BIVIC Genomics

Research article
The mitochondrial genomes of Ancylostoma caninum and

@,

BiolVled Central

Bunostomum phlebotomum - two hookworms of animal health and

zoonotic importance

Aaron R Jex!, Andrea Waeschenbach*2, Min Hu!, Jan A van Wyk3,

Ian Beveridge!, D Timothy J Littlewood? and Robin B Gasser!

Address: 'Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, 2Department
of Zoology, The Natural History Museum, Cromwell Road, London, UK and 3Department of Veterinary Tropical Diseases, Faculty of Veterinary

Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa

Email: Aaron R Jex - ajex@unimelb.edu.au; Andrea Waeschenbach* - a.waeschenbach@nhm.ac.uk; Min Hu - mhu@unimelb.edu.au; Jan A van

Wyk - janvwyk@op.up.ac.za; lan Beveridge - ibeve@unimelb.edu.au; D Timothy J Littlewood - t.littlewood@nhm.ac.uk;
Robin B Gasser - robinbg@unimelb.edu.au

* Corresponding author

Published: 11 February 2009 Received: 18 September 2008
BMC Genomics 2009, 10:79  doi:10.1186/1471-2164-10-79 Accepted: || February 2009
This article is available from: http://www.biomedcentral.com/1471-2164/10/79

© 2009 Jex et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Hookworms are blood-feeding nematodes that parasitize the small intestines of many
mammals, including humans and cattle. These nematodes are of major socioeconomic importance and
cause disease, mainly as a consequence of anaemia (particularly in children or young animals), resulting in
impaired development and sometimes deaths. Studying genetic variability within and among hookworm
populations is central to addressing epidemiological and ecological questions, thus assisting in the control
of hookworm disease. Mitochondrial (mt) genes are known to provide useful population markers for

hookworms, but mt genome sequence data are scant.

Results: The present study characterizes the complete mt genomes of two species of hookworm,
Ancylostoma caninum (from dogs) and Bunostomum phlebotomum (from cattle), each sequenced (by 454
technology or primer-walking), following long-PCR amplification from genomic DNA (~20—40 ng) isolated
from individual adult worms. These mt genomes were 13717 bp and 13790 bp in size, respectively, and
each contained 12 protein coding, 22 transfer RNA and 2 ribosomal RNA genes, typical for other
secernentean nematodes. In addition, phylogenetic analysis (by Bayesian inference and maximum
likelihood) of concatenated mt protein sequence data sets for |2 nematodes (including Ancylostoma
caninum and Bunostomum phlebotomum), representing the Ascaridida, Spirurida and Strongylida, was
conducted. The analysis yielded maximum statistical support for the formation of monophyletic clades for

each recognized nematode order assessed, except for the Rhabditida.

Conclusion: The mt genomes characterized herein represent a rich source of population genetic markers
for epidemiological and ecological studies. The strong statistical support for the construction of
phylogenetic clades and consistency between the two different tree-building methods employed indicate
the value of using whole mt genome data sets for systematic studies of nematodes. The grouping of the
Spirurida and Ascaridida to the exclusion of the Strongylida was not supported in the present analysis, a
finding which conflicts with the current evolutionary hypothesis for the Nematoda based on nuclear

ribosomal gene data.
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Background

Hookworms (Nematoda: Strongylida: Ancylostomatoi-
dea) are blood-feeding nematodes that inhabit the small
intestines of their mammalian host. Species of Ancylos-
toma, Necator, Bunostomum and Globocephalus, for instance,
are of major human or animal health significance in vari-
ous countries [1-6]. The infective, third-stage larvae (L3)
can be ingested or penetrate the skin of the host and
migrate via the circulatory system and the lungs to finally
reside, as dioecious adults, usually in the duodenum. The
adults attach via their buccal capsule to the intestinal
mucosa, rupture capillaries and feed on blood. The patho-
genesis of hookworm disease in humans and other ani-
mals is mainly a consequence of the blood loss, which
occurs during parasite attachment and feeding in the
intestine. Cutaneous infection can occur and is often asso-
ciated with inflammatory/immune responses and painful,
eruptive lesions during the migration of larvae through
the skin [7,8].

Current estimates indicate that more than 740 million
people are infected with the hookworms Ancylostoma duo-
denale and Necator americanus [9], and ~80 million are
severely clinically affected by hookworm disease [10]. In a
large number of developing countries, hookworms are a
leading cause of iron deficiency anaemia, which, in heavy
infections, can cause physical and mental retardation and
deaths in children as well as adverse maternal-foetal out-
comes [10,11]. Although there is considerably less infor-
mation on the prevalence and geographical distribution
of hookworms of animals [7,12-15], these parasites are
also clinically important in dogs (Ancylostoma braziliense,
Ancylostoma caninum, Ancylostoma ceylanicum and Unci-
naria stenocephala), cats (Ancylostoma tubaeforme), rumi-
nants (Bunostomum phlebotomum, Bunostomum
trigonocephalum and Gaigeria pachyscelis), pigs (e.g., Globo-
cephalus urosubulatus) and other hosts [16]. Hookworms
were originally thought to be host-specific [17,18]; how-
ever, the canine hookworm, Ancylostoma caninum, for
example, can infect humans and cause dermatitis and
eosinophilic enteritis [19], and some hookworm species,
such as the bovine hookworm, Bunostomum phlebotomum,
have been linked to cutaneous lesions in humans [20].
Significant genetic variation has been described among
individuals of Ancylostoma caninum from dogs in Australia
[21]. Such variation might reflect differences in host spe-
cificity, infectivity and/or pathogenicity among individual
nematodes within a population or, in some cases, might
be indicative of speciation events, as has been hypothe-
sized previously for human hookworms [21,22]. Pres-
ently, there are no published studies of genetic variation
within and among populations of Bunostomum phleboto-
mum and no molecular data are publicly available for this
species.

http://www.biomedcentral.com/1471-2164/10/79

The ability to accurately identify hookworms to species
and to assess genetic variability in hookworm populations
is central to studying their epidemiology as well as to diag-
nosis and control. Sequences of the first and second inter-
nal transcribed spacers (ITS-1 and ITS-2) of nuclear
ribosomal DNA (rDNA) [23-25] and of cAMP-dependent
protein kinase [26] have been utilized to identify and dif-
ferentiate hookworm species. However, the ITS-1 and ITS-
2 regions do not usually display sufficient within-species
sequence variability to enable the study of the genetic
structuring within and among hookworm populations
[24]. In contrast, mitochondrial (mt) genomes have been
shown to contain useful genetic markers for studying the
population structures of hookworm species [27-31],
because of their rapid mutation rates and apparent mater-
nal inheritance [32-34]. Although the protein-coding mt
gene cytochrome ¢ oxidase subunit 1 (cox1) is applicable
to population studies of a range of invertebrates, includ-
ing parasitic platyhelminths [35,36] and some nematodes
[37,38], there are still limited sequence data for cox1 and
other mt genes of hookworms, and limited published
information is available on sequence heterogeneity
therein. Building on advances in long polymerase chain
reaction (PCR)-based mt genome sequencing [39-41], the
present study determined the sequences and structures of
the two mt genomes from an individual of Ancylostoma
caninum (from a dog) from Australia and a specimen of
Bunostomum phlebotomum (from a calf) from South Africa.
The sequences derived for the mt genomes of these two
hookworms were compared in detail with mt genomic
data available for the predominant hookworms of
humans, Ancylostoma duodenale and Necator americanus
[42], as well as those available for other selected species
belonging to the orders Strongylida [41], Ascaridida [43-
45] and Spirurida [46-48].

Results and Discussion

Mitochondrial genome features, characteristics and gene
organization

The circular mt genomes of Ancylostoma caninum and
Bunostomum phlebotomum, sequenced from single adult
worms, were 13717 and 13790 bp in size, respectively
(Figure 1). Each genome contained 36 genes, including 12
protein coding genes (adenosine triphosphatase subunit
6 [atp6], the cytochrome ¢ oxidase subunits [cox1-3], cyto-
chrome b [cytb], and the nicotinamide dehydrogenase
subunits [nadl-6 and nad4l]), 22 transfer RNA (tRNA)
genes and 2 ribosomal RNA genes (small [rrnS] and large
[rrnL] subunits), and was consistent with gene arrange-
ment 2 (GA2) [49]. This arrangement is characteristic for
the mt genomes of all members of the Strongylida and
Ascaridida, as well as the free-living nematode Caenorhab-
ditis elegans (Rhabditida), but not for Strongyloides stercor-
alis (Rhabditida) [41-49]. In accordance with other
species of Strongylida for which complete mt genome
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Figure |

A representation of the circular mt genomes of Ancy-
lostoma caninum (13717 bp) and Bunostomum phle-
botomum (13790 bp) (GenBank accession numbers
FJ483518and FJ483517, respectively). All 12 protein-cod-
ing genes and the large and small ribosomal RNA genes are
indicated. Each tRNA gene is identified by its single letter
amino acid code, according to the international union of pure
and applied chemistry (IUPAC) code. The two leucine and
the two serine tRNA genes are differentiated by their
respective anti-codons (in brackets). The direction of tran-
scription is indicated by an arrow. The circular map has been
drawn approximately to scale; "K" indicates sequence length
in 'thousands of base pairs' from the first nucleotide position
of the cytochrome c oxidase subunit | (cox/) gene.

sequences are available [41,42], the AT-rich regions for
both Ancylostoma caninum and Bunostomum phlebotomum
were located between the genes nad5 and nad6, flanked at
the 5'-end by the tRNA gene for alanine, and at the 3'-end
by the tRNA genes for proline and alanine.

Each protein-coding gene for each of the two species had
an open reading frame (ORF), and all genes were located
on the same strand and transcribed in the same direction
(5'to 3"), consistent with the known mt genomes of secer-
nentean nematodes [37]. The nucleotide usages (coding
strand) of A, C, G and T in each mt genome were 29.0%,
6.5%, 16.1% and 48.5%, respectively, for Ancylostoma
caninum (Table 1) and 26.9%, 6.2%, 16.7% and 50.1%,
respectively, for Bunostomum phlebotomum (Table 1), with
overall A+T contents of 77.5% and 77.0%, respectively.
The A+T content of protein coding genes ranged from
70.9% (cox1) to 81.3% (nad6) for Ancylostoma caninum,
and from 70.4% (cox1) to 82.6% (nad3) for Bunostomum

http://www.biomedcentral.com/1471-2164/10/79

phlebotomum. The A+T content for rrnS, rrnL (= ribosomal
RNA genes) and the AT-rich region were 78.1%, 80.9%
and 90.1%, respectively, for Ancylostoma caninum, and
75.2%, 82.4% and 88.0%, respectively, for Bunostomum
phlebotomum. For the mt genome of Ancylostoma caninum,
codon usage in individual protein coding genes (n = 12)
ranged from 0% for CGC (arginine) and CCC (proline) to
15.7% for TIT (phenylalanine). For the mt genome of
Bunostomum phlebotomum, codon usage ranged from 0%
for CGC (arginine), CAC (histidine), CTC (leucine), CCC
(proline), TCC (serine) and GTC (valine) to 15.0% for
TTIT (phenylalanine). For both species, individual tRNA
structures were consistent with those predicted previously
for hookworms and other secernentean nematodes
[37,42,45,50,51]. All tRNA genes, except trnS(AGN) and
trnS(UCN), had a predicted secondary structure contain-
ing a TV-replacement loop instead of the TyC arm and
loop (not shown). The predicted secondary structure of
each of the two serine tRNAs contained the TyC arm and
loop but lacked the DHU loop. The genes rnS and rrnL
were 694 bp and 935 bp in length, respectively; the pre-
dicted secondary structures for the ribosomal RNA gene
subunits for Ancylostoma caninum and Bunostomum phle-
botomum (not shown) were similar to those of Necator
americanus and Ancylostoma duodenale [42], which is also
supported by the high nucleotide sequence similarity in
the mt genes among these four hookworms (see Tables 2
and 3).

The AT-rich regions for Ancylostoma caninum and Bunos-
tomum phlebotomum were 272 bp and 234 bp, respec-
tively, and both exhibited complex secondary structures
(not shown), as predicted previously for the AT-rich
regions of nematodes [41,42,45,47,49]. Four AT-repeat
regions of variable length were identified in the AT-rich
region of the mt genome of Ancylostoma caninum: two
were 6 nucleotides (nt) (3 AT-repeats), one was 14 nt (7
AT-repeats) and the longest was 16 nt (8 AT-repeats). Sim-
ilar dinucleotide repeats have been described in the AT-
rich region of the mt genomes of other nematode species
(e.g., [41,42,44]). Other repetitive elements have been
identified within this region in the free-living nematode
Caenorhabditis elegans, the largest and most conspicuous
of which are the repetitive sequence motifs CR1-CR6 [45].
However, no such elements were identified in the AT-rich
region of the mt genome of either Ancylostoma caninum,
Bunostomum phlebotomum or any other species of ani-
mal-parasitic nematode sequenced to date [41,44,47,49].

Comparative analyses with other nematodes

The identities (%) in inferred amino acid sequences of
each protein-coding mt gene were calculated based upon
pairwise comparisons between Ancylostoma caninum and
Bunostomum phlebotomum (Tables 2 and 3). Based on these
comparisons, the sequence identities (in decreasing
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Table I: Nucleotide (nt) composition (%) and A+T contents (%) of the 12 mitochondrial protein coding genes.

Ancylostoma caninum

Bunostomum phlebotomum

Gene or region Length (nt) A C G T

atpé 600 290 6.0 165 485
cox/ 1578 253 96 195 456
cox2 696 290 75 185 450
cox3 766 230 7.6 187 508
cytb 113 263 7.6 176 484
nadl 870 239 75 184  50.2
nad2 846 273 5. 144 532
nad3 336 268 24 173  53.6
nad4 1230 276 7. 135 518
nad4L 234 269 3.0 162 539
nad5 1582 266 53 166 515
nadé 432 257 32 155 55.6
rrnL 963 362 59 132 447
rrn$ 694 370 68 15.1 41.1
AT-rich 272 44.1 6.3 29 46.7
Genome 13735 289 64 16.1 48.5

A+T Length (nt) A C G T A+T
77.5 600 257 52 180 512 76.8
70.9 1578 252 9.6 19.5 457 70.9
734 696 260 75 190 476 73.6
738 766 242 7.0 176 512 753
74.8 1113 246 74 179  50.1 748
74.1 870 22 74 206 499 72.1

80.5 846 240 43 150 56.7 80.7
80.4 336 27.1 24 149  55.6 82.7
794 1230 245 6.6 135 554 79.9
80.8 234 244 34 175 547 79.1

78.1 1582 262 49 16.7 522 784
8l1.3 432 206 44 178 572 77.8
80.9 963 347 5.6 120 47.6 823
78.1 694 340 75 173 412 75.2
90.1 234 406 4.7 73 47.4 88.0
774 13790 269 6.2 16.7  50.1 77.0

Large and small ribosomal RNA subunits, AT-rich regions and complete mitochondrial genomes of Ancylostoma caninum and Bunostomum

phlebotomum.

order) were COX1 (97.3%), COX3 (96.0%), NADA4L
(93.5%), COX2 (89.6%), CYTB (87.0%), ATPG (85.9%),
NAD1 (84.4%), NAD3 (81.9%), NAD4 (79.2%), NAD5
(78.5%), NAD2 (72.5%) and NADG (67.3%). In addi-
tion, the amino acid sequences inferred from each coding
mt gene of Ancylostoma caninum and Bunostomum phleboto-
mum were compared, again in a pairwise manner, with
those inferred from published mt genomes of Anisakis
simplex [43], Ascaris suum [45] and Toxocara canis [44]
(Ascaridida), Ancylostoma duodenale, Necator americanus
[42] and Haemonchus contortus [41] (Strongylida), and
Brugia malayi [46], Dirofilaria immitis [47] and Onchocerca

volvulus [48] (Spirurida). The most conserved protein
sequences among all species, assessed relative to Ancylos-
toma caninum and Bunostomum phlebotomum, were inferred
to be COX1, COX3 and NAD4L, and the least conserved
were NAD2 and NADG (see Tables 2 and 3).

Phylogenetic analyses of selected species of Ascaridida,
Spirurida and Strongylida using concatenated amino acid
sequence data inferred from mt genes

Because of the high degree of intraspecific variation in
nucleotide sequence in the mt genes of nematodes
[37,38,52] and the limited availability or lack of multiple

Table 2: Pairwise comparison (%) of the amino acid sequences inferred for each of the mitochondrial protein coding genes.

Protein or gene Bp Ad Na Hc Ans Ass Tc Bm Di Ov
ATP6 85.9 98.4 89.4 82.4 76.3 77.3 76.8 19.8 22.2 21.2
COXI 97.3 99.2 97.1 94.4 89.5 90.4 91.2 50.7 50.9 51.4
COXxX2 89.6 96.1 92.6 88.3 83.1 83.6 84.4 41.0 423 41.0
COX3 96.0 99.2 95.2 91.0 81.5 81.9 84.7 339 335 32.0
CYTB 87.0 98.1 85.9 81.6 70.8 745 735 51.0 48.9 50.8
NADI 84.4 95.1 87.9 75.5 70.0 71.7 70.8 46.8 50.6 49.1
NAD?2 725 90.0 779 51.6 48.9 46.5 51.2 333 28.7 32.0
NAD3 81.9 96.3 81.0 69.3 67.5 68.4 66.6 357 35.7 35.7
NAD4 79.2 95.1 85.8 73.1 64.3 63.5 63.0 45.2 449 45.8
NADA4L 93.5 100.0 93.5 69.6 753 727 68.8 35.0 29.1 375
NADS5 785 94.3 83.6 71.1 66.0 63.4 65.5 389 374 39.3
NADé6 67.3 88.8 70.8 51.3 59.0 56.2 51.3 26.4 26.4 27.1

renL 83.4 91.6 82.5 75.4 70.5 70.0 66.4 62.6 61.3 60.4

rrnS 86.8 94.9 86.5 78.7 73.0 733 70.9 60.6 60.6 59.4

In addition: nucleotide sequences for each of the ribosomal RNA genes of Ancylostoma caninum (Ac) and Bunostomum phlebotum (Bp) with those
published for species of Strongylida [Ancylostoma duodenale (Ad), Necator americanus (Na) and Haemonchus contortus (Hc)], species of Ascaridida
[Anisakis simplex (Ans), Ascaris suum (Ass) and Toxocara canis (Tc)] and species of Spirurida [Brugia malayi (Bm), Dirofilaria immitis (Di) and Onchocerca

volvulus (Ov)].
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Table 3: Pairwise comparison (%) of the amino acid sequences inferred for each of the mitochondrial protein coding genes and
nucleotide sequences for each of the ribosomal RNA genes of Ancylostoma caninum (Ac) and Bunostomum phlebotum (Bp).

Protein or gene Ac Ad Na Hc Ans Ass Tc Bm Di Ov
ATP6 85.9 85.4 86.9 78.8 733 74.3 748 19.8 21.7 21.2
COXI 97.3 96.9 97.3 94.2 89.7 90.8 91.6 50.7 50.9 51.4
COX2 89.6 88.3 922 87.4 79.7 82.7 81.8 41.4 41.8 40.5
COX3 96.0 95.6 94.5 91.8 80.7 82.3 83.5 332 332 32.0
CYTB 87.0 87.0 83.7 79.1 69.4 732 724 53.2 51.6 535
NADI 84.4 84.4 84.8 74.4 69.3 69.6 69.5 48.4 523 50.1
NAD2 725 71.1 69.7 50.1 535 48.1 522 354 30.8 35.2
NAD3 81.9 81.9 75.6 67.5 64.8 67.5 63.9 383 37.5 39.2
NAD4 79.2 79.4 80.6 69.6 67.4 65.0 65.0 45.2 44.4 44.1
NADA4L 93.5 93.5 922 65.8 71.4 68.8 64.9 303 37.5 337
NADS5 78.5 779 79.1 67.3 63.2 64.7 64.5 42.1 39.1 39.9
NADé6 67.3 70.1 70.8 48.6 58.3 57.6 52.7 27.8 28.4 29.8

rrnL 83.4 82.6 80.2 73.9 69.2 70.1 67.5 63.9 62.8 61.6

rrnS 86.8 85.6 86.0 75.6 74.5 71.2 70.6 61.1 61.3 60.5

With those published for species of Strongylida [Ancylostoma duodenale (Ad), Necator americanus (Na) and Haemonchus contortus (Hc)], species of
Ascaridida [Anisakis simplex (Ans), Ascaris suum (Ass) and Toxocara canis (Tc)] and species of Spirurida [Brugia malayi (Bm), Dirofilaria immitis (Di) and

Onchocerca volvulus (Ov)].

mt genome sequences for each species, previous work has
suggested that phylogenetic analyses for nematodes be
conducted using concatenated amino acid sequence data-
sets, utilizing sequences inferred from individual mt pro-
tein coding genes [47]. In order to further assess
systematic relationships within and among members of
the Ascaridida, Spirurida and Strongylida, a phylogenetic
analysis was carried out using Bayesian inference (BI) and
maximum likelihood (ML) (Figure 2). Almost all clades in
the consensus tree were supported by maximum BI poste-
rior probability (pp) values (pp = 1.00; expressed as a per-
centage in Figure 2) and/or ML bootstrap support (100).
The phylogenetic analysis conducted herein clearly sup-
ports the distinct classification of the orders Ascaridida,
Spirurida and Strongylida, each as monophyletic clades
with maximum statistical support. The order Rhabditida
appears to be paraphyletic, with Caenorhabditis elegans
grouping closely with the Strongylida, and Steinernema
carpocapsae and Strongyloides stercoralis placed externally to
a clade comprising the Ascaridida, Strongylida and C. ele-
gans. This relationship is consistent with the proposed
molecular phylogeny for the Nematoda based on small
subunit (18S) nuclear ribosomal DNA data [53]. In addi-
tion, the hookworms were represented as a monophyletic
clade within the Strongylida.

For hookworms, the phylogenetic analysis using BI indi-
cated a closer relationship between Ancylostoma spp. and
Necator americanus than between either of them and
Bunostomum phlebotomum. This finding conflicts with the
current classification of the Strongylida [16], wherein
both Necator and Bunostomum are placed within the sub-
family Bunostominae, whereas Ancylostoma is placed
within the subfamily Ancylostominae (poorly supported

by the ML analysis; bootstrap support = 47). A larger anal-
ysis, including mt data for more hookworm species, is
needed to test further this hypothesis.

The present phylogenetic analysis did not support the
grouping of the Ascaridida and Spirurida to the exclusion

Strelkovimermis spiculat

4‘&,7 Agamermis sp
00, Th mis

Xiphi

Brugia malayi
100
100 Onchocerca volvulus
100/90 e
Dirofilaria immitis

Strongyloides stercoralis
Steinernema carpocapsae
Anisakis simplex

MERMITHIDA

americanum DORYLAIMIDA

100
100

SPIRURIDA

100
00

RHABDITIDA
RHABDITIDA

100

Ascaris suum ASCARIDIDA

67136 .’
Toxocara canis
Caenorhabditis elegans RHABDITIDA
Cooperia oncophora

00

Haemonchus contortus
Bunostomum phiebotomum STRONGYLIDA
Necator americanus

Ancyiostoma duodenale

0.4 Ancylostoma caninum

Figure 2

Phylogenetic analysis (using Bayesian inference) of
concatenated mt amino acid sequence data inferred
from all protein coding mitochondrial genes (n = 12)
for 16 secernentean nematodes, including Ancylos-
toma caninum and Bunostomum phlebotomum (Gen-
Bank accession numbers FJ483518and FJ483517,
respectively). The concatenated mitochondrial amino acid
sequence of three mermithids were employed as outgroups.
Bayesian posterior probability values (as a percentage) and
maximum likelihood bootstrap support (n = 100) are indi-
cated above and below the lines, respectively. The scale indi-
cates an estimate of substitutions per site, using the
optimized model setting.
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of the Strongylida, which contrasts markedly the results of
a previous study based on nuclear ribosomal gene data
(e.g., clade IlI versus clade V; ref. [53]). The "common her-
itage" hypothesized herein for the Ascaridida and Strong-
ylida to the exclusion of the Spirurida has been supported
by previous studies using mt gene order data [49] and
using concatenated amino acid sequence data inferred
from protein-coding mt genes [38]. These findings stimu-
late further study of the evolutionary relationships among
taxa within this phylum using mt datasets. The high-
throughput sequencing potential of 454 technology [54]
and the recent validation of this technique for the
sequencing of mt genomes [41] should provide a plat-
form for an in-depth analysis of the phylogeny of the
Nematoda.

Conclusion

Utility of mt gene markers for population genetic,
ecological and epidemiological studies of hookworms
Although some nuclear genetic regions (e.g., ITS-1 and
ITS-2 of nuclear rDNA [22-25] or the cAMP-dependent
protein kinase gene [26]) have been shown to be suitable
for the specific identification and differentiation of hook-
worms, the nuclear loci examined to date do not usually
display sufficient levels of intraspecific sequence variabil-
ity for the investigation of the genetic structures of hook-
worm populations (or the identification of population
variants or "strains"). The ability to estimate genetic vari-
ability within and among hookworm populations is cen-
tral to studying their epidemiology and population
genetics, and can have important practical implications in
relation to control.

Sequence-based analyses (including mutation scanning)
of protein-coding mt genes, such as cox1 and nadl, have
been particularly useful or population genetic studies
[21,27,29-31,55-59]. For example, Hu et al. [21]
employed a single-strand conformation polymorphism
(SSCP)-coupled sequencing approach to explore haplo-
typic variability within a limited number of Ancylostoma
caninum specimens from Australia and each of the human
hookworms (Ancylostoma duodenale and Necator america-
nus). Significant population sub-structuring was recorded
within each of these three species, and two genetically dis-
tinct subpopulations were detected within Ancylostoma
caninum from dogs from Townsville, Australia. Previous
morphological and clinical studies had shown that Ancy-
lostoma caninum in Townsville (Australia) is not specific to
dogs and can also infect humans (but not complete its
life-cycle), causing eosinophilic enteritis [19]. It has been
speculated [21] that particular, genetically distinct sub-
populations within Ancylostoma caninum can selectively
infect the non-canine host. The pattern of haplotypic var-
iability within Ancylostoma caninum might be due to sec-
ondary contact between populations or subpopulations,
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which could have arisen due to host movement from
other geographical areas where this hookworm has been
recorded and where ecological conditions are distinct; for
example, Ancylostoma caninum is endemic in tropical
north-east Queensland, Australia [60], but also occurs in
the north-west area of Western Australia [61]. It is also
possible that feral dogs or dingoes (in different geograph-
ical or climatic regions) might harbour one or more
genetic variants which might "spill-over" into domestic
dogs and/or humans [60]. Future study of the genetic var-
iation among Ancylostoma caninum specimens from
domestic and feral dogs, cats and humans as well as
between populations from other geographical and cli-
matic regions in Australia and South-East Asia would
allow such questions to be addressed. A comparison of
the genetic make-up of Ancylostoma caninum from humans
affected by eosinophilic enteritis with those from domes-
tic dogs in the Townsville area would be particularly inter-
esting.

In contrast to Ancylostoma caninum, no studies have yet
explored the genetics or molecular epidemiology of
Bunostomum phlebotomum. Mitochondrial markers might
be used to examine sub-structuring in Bunostomum phle-
botomum populations in endemic regions of South Africa.
In addition, although there has been anecdotal evidence
suggesting that Bunostomum phlebotomum may cause cuta-
neous larval migrans in humans ([20] and unpublished
observations [JVW]), the zoonotic potential of this species
of hookworm has not yet been tested molecularly. In view
of the lack of distinguishing morphological characters
allowing the identification of individual larvae, the provi-
sion of molecular markers for Bunostomum phlebotomum
might allow the extent of the zoonotic potential of this
species to be assessed for the first time.

The two mt genomes characterized herein provide a solid
foundation for studies of the epidemiology, ecology and
population genetics of both Ancylostoma caninum and
Bunostomum phlebotomum, which could have important
implications for the control of infections by these para-
sites. Given the lack of morphological characters for spe-
cific identification and differentiation of hookworm
larvae, there is a clear need for species and population
genetic markers for in-depth exploration of the epidemi-
ology of hookworms [59]. Combined with the use of spe-
cific markers in the internal transcribed spacers (ITS-1 and
ITS-2) of nuclear IDNA [23-25], investigating the mt hap-
lotypic variability in populations of Ancylostoma caninum
and Bunostomum phlebotomum (irrespective of develop-
mental stage) could provide important insights into host
affiliations, gene flow and transmission patterns (cf.
[62,63]) and thus assist in the control of these hook-
worms. Furthermore, the direct sequencing of the mt
genome of Ancylostoma caninum by 454 technology is the
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second example of the use of this approach for the
sequencing of mt genomes of nematodes [41] and re-
enforces the exciting potential of emerging technologies
for the high-throughput sequencing of relatively small
organellar genomes.

Methods

Parasites and DNA extraction

An adult male of Ancylostoma caninum (designated Acl)
was collected (by IB) at necropsy from the duodenum of
a dog from Townsville, Australia [23]. An adult male of
Bunostomum phlebotomum (Bp1) was collected at autopsy
from the same site from a calf monospecifically infected
with an isolate of Bunostomum phlebotomum, originally
derived from a Jersey cow in Pretoria North suburb, South
Africa (by JyW). Nematodes were washed in physiological
saline, identified morphologically to species [16], fixed in
50% (v/v) ethanol and stored at -20°C until use. Total
genomic DNA was isolated from individual worms using
sodium dodecyl-sulphate/proteinase K treatment [64],
followed by spin-column purification (Wizard Clean-Up,
Promega). The specific identity of each nematode was ver-
ified using the sequence of the second internal transcribed
spacer (ITS-2) of nuclear ribosomal DNA, which provides
species-specific genetic markers for hookworms [25]. The
ITS-2 sequence derived from sample Ac1 was identical to
that reported previously for Ancylostoma caninum (acces-
sion number AJ001591) [25] and that obtained from Bp1
(accession number FI616999) was 82.3% identical to the
closely related species Bunostomum trigonocephalum (acces-
sion number AJ001595) [25].

Long PCR-coupled mt genome sequencing

The complete mt genome of each Ancylostoma caninum
and Bunostomum phlebotomum was amplified as two over-
lapping amplicons (~10 kb and ~5 kb, respectively) from
~20-40 ng of the genomic DNA from each specimen by
long-PCR (BD Advantage 2, BD Biosciences) using each of
the primer pairs 39F-42R and 5F-40R [39,40,42], as
described by Hu et al. [39], with minor modifications. The
cycling conditions (2720 thermal cycler, Applied Biosys-
tems) were: 92°C, 2 min (initial denaturation); then
92°C, 10 s (denaturation); 50°C, 30 s (annealing); 68°C
(for the ~10 kb region) or 60°C (for the ~5 kb region), 10
min (extension) for 10 cycles, followed by 92°C, 10 s;
50°C, 30 's; 68°C or 60°C, 10 min for 20 cycles, with an
elongation period of 10 s for each cycle, and a final exten-
sion at 68°C or 60°C for 7 min. Following the PCR, indi-
vidual amplicons were resolved in ethidium bromide-
stained agarose (1%) gels and shown to represent single
bands. Amplicon size was estimated based on comparison
with a 1 kb DNA size ladder (Promega). Amplicons of ~10
kb or ~5 kb were purified over a mini-column (Wizard
PCR Preps, Promega). Subsequently, the amount of DNA
in each purified amplicon was estimated spectrophoto-
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metrically (ND-1000 UV-VIS spectrophotometer, v.3.2.1,
NanoDrop Technologies). The purified amplicons were
then subjected to sequencing.

The mt genome of Ancylostoma caninum (designated
AcMG-454; GenBank accession no. FJ483518) was
sequenced (454 technology by AJ/RBG) using a Genome
Sequencer 20 (Roche), according to an established proto-
col [54]. The complete mt genome of Bunostomum phle-
botomum (designated BpMG-PW; GenBank accession no.
F1483517) was sequenced (AW/DTL) by primer walking,
as described previously [44]. The AcMG-454 sequence was
assembled automatically, whereas that of BpMG-PW was
assembled manually using Sequencher v.4.8 (Gene Codes
Corporation). Both mt genome sequences were annotated
and subjected to analysis using standard approaches
[41,44], and their structures were compared with each
other and with those of the two human hookworms, Ancy-
lostoma duodenale (GenBank accession number AJ417718;
ref. [42] and Necator americanus (Al417719; ref. [42],
Haemonchus contortus (EU346694; ref. [41]) (Strongylida);
Anisakis simplex (AY994157; ref. [43], Ascaris suum
(X53453; ref. [45]), and Toxocara canis (EU730761; ref.
[44]) (Ascaridida); Brugia malayi (AF538716; ref. [46]),
Dirofilaria immitis (A]537512; ref. [47]) and Onchocerca
volvulus (AF015193; ref. [48]) (Spirurida).

Phylogenetic analysis
The analysis of amino acid sequence data was conducted
via Bayesian inference (BI) using the software package

MrBayes v.3.1.2 http://mrbayes.csit.fsu.edu/index.php
and maximum likelihood (ML) using GARLI ([65]; http:/

/www.bio.utexas.edu/faculty/antisense/garli/Garli.html),
each running on a four dual-core Opteron-based Unix
cluster. For individual species, the amino acid sequences
inferred from all protein coding mt genes were concate-
nated. A selection of published mermithid mt genomes
were used as outgroups (Strelkovimermis spiculatus, acces-
sion NC 008047; Agamermis sp., NC 008231; Thaumer-
mis cosgrovei, NC_008046) and included a range of
ingroup taxa (Xiphinema americanum, NC_005928; Brugia
malayi, NC004298; Onchocerca volvulus, NC 001861;
Dirofilaria immitis, NC_005305; Strongyloides stercoralis,
NC 005143; Caenorhabditis elegans, NC 001328; Stein-
ernema carpocapsae, NC_005941; Necator americanus,
NC_003416; Ancylostoma duodenale, NC_003415; Coope-
ria oncophora, NC_004806; Haemonchus contortus,
NC_010383; Anisakis simplex, NC_007934; Ascaris suum,
NC 003127; Toxocara canis, NC_010690). Amino acid
sequences were aligned using MUSCLE [66]. Ambiguous
sites were excluded using G-Blocks ([67,68]; see Addi-
tional File 1 for alignment).

For BI of amino acid data, tree construction and posterior

probabilities (pp) were calculated via 2000000 genera-
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tions (ngen = 2000000) using the Metropolis-coupled
Monte Carlo Markov Chain (MCMCMC) method and
four simultaneous tree-building chains (nchains = 4),
with every 10t tree being saved (samplefreq = 10). A suit-
able burnin (burnin = 1000) was chosen using "Trace' in
the program Tracer v1.4 http://beast.bio.ed.ac.uk/. Evolu-
tionary distance was estimated using the most appropriate
amino acid model and calculated employing the MrBayes
program (aamodelpr = mixed), allowing for a gamma-
shaped variation in mutation rates with a proportion of
invariable sites (rates = invgamma). Upon completion of
the analysis, a 50% majority rule = consensus tree was
constructed in TreeviewX v.0.5.0 http://darwin.zool
ogy.gla.acuk/~rpage/treeviewx/. For the ML analysis
using GARLI, tree construction was estimated with the
model GTR+I+g using the mtRev amino acid substitution
matrix, for two replicate runs, and termination criteria
with setting genthresholdfortopoterm = 20000 (no new
significantly better scoring topology found in > 20000
generations). Nodal support in the ML analysis was esti-
mated by bootstrap re-sampling (n = 100) using GARLI
and the same model settings.
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Additional file 1

Amino acid alignment of all nematode taxa used for phylogenetic
analysis. Alignment output from Gblocks. The Gblocks server http://
molevol.cmima.csic.es/castresana/Gblocks _server.html was used to align
the concatenated amino acids using the most conserved settings. Blocks of
"XXXX" represent markers between genes and were not included in the
analyses; parameters are listed at the end of the alignment. Gblocks
selected 2837 positions (marked *) to be included. Gene partitions are in
the following order: atp6, cox1, cox2, cox3, cytb, nad1, nad2, nad3,
nad4, nad4L, nad5, nad6. The concatenated mt genomic sequences
used in the alignment represent species of Mermithida (Agamermis sp.,
Thaumamermis cosgrovei and Strelkovimermis spiculatus), Ascard-
ida (Anisakis simplex, Ascaris suum and Toxocara canis), Dorylaim-
ida (Xiphenema americanum), Rhabditida (Caenorhabditis elegans,
Steinernema carpocapsae and Strongyloides stercoralis), Spirurida
(Brugia malayi, D. immitis and O. volvulus) and Strongylida (Ancy-
lostoma caninum, Ancylostoma duodenale, Bunostomum phle-
botomum, Cooperia oncophora, Haemonchus contortus and
Necator americanus). The species used as outgroups are denoted in bold
text.
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