of D. pteronyssinus.

Secondary structures of tRNA, as inferred by ARWEN in
our analyses, differ substantially in D. farinae and D. pter-
onyssinus. In the former species, ARWEN predicts it has the
typical cloverleaf structure with both D- and T- arms,
while in the latter species it was a D-loop, lacking the D-
arm and with a very reduced T-arm (Additional file 5, 8;

http://www.biomedcentral.com/1471-2164/10/598

Additional file 6, 1). Similarly, if shorter sequences are
considered, an array of structures, including TV-loops,
were inferred by ARWEN (Additional file 5, 10-12).
Although, their acceptor stems are situated at different
positions (at least their 5' parts for TV-loops) (Additional
file 6, 2-3), t the anticodon stem is the same across all
these structures. As indicated by minimum energy analy-
sis, all these structures may be unstable (positive MFE),
except for the D-loop structure, which has a negative MFE
(Additional file 5, 8-9).

Consensus in terms of thermodynamic stability and posi-
tional similarity between the two species is only possible
when the ARWEN D-loop structure of D. pteronyssinus is
used. We give a conservative folding of D. farinae (Fig. 2)
based on the reconstruction of D. pteronyssinus (Addi-
tional file 5, 8; Additional file 6, 1). If correct, one muta-
tion in the putative acceptor stem should be considered as
compensatory (Fig. 2), and an additional compensatory
mutation is present if the acceptor stem is located at the
n+1 position. Most of Dermatophagoides tRNAs (except for
tRNA-Ser1 and -Ser2, which are evolutionarily conserved
D-replacement loops, see below) are TV-loops, so our pre-
liminary D-loop structure may be questioned. However,
this finding is supported by the following: (i) In TV-loop
tRNAs, the variable loop region is purine-rich (which is
necessary for maintaining tertiary conformation), while in
D-loops it is not [e g., [6]]. Our structure follows the pat-
tern of the canonical D-loop tRNA. A D-loop tRNA-Arg
was also suggested for three trombidiform mites (genera
Unionicola, Walchia, Leptotrombidium), which similarly
have a very small 8-9 nt T-arm [10], the arachnid Mastigo-
proctus giganteus [7], and two dipluran species of the genus
Campodea [32]. (ii) Even though TV-loop tRNAs were
found (Additional file 5, 10-12; Additional file 6, 2-3),
their 5' parts of the acceptor stem are different, and no sta-
ble and homologous D-arm can be inferred across the two
species in these reconstructions. Mismatches in the accep-
tor stem may be assumed (because they can be edited later
after transcription [7,20,21,33-35], but mismatches in
either D- or T stems are not known to be edited. (iii) Sim-
ilarly, the cloverleaf structures of the two species disagree
in the position of their acceptor stems, with that of D. fari-
nae situated downstream from a 6-nt indel, and thus it is
unlikely to exist.(iv) All reconstructions, except for D-
loops, were unstable, with positive MFEs.

In summary, the above evidence (thermodynamics,
BLAST hits, similarities with tRNA-Arg of trombidiform
mites) suggest that a D-loop tRNA (Fig. 2) should be pre-
ferred here.

tRNA-Met

Inference of this tRNA is not straightforward because there
is no agreement between the two programs. tRNAscan-SE
finds a structure only in D. farinae, and this a low-score
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TV-loop tRNA-Met (0.55). The same tRNA was also
inferred previously [12] for D. pteronyssinus. ARWEN
presents an alternative structure with D- and T-arms for
both species. These tRNA have a relatively high threshold
value (95-100%), but they have many mismatches in the
putative acceptor stems and are thermodynamically
unstable (MFE>0) (Additional file 5, 17-18). If a sequence
corresponding to the tRNAscan-SE structure is entered to
ARWEN, then it will reconstruct a similar structure for
both D. farinae (Fig. 2) and D. pteronyssinus. We consider
these TV-loop structures, having acceptable thermody-
namic parameters (Additional file 5, 16) and one com-
pensatory mutation in the acceptor stem, as most
probable for Dermatophagoides. The following conserved
sequences (as compared to trombidiform mites [10])
were detected: AGCTA, AAGCT (D-arm, 5 and 3' parts,
respectively), GGTCATA (5' fragment of the anticodon
arm). Anticodon arm sequence of this tRNA returns many
positive hits for various arthropods (Additional file 5, 15-
16).

tRNA-Ser2(UCN)
This tRNA cannot be determined unambiguously,
although there is some evidence that this is a D-loop. Pre-
vious reconstructions for both species [12] have a D-arm
and lack a T-arm (TV-loop). Both have a highly destabi-
lized acceptor stem, and D. farinae also has a destabilized
D-arm and a large overlap with the previous tRNA-Met,
indicating that non-anticodon stem parts of this tRNA
were probably inferred incorrectly. The program tRNAs-
can-SE confirms the reconstruction only for D. pteronyssi-
nus. In contrast, ARWEN suggests that in the two species,
the 5' end of the acceptor stem is 1 nucleotide shorter and
shifted at the n-1 position as compared to the previous
structure [12]. This shift makes a fully complimentary
acceptor stem in both species. MFE for these structures are
0.56 and -2.9, for D. pteronyssinus and D. farinae (Addi-
tional file 5, 19, 20), respectively.

The above inferences were based on the alignment limited
to the previous reconstructions [12], which is only sup-
ported by tRNAscan-SE for D. pteronyssinus (Additional
file 5, 19, 20). If flanking regions are also considered, var-
ious tRNAs are inferred by ARWEN (Additional file 5, 21-
22) with -Ser2 shared among all analyses, while results of
tRNAscan-SE are similar to the limited analysis restricted
to the Dermauw et al. [12] fragment. tRNA Ser2, as
detected by ARWEN, does not have a D-arm but has a T-
arm instead (D-loop) (Fig. 2) and does not overlap with
the preceding tRNA. It has fully complimentary anticodon
and acceptor stems and is much more stable thermody-
namically, with MFEs of -5.73 and -2.9 for D. pteronyssinus
and D. farinae, respectively. It is unusual for chelicerate
tRNAs (except for tRNA-Ser1) to lack a D-arm [7]. How-
ever, similarly to our inference (Fig. 2), the absence of a D-
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arm in tRNA-Ser2 was reported in the oribatid mite Stega-
nacarus magnus [11], species of the prostigmatan mite gen-
era Leptotrombidium [8,9], Unionicola and Walchia [10], a
whip scorpion, Mastigoproctus giganteus [7], two spider
genera, Ornithoctonus huwena [36] and Aphonopelma [7],
annelids [37], and certain nematodes [38,39] and gastro-
pods [40]. We consider the structure inferred by ARWEN
(Fig. 2) as the preferred tRNA-Ser2.

It is interesting that for the anticodon arm of this tRNA,
BLAST returned many significant alignments with tRNA-
Trp (= complement to tRNA-Ser2), and the scores of these
alignments were much higher than for tRNA-Ser2 (16 ver-
sus 11 matches). In addition, the ancestral chelicerate
gene order (tRNA-Trp-tRNA-Cys and NDI-tRNA-Ser2)
will be favored if the identity of our tRNA-Ser2 and -Trp is
switched (see below). Although this scenario cannot be
completely ruled out, there is some evidence that, in fact,
our reconstruction of tRNA-Ser2 (D-loop) is correct: (i)
mutations at the last nt of the 5' part of the anticodon
stem are such that they are compensatory only for tRNA-
Ser2; (ii) no tRNA-Trp consistent for both species could be
found either by tRNAscan-SE or ARWEN (data not
shown); high-score tRNA-Trp can be inferred at another
location and, in both Dermatophagoides and Steganacarus,
it has a certain evolutionarily conserved pattern specific to
tRNA-Trp (see below). Unfortunately, we could not find
tRNA-Ser2 (T-stem) specific pattern [10] in either Dermat-
ophagoides or Steganacarus.

The same problem with the identity of tRNA-Ser2 and -
Trp exists in Steganacarus magnus: originally it was inferred
as tRNA-Trp [11], however, tRNA-Ser2 can be inferred
instead with a slightly higher score (Additional file 5, 25).
In this case, the ancestral gene order (CytB-Ser2) will be
favored. The non-anticodon parts of this tRNA cannot be
inferred unambiguously (Additional file 5, 23-25; Addi-
tional file 6, 4-5), although, because it is more consistent
with that of other mites, the D-loop tRNA-Ser2 (D-loop)
for Steganacarus is our preferred structure (Additional file
5, 25; Additional file 6, 5).

tRNA-Cys

Dermauw et al. [12] inferred this tRNA as tRNA-Ala for D.
pteronyssinus. Unfortunately, the 3' part of the acceptor
stem of this putative structure is located inside a big, 30-
nt deletion as compared with D. farinae. Thus, the same
structure cannot be inferred for D. farinae. If the previous
D. pteronyssinus reconstruction of tRNA-Ala [12] is entered
into the program tRNAscan-SE, it suggests either tRNA-Ala
(score 8.67) or Cys (TV-loop) (2.3). ARWEN suggests only
tRNA-Cys (D-loop) (Additional file 5, 26). No similar
analyses can be performed for D. farinae because of the
deletion.
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If flanking regions of the putative tRNA-Ala [12] are con-
sidered, tRNAScan-SE selects tRNA-Ala and, with a much
higher score, tRNA-Cys (Additional file 5, 27-28). The
position of tRNA-Ala is different between the two species
(in D. pteronyssinus, it starts 1 nt downstream of the previ-
ous tRNA-Ala [12] and in D. farinae it overlaps with the
acceptor stem of tRNA-Ser2 as inferred here). In contrast,
the position of tRNA-Cys is the same in the two species,
and this structure received the highest score, especially for
D. farinae (18.8 vs. 4.98 for tRNA-Ala). ARWEN finds only
this tRNA in both species (other tRNAs were also found
but none of them is shared between the two species, Addi-
tional file 5, 27-28). tRNA-Cys is clearly more thermody-
namically stable over tRNA-Ala (MFE negative vs positive
in tRNA-Ala). For both species, BLAST search produced
numerous significant alignments with the anticodon stem
of tRNA-Cys of mites and other arachnids, crustaceans,
and insects (Additional file 5, 27-28); for D. farinae only,
BLAST also returned alignments with tRNA-Ala, but they
were consistently worse than those with tRNA-Cys. In
addition, alignment with four trombidiform species, for
which the identity of tRNA-Cys is well established, clearly
demonstrates a conserved pattern (three more matches in
both the anticodon and D-stems, as compared to tRNA-
Ala, see Additional file 7). We consider our ARWEN recon-
struction of tRNA-Cys (Additional file 5, 27-28) as the
most preferred based on its higher scores, the same posi-
tion in two species, thermodynamics, similarities with
GenBank data (especially with other acariform mites),
and two putative compensatory mutations in the acceptor
stem (in D. farinae, one of them occurring at the second
position favoring tRNA-Cys over tRNA-Ala) and one such
mutation in the anticodon stem (Fig. 2).

tRNA-Pro

Our reconstructions agree with those of Dermauw et al.
[12]. Interestingly, there is a difference how tRNAscan-SE
and ARWEN treat the acceptor stem. The former program
inferred it without a mismatch, while the latter one shifts
its 5' end by one position upstream, creating one mis-
match in both species. We present the structure consistent
with tRNAscan-SE analysis as the preferred reconstruction
(Fig. 2). The anticodon arm of this structure was con-
firmed by the BLAST similarity search (Additional file 5,
29-31). No tRNA-Pro [11] could be confirmed for Stega-
nacarus magnus. This tRNA, as originally inferred, has an
unusual anticodon (AGG not TGG), is thermodynami-
cally unstable (positive MFE), and did not return any sim-
ilarities with tRNA-Pro deposited in GenBank (Additional
file 5, 32). In addition, no sequence conservation of the 3'
part and the anticodon region is observed when aligned
with Dermatophagoides, suggesting that this putative tRNA
rather represents a random structure. In contrast, its 5'
part displays apparent similarities with Dermatophagoides
alignment and probably represents part of tRNA-Thr (see
below).
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tRNA-Tyr (non-canonical)

Previously this tRNA was inferred as tRNA-Val [12] (=
complement tRNA-Tyr). Unfortunately, both tRNAscan-
SE and ARWEN could not confirm this structure (Addi-
tional file 5, 33), and there is strong evidence against it: (i)
an indel occurs in the 5' part of the putative acceptor stem;
(ii) the putative D-arm and acceptor stem have mis-
matches (1 and 2, respectively); (iii) if applied to D. fari-
nae, the anticodon stem will have one mismatch.

In our analyses (Additional file 5, 34-40), tRNAscan-SE
did not produce any structures, while ARWEN suggests
various tRNA-Tyr for both D. farinae and D. pteronyssinus.
Although the anticodon stem was the same among those
tRNAs, there is a disagreement in the position of the
acceptor stem:

(i) cloverleaf tRNAs-Tyr were found in both species (Addi-
tional file 5, 34-35; Additional file 6, 7). However, for D.
farinae it was thermodynamically unstable (Additional
file 5, 35). In addition, the indel is situated in the 5' part
of the acceptor stems (Additional file 6, 1), this stem and
T- and D-arms are not the same in the two species, and the
acceptor and D-stems have mismatches. Although, mis-
matches in the acceptor stem can be edited in various
organisms [7,20,21,33-35], this is not known for D- or T
stems.

(ii) cloverleaf tRNA-Tyr (restricted). A separate search
restricted to the conserved and apparently complementary
regions including CCCTT(5') and GGGA(R)(3') returned
another set of cloverleaf tRNAs (Additional file 6, 8-9).
These tRNAs have negative minimum free energies and do
not have the indel in their acceptor stem (Additional file
5,37-38).

(iii) D-loop tRNAs. These tRNA were always preferred by
ARWEN over the cloverleaf tRNAs based on a higher
threshold value (95%, versus 90% and below for the clo-
verleaf tRNAs) (Additional file 5, 34-36). There is some
disagreement between D-loop tRNAs; for example, in D.
pteronyssinus, two different structures were inferred, and
one of them was the same as the above cloverleaf tRNA
except for the absence of D-arm (Additional file 5, 34),
and it also included the indel. The other D-loop tRNAs do
not include the indel in the acceptor stem, and its basic
structure is shared among the two species, although the T-
arms were not homologous, and the acceptor stem length
was different (7 and 6-bp for D. pteronyssinus and D. fari-
nae, respectively) (Additional file 6, 10-11). These struc-
tures, unlike the above cloverleaf tRNA have a negative
free energy (Additional file 5, 35-36), indicating that they
may be stable. The D-loop tRNA-Tyr is extremely rare in
chelicerates, and it is only known for the following trom-
bidiform mites: Leptotrombidium [9], Walchia hayashii,
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Ascoschoengastia sp., Tetranychus urticae, and Panonychus
ulmi, but not for Unionicola foili where it is a TV-loop [10].

(iv) D-loop tRNAs (restricted). A separate search restricted
to the conserved and apparently complementary regions
including TAGACTTT(5') and AGGGTTTA (3') returned
another set of D-loop tRNAs, very similar in both species
(Additional file 5, 39-40). The differences involved the
acceptor stem and the T-arm, inferred slightly differently.
Fig. 2 shows the consensus between the two structures,
which has a 7-bp acceptor stem and 2-bp T-arm. The con-
sensus is very similar to the D-loop tRNA inferred in (iii).

(v) TV-loop tRNAs. This tRNA was inferred only for D.
farinae (Additional file 5, 38), with a 4-bp D-stem having
no mismatches and an unusually large, 15-nt, TV-loop
(Additional file 6, 12). It has the lowest free energy value
as compared to the above tRNA, but unfortunately this
structure can be found only in this species. If strictly
applied, the D-stem would have 3 mismatches in D. pter-
onyssinus.

Minimum free energy analyses found only one stable
structure for each species. These structures have slight dif-
ferences in their 5' ends, but the basic structure is the
same: a long stem separated by 2 bulges at the 3' part, a
loop, and a hairpin structure, representing the putative
anticodon stem (Additional file 6, 13-14). These analyses
favor the D-loop (analysis (ii) above) and cloverleaf
tRNAs (iii).

At this point it is impossible to confidently select between
the alternative structures, although we consider the D-
loop tRNA (Fig. 2) as the preferred tRNA-Tyr (mostly
based on its similarity with that of Leptotrombidium). As
mentioned previously, the anticodon stem is the same
across all structures, and it does produce many significant
alignments with that of arthropods, indicating that our
preliminary reconstructions may represent a functional
tRNA, substantially deviating from the canonical tRNAs. It
is interesting that in some other acariform mites (Tetrany-
chus urticae, Panonychus ulmi) the canonical tRNA-Tyr (D-
loop) cannot be inferred as well.

tRNA-Lys

We confirm this tRNA, except for changing it from TV-
loop to presumably cloverleaf tRNA (with the T-arm very
short or it may be absent) and changing the putative 3'
part of the acceptor stem of the previously established
structure [12]. There is a 3-nt deletion in this region in D.
farinae, therefore this putative acceptor stem is not likely
to exist. In addition, this stem is only 6-bp long and has a
mismatch (Additional file 5, 41). Our analyses suggest
that the 3' part of the acceptor stem is located downstream
(thus avoiding the deletion), its length corresponds to
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that of the canonical tRNA (7 bp), and it is fully comple-
mentary (with one compensatory mutation) (Additional
file 5, 42-43). Our structures differ by only a small, 8-nt T-
arm suggested by ARWEN for the two species (cloverleaf
structure) (Fig. 2), while tRNAscan-SE does not infer it
(TV-replacement loop). Since the ARWEN T-arm is too
small, it may not exist in reality, however, the cloverleaf
tRNA-Lys was described for trombidiform mites [10] and
they also have a short (9-11 nt) T-arm. EST data, available
only for D. pteronyssinus (e. g., EX162300 MW DP0257),
in general favor our reconstruction over that reported pre-
viously [12], but the 3' end of our structure cannot be
found unambiguously. In D. pteronyssinus, the polyade-
nylated tail is situated just before the 5'-end on the down-
stream tRNA-Asn (as predicted), and the predicted
discriminator nucleotide of tRNA-Lys is situated at the n-
1 position from the poly(A) site. In D. farinae there is a 2
nt deletion, so the predicted discriminator nucleotide
overlaps with the first nt of tRNA-Asn (Fig. 2). This seems
unlikely, but not impossible. Alternatively, the 3' end of
both tRNAs would be at the n-2 position from the poly(A)
site, but this would require a 6-bp acceptor stem.

We were able to find significant similarities of the antico-
don stem of our tRNA-Lys (Fig. 2) with that of tRNA-Lys
of Atelura formicaria (EU084035). D. farinae and D. ptero-
nyssinus also display similarities with the anticodon stem
of tRNA-Trp and non-anticodon fragments of others
tRNAs (Additional file 5, 41-43). Interestingly, if the
whole tRNA sequence is submitted, it will also align
against Ixodes tRNA-Trp and other arthropods, and specif-
ically to its anticodon stem. However, despite this signifi-
cant hit the anticodon sequences are different between the
two tRNAs. Because our tRNA is reconstructed with a high
score, and tRNA-Trp was inferred confidently in another
location (see below), we consider the similarities with
tRNA-Trp as a result of convergent mutations constrained
by the same secondary structure. Interestingly, a low score
tRNA-Lys can be inferred at the beginning of putative I-
TRNA of Steganacarus magnus (Additional file 5, 42-43).

tRNA-Asn

We confirm this structure. Both tRNAscan-SE and ARWEN
recovered this tRNA in D. pteronyssinus and D. farinae with
high confidence values (Additional file 5, 45-46). There is
no variation in any stem, except for the last nucleotide of
the acceptor stem, where a non-compensatory mutation
occurred in D. farinae (complementary in D. pteronyssi-
nus). Identical mismatches were also found at its n-1 posi-
tion and at the last position of the anticodon stem (Fig. 2).
EST data [GenBank: EX162300MW DP0257] indicate that
the 5' end of this tRNA is situated at precisely the same
position as inferred. BLAST search of the anticodon stem
returned significant similarities with tRNA-Asn of an
insect and a spider (Additional file 5, 45-47).
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tRNA-Val (non-canonical)

The gene order s-rRNA-Val-I-rRNA (on the minority
strand), is presumed to represent the ground pattern of
the arthropod mitochondrial gene arrangement [41,42].
This gene order is not known for any acariform mite, how-
ever, in Dermatophagoides, the s-TRNA is followed directly
by the I-rfRNA (on the majority strand) without tRNA-Val
in between [12]. Many arthropods also share the same
absence of tRNA-Val but on the minority strand: certain
Ricinuleida [43], Myriapoda [44], Crustacea: Malacostraca
(with a non-coding region between the genes) [45], Ostra-
coda [46]; Insecta: Diptera [GenBank: NC 006378],
Hemiptera [47], Phthiraptera [48]. Above we indicated
that tentative tRNA-Val of Dermauw et al. [12] was prob-
ably inferred incorrectly and should be tRNA-Tyr.
Although loss of tRNA-Val is not completely impossible,
comparative analysis including three other astigmatid
species (Sancassania sp., Sturnophagoides bakeri, Gym-
noglyphus longior, G. osu) suggests that the region between
s-TRNA and I-rRNA is conserved, and D-loop tRNA-Val can
be inferred from it. The main difficulty with this tRNA
concerns the extremely short (2 bp) T-stem and acceptor
stem with only four paired bases (Fig. 2). No tRNA search
program could confirm this structure, although they
found similar structures (Additional file 5, 48-53). The
corresponding sequence entered to mfold consistently
renders a 6-bp "anticodon" stem and a 5-bp "acceptor"
stem separated by a variable loop (Additional file 6, 15).
However, mismatches in the acceptor stem can be edited
after transcription [7,20,21,33-35], and the same short (2-
4 bp) T-stem is known for trombidiform mites D-armless
tRNAs [10]. The anticodon stem of this putative tRNA
returns significant alignments with that of tRNA-Val of the
crustacean Argulus americanus [GenBank: AY456187] and
Artemia franciscana [GenBank: NC_001620.1], but hits on
the start of I-T/RNA and tRNA-Tyr were also present.

To address the question if our putative tRNA can be part
of I-TRNA, a comparative set of 12 taxa was assembled and
aligned using the reference structures of Drosophila mela-
nogaster and Caenorhabditis elegans [49]. These taxa
included: Limulus polyphemus, Ixodes hexagonus, Habronat-
tus oregonensis, Steganacarus magnus, 3 species of Leptotrom-
bidium, 2 species of Dermatophagoides, Gymnoglyphus
longior, Sturnophagoides bakeri, and Sancassania sp. Unfor-
tunately, because the 5' part of chelicerate I-rfRNA (e. g.,
downstream of the conserved helix H563) is extremely
variable in size among chelicerates, these data did not pro-
vide a definite answer regarding the relationships between
I-TRNA and the putative tRNA-Val in Astigmata: (i) in the
closest known outgroup (Steganacarus), the beginning of
I-TRNA (as originally inferred) also has a distinct tRNA-
like structure (tRNA-Lys) and this structure may represent
an actual tRNA missed by the authors; (ii) in the second
closest outgroup, Leptotrombidium, I-rRNA is 28 nt shorter
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than that of Astigmata (without the tRNA-Val like struc-
ture), which suggests that the putative tRNA-Val-like struc-
ture may exist as a tRNA and is not part of [-rRNA; (iii) I-
TRNA of Habronattus is compatible to that of Astigmata
(no putative tRNA-Val), indicating that astigmatid tRNA-
Val may not be part of I-TRNA; (iv) I-TRNAs of Limulus and
Ixodes are about 57 nt longer than the astigmatid [-rRNA
(without the tRNA-Val-like structure) suggesting that this
structure may be part of I-rTRNA. In addition, EST data for
Dermatophagoides from GenBank provide some evidence
that tRNA-Val is not part I-rRNA: (i) 4 out of 21 ESTs cover
the start of I-rRNA and none of them covers the presumed
tRNA-Val region; (ii) one of these ESTs, covering most of
the D. farinae I-TRNA, starts 3 nt downstream after the pre-
dicted end of the putative tRNA-Val. However, oftentimes
ESTs do not cover starts of genes, so this evidence is very
weak.

Because of the above preliminary arguments, we adopt the
hypothesis that the conserved sequence at the beginning
of astigmatid I-TRNA represents tRNA-Val, therefore the
beginning of I-rfRNA is truncated as described for Habron-
attus [22] and as evidenced from comparison with Lep-
totrombidium. This hypothesis is also supported by the
seemingly homologous region downstream of [-rRNA
helix H563, which usually has a 4-nt hairpin loop and the
C- and G-rich 5' and 3' parts of the stem, respectively. In
Limulus and Ixodes, this region corresponds to helix H461.
If correct, 34 (out of 41) nucleotides between helices
H533 and H461, as compared to Limulus, are missing in
sarcoptiform mites and 24 such nucleotides are missing
from the same region in Habronattus.

tRNA-Trp

Both programs confirmed this tRNA, and its structure was
identical. Some other tRNAs were inferred as well but
none of them (except for tRNA-Phe) is shared between the
two species. tRNA-Phe was identified between the end of
I-TRNA and the start of tRNA-Trp, with a low cut-off value
in D. pteronyssinus by ARWEN and in D. farinae by tRNAs-
can-SE with a low score (Additional file 5, 55-56). Because
in both cases this putative structure was substantially
worse than tRNA-Trp, we consider it as accidental. For D.
pteronyssinus only, BLAST search returned numerous sig-
nificant alignments with the anticodon stem of tRNA-
Ser2(UCN) (which is complement of tRNA-Trp) with var-
ious arthropods (see above for BLAST searches of putative
tRNA-Ser2, which was found similar to tRNA-Trp). Other
evidence suggesting possible tRNA-Ser2 in this region is
that this tRNA-Ser2 follows ND1 in the ancestral chelicer-
ate genome, and the same pattern may be present here.
However, inferring this tRNA as tRNA-Ser2 is not sup-
ported by the substitution pattern in D. farinae, where a
mutation at the 4th position of the 3' part of the antico-
don stem would be non-compensatory (Fig. 2), and, most
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importantly, the D-arm and the two adjacent 5' nucle-
otides of our structures retain the ancestral tRNA-Trp pat-
tern (Fig. 2), which is also present in several trombidiform
mites [10]. Furthermore, numerous EST data for both spe-
cies [GenBank: CB284339DF1078, EX163125LY YIT
DP1190] indicate the 5' end of this structure exactly as
predicted by us for tRNA-Trp. BLAST search of the D. fari-
nae anticodon arm sequence also confirms our inference
(Additional file 5, 56).

It is interesting that inverted tRNA-Ser2 (D-loop) was
found at the end of the large subunit ribosomal RNA in
Steganacarus magnus [11], and its anticodon arm, acceptor
stem, and putative D-arm have remarkable similarities
with those of the complement of the putative tRNA-Trp of
Dermatophagoides (Fig. 2). Most importantly, the evolu-
tionarily conserved pattern described above is clearly rec-
ognizable (Additional file 6, 16, underlined), despite the
putative D-arm (2 bp) having experienced severe reduc-
tion. ARWEN also suggested tRNA-Ser2 here (Additional
file 5, 57), but it was less stable (MFE = -5.57 vs -8.45 for
tRNA-Tyr), and the above similarities were no longer
present. Based on these observations we believe that this
is tRNA-Trp, not -Ser2 as it was suggested originally for
Steganacarus magnus [11].

Stem-loop Trp-ND| structure/"tRNA-Tyr"

A highly unstable and divergent tRNA-Tyr was inferred for
D. pteronyssinus [12]. In this structure, the anticodon stem
has 2 mismatches, and the T-arm is only a 2-bp stem. The
anticodon sequence, when aligned with D. farinae, sug-
gests that the anticodon sequence in D. farinae is GUC,
which corresponds to tRNA-Asp. In addition, the 3' part of
the anticodon stem in D. farinae is further destabilized by
two mismatches. Neither of the two tRNA-searching pro-
grams could confirm the structure of Dermauw et al. [12],
however, tRNA-Ser1(AGN) was inferred by ARWEN for
both species, but with a very low score (cut-off 70%) and
a positive MFE (Additional file 5, 58-61). Furthermore, D.
pteronyssinus EST data [GenBank: EX163586LY YIT
DP1702] do not support the original tRNA structure
because the polyadenylation site of the gene ND1 is situ-
ated inside the 3' part of the acceptor stem. BLAST search
returned no significant alignment for this region, except
for D. farinae, which returned hits of non-anticodon stems
of tRNA-Arg (Additional file 5, 60). We refrain from infer-
ence of any tRNA, but a conserved stem-loop structure
does exist here (Additional file 6, 17), indicating a possi-
ble biological function. Because this region is situated
between two gene clusters transcribed on different
strands: COX1-I-TRNA and NDG6-ND1, this function is
probably related to processing of the mRNA. See above for
possible tRNA-Tyr inferred as tRNA-Val by Dermauw et al.
[12].
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tRNA-Thr

Dermatophagoides retains the presumed ancestral chelicer-
ate gene order "Phe-ND5-His-ND4-ND4L-Thr" in
inverted form, and TV-loop tRNA-Thr was inferred in the
corresponding sequence with a relatively high confidence
(Additional file 5, 62-63). ARWEN suggested that this can
be a cloverleaf tRNA-Cys in D. farinae (anticodon of this
tRNA is complement of that of tRNA-Thr) (Additional file
5, 64), but this structure can be rejected because cloverleaf
shaped tRNA-Cys is not typical of acariform mites in gen-
eral and because the putative acceptor stem will be highly
unstable if applied to D. pteronyssinus. If the sequence cor-
responding to the D. pteronyssinus tRNA-Thr is entered
into ARWEN, nearly the same TV-loop tRNA is recovered
(Fig. 2). The only difference between the two species is the
D-stem, which has 4 and 3-bp in D. pteronyssinus and D.
farinae, respectively. The D-stem does have the conserved
pattern, GTT (5') and AA(3'), shared with trombidiform
mites [10]. BLAST search returns many significant align-
ments of this tRNA with that of other arthropods, includ-
ing mites (Additional file 5, 62-65). It is interesting that in
Steganacarus magnus tRNA-Thr (cloverleaf or TV-loop) can
also be inferred between ND4L-ND6 (ARWEN only)
(Additional file 5, 66-67; Additional file 6, 19-20), and its
putative anticodon stem has a significant similarity with
that of tRNA-Thr of other arthropods (Additional file 5,
66-67) including, most importantly, acariform mites, Der-
matophagoides (Additional file 8) and Walchia hayashii
(NC_010595). This tRNA-Thr is situated between a non-
coding region and ND4L in the acariform taxa, indicating
that the region between ND4L and ND6 may be conserved
at least in acariform mites; however, we refrain from giv-
ing a final structure of tRNA-Thr in S. magnus because of
the following: (i) both cloverleaf and TV-loop (Additional
file 6, 19-20) are thermodynamically unstable (MFE are
5.25 and 4.08, respectively), (ii) a stable stem-loop region
can be inferred here (Additional file 6, 18). A highly
unstable (MFE = 12.18) tRNA-Pro was proposed here fol-
lowing tRNAscan-SE [11]; it has 3 mismatches in the
acceptor stem, 2 mismatches in the anticodon stem,
which does not have any similarities with any known
arthropod tRNA-Thr (Additional file 5, 66). We believe
that the inference of tRNA-Pro in Steganacarus magnus rep-
resents a random structure rather than a tRNA.

tRNA-His

This tRNA is also part of the presumed ancestral chelicer-
ate gene order (see above for tRNA-Thr), and it can be
inferred, with relatively high confidence, between the
genes ND5 and ND4. Both programs give nearly the same
structure consistent with that suggested for D. pteronyssi-
nus [12]. ARWEN reconstruction gives a structure with an
8-bp acceptor stem, while for D. pteronyssinus the canoni-
cal 7-bp acceptor stem was inferred. tRNAscan-SE infers a

Page 11 of 19

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CB284339
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DF1078
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EX163125
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=LY YIT DP1190
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=LY YIT DP1190
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EX163586
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=LY YIT DP1702
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=LY YIT DP1702

BMC Genomics 2009, 10:598

7-bp acceptor stem for both species. For D. farinae, we give
the structure with a 7-bp acceptor stem (Fig. 2), which is
consistent with ESTs data (5 sequences) unanimously sug-
gesting a polyadenylation site immediately downstream
of the 5' end of this structure. BLAST search returned
numerous alignments with the anticodon stem of tRNA-
His of insects, crustaceans, and arachnids (Additional file
5, 68-70), further confirming our inference.

tRNA-Phe

This tRNA is also part of the presumed ancestral chelicer-
ate gene order (see above for tRNA-Thr). This tRNA is unu-
sual in Dermatophagoides in having a 6-bp anticodon stem
(as opposed to 5-bp anticodon stem of the canonical
tRNA) (ARWEN). A tRNAscan-SE reconstruction infers the
anticodon stem starting at the same position but forces it
to be 5-bp long, thus creating a non-canonical 9-nt anti-
codon loop (as opposed to 7 nt). At this point it is impos-
sible to choose between the two possibilities (non-
canonical stem or loop), Fig. 2 shows tRNA-Phe with 15t5'
nt of the non-canonical unpaired, making this stem
canonical but suggesting 2 nt between the D- and antico-
don arms (this may rarely occur elsewhere, for example in
Walchia [10]). We compared this reconstruction with ter-
tiary interactions proposed for tRNA-Phe of the nematode
Ascaris suum [3]. The following base pairs were found: Us-
A4, m1A%-A23 (D. pteronyssinus only; m!A%-G23 in D. fari-
nae), G10-Gl2 become G10-AL2 (both species), A22-Al3
become A22-GL3 (both species), U5-Al4 become A15-Ul4in
D. farinae and U!>-GL¢in D. pteronyssinus (or, alternatively,
this base pair does not exist), and A26-GLl1 become A26-AL!
in D. farinae and G26-Al1 in D. pteronyssinus. Interestingly,
the D-arm of this tRNA retain the pattern GCIT (5') and
AAGT (3') that seems to be conserved in trombidiform
mites [10]. BLAST search retrieves significant alignments
for the anticodon sequence with that of tRNA-Phe of che-
licerates and sea spiders (Additional file 5, 71-73); some-
times searches also returned non-anticodon sequences of
tRNA-Trp.

tRNA-SerI (AGN)

For both species, ARWEN inferred this tRNA as a D-loop
(without a D-arm but with a T-arm) (Additional file 5, 78-
80), which is the ground plan for metazoans [50,51]. For
D. pteronyssinus, this tRNA was previously inferred with a
6-bp acceptor stem, 3-bp D-arm separated by an A, and
lacking the variable loop [12]. ARWEN suggests a slightly
different structure with 7-bp acceptor stem, a 3-bp D-arm
(different from that of Dermauw et al. [12]) not separated
from the acceptor stem (as in the canonical tRNA), and a
4-nt variable loop (Additional file 6, 21). This structure
corresponds to that proposed for nematodes
[6,38,39,52,53] and is adopted here. Unfortunately
ARWEN could not recover the same structure for D. fari-
nae, but instead it gave a 5-bp T-stem. We constrained this
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structure to that of D. pteronyssinus (Fig. 2). Significant
positive alignment with the anticodon stem of tRNA-Ser1
was found for Armillifer armillatus (Pentastomida) [Gen-
Bank: NC_005934] only. It was identified as tRNA-Ser2
(anticodon complement of tRNA-Serl) when aligned
against the copepod Paracyclopina nana [GenBank:
NC_012455]. In D. farinae, tRNA-Ser2 (TCN) was also
inferred by tRNAscan-SE (TV-loop) and ARWEN (clover-
leaf). Based on comparison with D. pteronyssinus and high
MFEs (positive for the TV-loop and -1.65 for the clover-
leaf), these reconstructions seem unlikely. MFEs for tRNA-
Ser1 are -3.84 (D. pteronyssinus) and -6.93 (D. farinae).

tRNA-GIn

Our reconstructions confirm this tRNA (Additional file 5,
81-83). The only difference was the ARWEN reconstruc-
tion of D. farinae, which has a 7-bp acceptor stem (as in
the typical tRNA) and no overlaps (Fig. 2), while in D.
pteronyssinus it has a 6-bp acceptor stem and 5' and 3' ends
overlapping with tRNA-Ile and tRNA-Ser1, respectively by
1 nt. The D-arm has an evolutionarily conserved pattern,
T.T (5') and A. (3'), as compared to trombidiform mites
[10]. BLAST returned one positive alignment with the
anticodon arm of the D. pteronyssinus sequence (which is
2-nt different from D. farinae). Other hits returned non-
anticodon-arm fragments of tRNA-Trp or -His.

tRNA-lle

Dermauw et al. [12] inferred the tRNA-Ile and this was
only confirmed by tRNAscan-SE for D. farinae. ARWEN
suggests tRNA-Asp (D-loop) (which is complement to
tRNA-Ile) in this position. Because the sequence of the
putative anticodon arm returned multiple significant
alignments with that of the tRNA-Ile of other arthropods
(Additional file 5, 84-88), we performed ARWEN searches
restricted to the opposite strand only. Results of the mini-
mum free energy analyses unambiguously favor tRNA-Ile
(MFEs range from -7.27 to -4.15) over tRNA-Asp (positive
MFEs) (Additional file 5, cf. 86, 88 vs. 84-85, 87). A simi-
lar TV-loop structure was recovered for D. pteronyssinus,
while for D. farinae the program suggested cloverleaf
tRNA-Ile with a 2-bp T-stem. Since we expect tRNA-Ile to
be a TV-loop, we constrained the D. farinae sequence to
the tRNA-Ile of D. pteronyssinus (Fig. 2). It is very difficult
to determine why both programs could not unambigu-
ously infer this tRNA-Ile. In trombidiform mites, this
tRNA was inferred as a D-loop [10].

tRNA-Glu

We have additional sequence data for Sturnophagoides bak-
eri. In all three pyroglyphid species this tRNA was inferred
as TV-loop tRNA-Glu, with a 5-bp anticodon stem, 4-bp
D-stem and 6-7 bp acceptor stem (except for a 8-bp accep-
tor stem inferred with a mismatch for D. pteronyssinus by
ARWEN) (Additional file 5, 89-92). The only difference
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from the previous reconstruction [12] is that the acceptor
and D- stems (4, not 3 bp) were separated not by one (A)
but 2 nucleotides (TA in all species), which is consistent
with the canonical tRNA model. tRNAscan-SE suggests a
7-bp acceptor stem regardless of the mismatch at the
beginning of the stem, while ARWEN predicts it as having
6 bp for most species (thus avoiding the mismatch). EST
data strongly suggest that the acceptor step in fact has 7 bp
[GenBank: EX162584MW DP0586, EX162102MW
DP0015], thus indicating that the mismatch either is tol-
erated, or most probably, edited in the messenger RNA.
Fig. 2 shows this reconstruction for D. farinae with a 7-nt
acceptor stem. The acceptor stem has a number of com-
pensatory mutations occurring at every position except for
the 3rd position (Fig. 2) (or they can be explained by the
5' acceptor stem shift at the n+1 position with the con-
comitant shift of its 3' part to the n-1 position in D. ptero-
nyssinus).  Dermatophagoides shares the following
conserved pattern with trombidiform mites [10]: CTT (5'),
AAG (3') (acceptor stem); GT (5'), AAA, A. (3') (D-arm).
GenBank data confirm this tRNA, and significant hits
were especially numerous for the D. farinae anticodon
arm sequence. However, the anticodon arm sequence of
S. bakeri was aligned either with that of tRNA-Glu or
tRNA-Phe(TTC)) (complement to tRNA-Glu(GAA))
(Additional file 5, 92).

tRNA-Leu | (CUN)

We confirm this tRNA, except for the length of the D-arm
that was inferred as having 3 bp [12]. In many of our anal-
yses, all programs recovered essentially the same structure
(4-bp D-arm and 7-bp acceptor stem as in the canonical
tRNA); however, the following differences were found: D-
arm has 3-bp (D. pteronyssinus, tRNAscan-SE only) and 8-
bp acceptor stem (D. pteronyssinus, ARWEN). Here we give
a structure with a 4-bp D-arm as suggested by the majority
of analyses and a putative compensatory mutation (Fig. 2)
for D. farinae. BLAST search also confirmed this tRNA
(Additional file 5, 93-95). In contrast to the TV-loop
tRNA-Leul of Dermatophagoides, this structure was
inferred as either cloverleaf or D-loop tRNA in trombidi-
form mites [10].

tRNA-Ala (non-canonical)

It was predicted as cloverleaf Cys [12], however none of
the programs could confirm this or even converge on a
single tRNA shared by both species (Additional file 5, 96-
98). The original cloverleaf structure [12] disagrees in
many respects with the canonical tRNA: the terminal base
pair of the anticodon stem is unstable, the D-arm is sepa-
rated by 2 nucleotides from the anticodon stem, and the
acceptor and T stems have a mismatch. Unfortunately, in
D. farinae, there is a large 14-nt deletion at the 3' part of
the putative acceptor stem of D. pteronyssinus [12], thus
the existence of this stem is highly unlikely. If flanking
regions of the putative tRNA-Cys [12] are considered, the
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situation does not become clearer (Additional file 5, 97-
98).

Unlike the above predictions, thermodynamic models of
this region are very similar across the two species: a large
hairpin structure with two stems separated by a connect-
ing loop. One larger stem is 9-bp long has a single mis-
match in the middle and another stem directly
corresponds to the anticodon helix of tRNA-Ala (except
for the stem being 6 bp long) (Fig. 2). The sequences of
both stem regions are identical in both species, except for
a single base pair in the 9-bp stem where compensatory
mutations occur. If the search is restricted to this stable
region then tRNA-Ala is consistently recovered in both
species (inferring tRNA-Cys will create a mismatch at the
last base pair of the anticodon stem) (Additional file 5,
99-100). Unfortunately, there is disagreement between
these structures: in D. farinae, the acceptor and T-arms are
situated at the n-1 positions, as compared to D. pteronyssi-
nus (Fig. 2). All of these structures have positive MFEs,
indicating that they may be unstable. Another structure,
representing the full consensus between the two (with no
mismatches) is possible, but it will have only a 7-8 bp
acceptor stem, very short 6 nt T-arm (2 bp stem, 2 bp hair-
pin loop) and a 1-nt variable loop (Fig. 2), which is
extremely unusual (only tRNA-GIn of Walchia hayashii
presumably has a 7-nt T-arm and tRNA-Leu1 of Unionicola
foili has 1 nt variable loop [10]). At this point it is impos-
sible to infer confidently a canonical tRNA for both spe-
cies in this region. We speculatively select the D-loop
tRNA-Ala of D. pteronyssinus (Fig. 2) as the preferred struc-
ture, mostly based on its similarity with tRNA-Ala of trom-
bidiform mites [10] and the fact that tRNA-Cys was
inferred in another region with some confidence (see
above).

BLAST search of the putative "anticodon arm" returned
one significant alignment with a region located between
the genes ND3 and ND5 and designated as "Non-trans-
lated intergenic spacer" of Steganacarus magnus. A clover-
leaf tRNA-Ala could be inferred from it, with the
anticodon stem, D-stem, and acceptor stems having 1, 1,
and 2 mismatches, respectively. We refrain to infer this
tRNA in Steganacarus.

tRNA-Leu2(UUR)

We confirm this tRNA. Both tRNAscan-SE and AREWN
inferred this structure as tRNA-Leu2 with high confidence.
In one case, however, ARWEN suggested an 8-bp acceptor
stem for D. pteronyssinus. It is also interesting that while D.
farinae has the 7 canonical nucleotides in the anticodon
loop (Fig. 2), D. pteronyssinus has 8 nt in this region.
BLAST returned positive significant alignments with
tRNA-Leu? of various arthropods (Additional file 5, 101-
103), but all of them have a 7-bp anticodon loop. Simi-
larly to tRNA-Leul (see above), this tRNA-Leu2 in trom-
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bidiform mites has a typical cloverleaf structure [10], not
a TV-loop as in Dermatophagoides.

Polyadenylation sites mark 5' ends of tRNAEs, discriminator
nucleotides are not encoded

Three EST contigs, COX3-tRNA-Lys, ND1-NDG6, and, on
the opposite strand, ND2-Leul, indicate the presence of
polycistronic RNA units in Dermatophagoides. Although
our data are incomplete, the distribution pattern of these
RNA units suggests that transcription initiates at or close
to the non-coding regulatory region of mtDNA. Process-
ing of the majority of polycistronic units is believed to be
nucleated by folding of the mt-tRNA structures [27], pre-
senting a substrate for ribonuclease P, precursor tRNA 3'-
endonuclease, and ATP(CTP)-tRNA-specific nucleotidyl-
transferase [54,55]. Different mitochondrial tRNA precur-
sors are cleaved precisely at the tRNA 5' and 3' ends
[54,56]. The implication of tRNA precursors in the
processing of mRNA was first proposed for Homo sapiens
[27] and then found in diverse organisms [31,57,58]. This
may be a general mechanism of mRNA processing [59],
although other mechanisms may exist [60], especially
when all or most tRNA genes are absent from mitochon-
drial genomes [61,62].

The implication of the tRNA punctuation model of RNA
processing is that the 5' end of a tRNA gene can be identi-
fied by a polyadenylated site in the mRNA. We found a
pattern consistent with this model in Dermatophagoides
farinae and D. pteronyssinus. Although available EST data
are far from complete for either species, we were able to
confirm the 5' ends of seven tRNAs using analyses of poly-
adenylated sites (-Asp, -Gly, -Asn, -Trp, -His, -Phe, and -
Glu) (Fig. 2). In contradiction with this model of RNA
processing [27], the discriminator nucleotide of 6 tRNAs
(-Asp, -Gly, -His, -Glu, -Thr, -Leu2(UUR)) was found to
overlap with the first position of a downstream gene (Fig.
2). Thus, our data indicate that (i) all tRNAs flanked by
protein coding genes at both ends (-Asp, -Gly, -His, -Glu)
follow the idea that precursor tRNAs are cleaved at exactly
5' end, and (ii) the putative 3' discriminator nucleotide
overlaps with the first position of a translation initiation
codon in these tRNAs (and also -Thr, Leu2). tRNA-Asn, -
Trp, -Phe also follow pattern (i), but their 3' ends are
flanked by non-protein coding regions: I-rRNA, untrans-
lated region, and the D-loop, respectively; and another
tRNA (-Ile) is expected to follow the same rule because its
5' end immediately follows the predicted 3' end of ND2.
However, tRNA-Leul(CUN), with its 5' end flanked by
another tRNA, does not obey pattern (ii), and the pre-
sumed start codon of CytB is situated at the n+2 position
from its 3' end.

Overlaps of the discriminator nucleotide with protein-
encoding DNA as observed in Dermatophagoides are
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known [63-65], but they are not as widespread. Such over-
laps with downstream tRNA genes are much more fre-
quent. For example, they were recorded in annelids [66],
crustaceans [67,68], insects [63], mammals [69], and
birds [70]. In vertebrates it was demonstrated that this
nucleotide is not encoded but added posttranscriptionally
by polyadenylation [70,71], and we expect the same in
Dermatophagoides.

Posttranscriptional tRNA editing

In the previous section we suggested that the tRNA dis-
criminator nucleotide at the 3' end is not encoded but
added postranscriptionally at least in tRNA-Asp, -Gly, -
Lys, -Thr, -His, -Glu, and Leu2(UUR). This was based on
the fact that the predicted discriminator nucleotide was
overlapping with the adjacent downstream gene. Other
tRNAs may also be edited to add the discriminator nucle-
otide, but this needs to be shown experimentally.

With the exception of the suspected posttranscriptional
addition of the discriminator nucleotide, there is an indi-
cation for posttranscriptional editing of the acceptor stem,
as found in diverse organisms, including arthropods
[7,20,21,33-35]. For example, mismatches at the begin-
ning of the acceptor stem occur in 2 tRNAs (-Arg, -Val), at
the end in 6 tRNAs (-Asp, -Cys, -Asn, -Phe, -Ser1(AGN), -
Glu), and in the middle in 1 tRNA (-Ala) (Fig. 2).

U:U mismatches were also detected at the end of the
acceptor stems in tRNA-Asn and -Glu. It is unknown if
they are edited or tolerated.

Conclusions

Mitochondrial tRNAs of Dermatophagoides are minimal,
atypical tRNAs lacking either the T- or D-arm and thus
deviate from the typical cloverleaf tRNA. The size of D.
farinae tRNAs is 49-62, 54.4 + 2.86 (range, mean + SD) nt
is significantly smaller than in Caenorhabditis elegans (53-
63, 56.3 + 2.30 nt) (p = 0.019) or Ascaris suum (51-62,
57.0 + 2.67 nt) (p = 0.003), model minimal tRNA organ-
isms. The shortest tRNA-Arg (49 nt) of D. farinae is similar
to the shortest known tRNAs ranging from 45 to 49 nt
[9,10]. In these extremely small D-armless tRNAs, T-stems
are reduced to 2-3 bp and are thermodynamically unsta-
ble. Thus, this level of simplicity approaches that of the
original adaptor RNA envisioned by Francis Crick [72],
raising the question if a tRNA lacking both D- and T-arm
may exist. Certainly experimental data are needed to fur-
ther investigate this interesting issue.

Inference of minimal tRNAs is difficult because tRNA
search programs do not incorporate models of extremely
short tRNAs of acariform mites, and the acceptor stem
may have mismatches, which are later edited postran-
scriptionally. Based on various lines of evidence, includ-
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ing polyadenylation and BLAST searches restricted to
anticodon arms, we amend the identity of four tRNAs in
Dermatophagoides (tRNA-Cys, -Tyr, -Val, -Ala) and propose
a different secondary structure for another six (tRNA-Arg,
-Ser2, -Lys, -Ser1, -Glu, -Leul) (Table 1, column "Prev").
Most notably, two previously inferred cloverleaf structures
and another extremely short and unstable structure were
not supported by our data. Thus, widespread occurrence
of the remarkably short, non-cloverleaf tRNAs are charac-
teristic of all acariform mites known to date.

Furthermore, we found evidence that in Dermatophagoides,
tRNAs may serve as processing signals for polycistronic mt
RNA transcripts, the tRNA discriminator nucleotide is not
encoded and added postranscriptionally, and that mis-
matches in the acceptor stem are probably indicative of
their posttranscriptional editing.

Methods

Mite strain and DNA extraction

Mites were obtained from a laboratory culture maintained
at the University of Michigan, Museum of Zoology
(BMOC 05-0812-001) started from specimens collected
in a skeleton-cleaning culture of Dermestes maculatus
(Coleoptera: Dermestidae) in Ann Arbor, MI in 2005.
Genomic DNA was isolated from a single individual in 5
replicates using the QIAamp® DNA Micro (Qiagen), with
the manufacturer's protocol for tissues modified as fol-
lows: a) the mite was crushed or pierced with a sterile pin
in a drop of buffer ATL before transferring to 180 pL of
buffer ATL (step 1 in the manufacturer's protocol); b) Pro-
teinase K was added but not mixed (step 3); ) the incuba-
tion time (proteinase K lysis) was extended to 24 hr (step
4); d) no carrier RNA was added (step 5); e) DNA bound
to the silica-gel membrane was eluted in 30 pL of buffer
AE. Slide-mounted mites were identified using morphol-
ogy [73], and the identification was confirmed by Gen-
Bank EST sequences for multiple mitochondrial genes.

Amplification and sequencing

A series of nested PCRs using general mite or acariform
mite-specific degenerate oligonucleotide primers (Addi-
tional file PCR Primers) was performed to amplify and
sequence 4 gene fragments (COX1-COX2, s-rRNA-I-TRNA,
ND4-ND5, CytB). The sequences obtained were used to
design 8 species-specific oligonucleotide primers (forward
and reverse for each gene fragment) for a long PCR (Addi-
tional file 9). A total of 28 long PCRs using all possible
combinations of specific primers were run using High
Fidelity Platinum® Taq. This resulted in four positive
amplicons spanning almost the entire mitochondrial
genome, except for ND2 and the D-loop (control region).
These amplicons were sequenced via primer walking. We
performed several hundred reactions with additional
primers targeting the missing region, but all of them were
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unsuccessful. Sequence data from the recently published
mitochondrial genome of Dermatophagoides pteronyssinus
[12] and the use of Expand Long Range polymerase from
Roche [12] helped us to amplify the missing region. The
D-loop of D. farinae contained two long AT repeats (one
in D. pteronyssinus), effectively inhibiting all our previous
long PCRs. Because this region had a variable length and
could not be sequenced directly, a 0.95 kb PCR amplicon
was cloned (TOPO® TA Cloning® Kit), and six clones,
selected to include all the observed extremities in size,
were sequenced [GenBank: GQ465337-GQ465342].
Sequence of the whole mitochondrial genome of D. fari-
nae was annotated to reflect proposed changes in gene
regions and include EST data [GenBank: GQ465336].
Primers were designed in Primer3 [74].

The 20-pL PCR mix contained 2.0 pL 10 x PCR bulffer, 1.4
pL of 50 mM MgSO,, 1.4 pL of ANTPs (10 mM each), 0.8
pL each of 10 uM primer, 0.08-0.12 pL of polymerase, and
typically 0.3 pL of DNA template (not quantified). For
regular PCRs, Platinum® Taq was used, whereas for long
PCRs a mix of this and High Fidelity Platinum®Taq at the
proportion of 1:1.8 was used. For the Expand Long Range
and Expand Long Template polymerases, the manufac-
turer's protocol was followed, with the addition of DMSO
(final concentration 3 mM). Long PCR cycling conditions
were as follows: 94°C for 1:50 min; 94°C for 0:30; 50°C
for 0:35, 10 cycles at 58-68°C for 2:00-12:00 (depending
on experiment); 25 cycles with the extension time
increased by 2-5 s/cycle, other parameters are the same;
58-68°C for 7:00-12:00. Regular PCRs were run with the
extension temperature of 72 °C, usually without the exten-
sion time increment. All reagents, unless otherwise speci-
fied, were from Invitrogen Corporation (USA). PCR
products were visualized on 1.5% agarose gels, purified
using QIAquick Gel Extraction Kit (Qiagen), and
sequenced in both directions by the University of Michi-
gan DNA Sequencing Core on an Applied Biosystems
3730 DNA Analyzer. Sequences were assembled in
Sequencher 4.9 (Gene Codes Corporation, Ann Arbor,
Michigan).

Detection of tRNAs

The web version of the program tRNAscan-SE [18] and a
standalone version of the program ARWEN [19] were
used to detect tRNAs and infer their secondary structure.
For tRNAscan-SE, the following parameters were changed:
organism = "Nematode Mito", origin = yes, ace = yes; fops
= yes, breakdown = yes, gcode ="Invertebrate Mito",
covescore = 0.1, euparams = relaxed. These setting were
saved in a custom web form to unsure uniform searches
http://insects.ummz.lsa.umich.edu/ACARI/tools/tRNAs
can-SE/. ARWEN was run with the following parameters: -
1 -seq -gcinvert -br and variable threshold parameter -ps
(70, 80, 90, 95, and 100). To choose between alternative
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structures from tRNAscan-SE and ARWEN, minimum free
energy (MFE) was calculated for these structures (con-
strained analysis), as well as for the primary sequence
(unconstrained analysis) in mfold [75]. Secondary struc-
ture information was converted to the mfold and XRNA
format and then submitted to mfold using a custom java-
script function embedded in the webpage http://

insects.ummz.lsa.umich.edu/ACARI/tools/
ARWEN_to_mfold.

Because Dermatophagoides has atypical tRNAs lacking
either the D- or T-arms, BLAST similarity search of the
whole tRNA sequence was usually not informative. There-
fore, we restricted our searches only to the anticodon arm,
which is a less variable sequence as compared to the
canonical tRNA. Additional filters were enabled to restrict
searches to non-coding regions of arthropod mitochon-
drial genomes  http://insects.ummz.lsa.umich.edu
ACARI/tools/BLAST custom.htm. Available GenBank EST
sequence data were used to confirm the 5' end of several
tRNA [27].

We obtained sequences of tRNA-Val (located between I-
and s-TRNA) for an additional 4 species (Gymnoglyphus

longior [GenBank: GQ465344], G. osu [GenBank:
GQ465345], Sturnophagoides bakeri [GenBank:

GQ465343], Sancassania sp. | GenBank: GQ465346]), and
for tRNA-Glu for one species (Sturnophagoides bakeri | Gen-
Bank: GQ465347]). Alignment of tRNAs is available in
Additional file 10. tRNAs were visualized in the program
XRNA.
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Additional file 1

Nucleotide composition and GC and AT skews of protein-coding genes
on the majority strand of Dermatophagoides farinae. Analysis of
nucleotide composition and GC and AT skews for 13 protein-coding genes.
For each gene, values are given for all sites and for 4-fold degenerate sites
only. Four scatterplots summarize the data.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-598-S1.XLS]

Additional file 2

Codon usage and relative synonymous codon usage (RSCU) values for
mitochondrial proteins of Dermatophagoides farinae. Values of
codon usage (per thousand) and relative synonymous codon usage are
recorded for each position and strand (with a statistical test for significant
strand bias). Data are represented in tables and histograms on multiple
worksheets.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-598-S2.XLS]

Additional file 3

Nucleotide composition, strand bias and annotation of protein coding
genes and the control region (D-loop) in the mitochondrial genomes
of Dermatophagoides spp. Describes nucleotide composition and
strand bias in D. farinae. Also includes a comparative analysis of Der-
matophagoides farinae and D. pteronyssinus mitochondrial genes
(except for tRNAs) with particular emphasis on features which were pre-
viously inferred incorrectly.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-598-53.DOC]

Additional file 4

Secondary structures forming between genes ND6 and ND1 in Der-
matophagoides spp. Stem loop structures present between NDG and
ND1 genes in Dermatophagoides farinae and D. pteronyssinus.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-598-S4.PDF]

Additional file 5

Transfer RNAs in Dermatophagoides spp. and some other acariform
taxa. Analyses of transfer RNAs of D. farinae and D. pteronyssinus and
some other related taxa using tRNAscan-SE and ARWEN. For each puta-
tive tRNA found, BLAST similarity search is performed (anticodon arm
only) and minimum free energy values (mfold) are recorded.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-598-85.XLS]
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Additional file 6

Transfer RNAs and minimum free energy structures in Dermatopha-
goides spp. and Steganacarus magnus. Transfer RNAs of D. farinae
(DF), D. pteronyssinus (DP), and S. magnus (SM) found by tRNAs-
can-SE and ARWEN and alternative free energy structures inferred by
mfold. Putative compensatory mutations are indicated by an asterisk.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-598-S6.PDF]

Additional file 7

Alignment of tRNA-Cys of D. farinae and five other acariform mites.
Secondary structure information is indicated by square brackets. Con-
served sequence motif is indicated by asterisks. tRNA-Ala of Leptotrom-
bidium pallidum, which is very similar but clearly distinct from tRNA-
Cys, is also given for comparison. Best viewed in MacClade or Mesquite
http://mesquiteproject.org/.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-598-S7.NEX]

Additional file 8

Alignment of the region between genes ND6 and ND4L for Dermat-
ophagoides spp. and Steganacarus magnus. Secondary structure
information of tRNA-Thr is indicated by parenthesis, anticodons are
color-coded (blue Dermatophagoides spp.; red S. magnus). The align-
ment suggests that the original tRNA-Pro of S. magnus was probably
inferred incorrectly.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-598-S8.DOC]

Additional file 9

General oligonucleotide primers used to amplify four gene fragments
of Dermatophagoides farinae mitochondrial genome. Primer
sequences are written from the 5' end.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-598-S9.DOC]

Additional file 10

Annotated alignment of D. farinae mitochondrial genome. Annotated
alignment of D. farinae mitochondrial genome with other taxa, including
secondary structure annotations for s-tRNA, 1-tRNA, and tRNAs, and
polyadenylation sites mapping. Best viewed in MacClade or Mesquite
http://mesquiteproject.org/.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-598-S10.NEX]
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