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Abstract

Background: We evaluated (a) the feasibility of whole genome cDNA-mediated Annealing, Selection, extension
and Ligation (DASL) assay on formalin-fixed paraffin-embedded (FFPE) tissue and (b) whether similar conclusions
can be drawn by examining FFPE samples as proxies for fresh frozen (FF) tissues. We used a whole genome DASL
assay (addressing 18,391 genes) on a total of 72 samples from paired breast tumor and surrounding healthy tissues
from both FF and FFPE samples.

Results: Gene detection was very good with comparable success between the FFPE and FF samples.
Reproducibility was also high (r2 = 0.98); however, concordance between the two types of samples was low. Only
one-third of the differentially expressed genes in tumor tissues (compared to corresponding normal) from FF
samples could be detected in FFPE samples and conversely only one-fourth of the differentially expressed genes
from FFPE samples could be detected in FF samples. GO-enrichment analysis, gene set enrichment analysis (GSEA)
and GO-ANOVA analyses also suggested small overlap between the lead functional groups that were differentially
expressed in tumor detectable by examining FFPE and FF samples. In other words, FFPE samples may not be ideal
for picking individual target gene(s), but may be used to identify some of the lead functional group(s) of genes
that are differentially expressed in tumor. The differentially expressed genes in breast cancer found in our study
were biologically meaningful. The “cell cycle” & “cell division” related genes were up-regulated and genes related
to “regulation of epithelial cell proliferation” were down-regulated.

Conclusions: Gene expression experiments using the DASL assay can efficiently handle fragmentation issues in the
FFPE tissues. However, formalin fixation seems to change RNA and consequently significantly alters gene
expression in a number of genes which may not be uniform between tumor and normal tissues. Therefore,
considerable caution needs to be taken when interpreting gene expression data from FFPE tissues, especially in
relation to specific genes.

Background
High-throughput microarray technology is a powerful
tool for genome-wide genotyping and gene expression
analysis. Microarray-based gene expression assessment
is a very useful method for prediction of diseases, tumor
classification and drug responses. Although good quality

RNA can be extracted from fresh frozen (FF) tissues,
tissues preserved in RNAlater reagent and primary cell
culture, the limited availability of these sources is a
problem with regards to the utility of gene expression
measurements. As Formalin-Fixed Paraffin-Embedded
(FFPE) sample collection and storage are routine prac-
tices in pathological laboratories worldwide, there is
great interest in the use of RNA extracted from those
archived samples.
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Integrity of nucleic acid is a very important issue for
microarray analysis. It is well known that the FFPE tis-
sue RNA is often degraded and at the same time, it is
chemically modified [1,2]. Previous studies using differ-
ent microarray platforms showed that only approxi-
mately 3% or less of the RNA isolated from the FFPE
tissue are useful for cDNA synthesis, which is an impor-
tant step for gene expression analysis on a microarray
platform [3]. Illumina Inc. introduced a gene expression
profiling method, DASL (cDNA-mediated Annealing,
Selection, extension and Ligation) specially designed for
analysis of fragmented RNA samples [4-6]. In the pre-
sent study, we used the Whole Genome DASL Assay on
paired breast tumor and surrounding healthy tissue
from both FFPE tissue and FF tissue to examine: (a) the
feasibility of genome-wide gene expression analyses
using DASL on FFPE tissue and (b) whether similar
conclusions can be drawn by examining widely available
FFPE tissue as a proxies for FF tissues.

Methods
Tissue Samples
The study was approved by the Institutional Review
Board of The University of Chicago. We obtained four
different sets of tissue samples (paired tumor and adja-
cent normal breast tissue from fresh frozen as well as
corresponding FFPE blocks) from the same patients
through our Human Tissue Resource Center (HTRC) at
The University of Chicago http://pathcore.bsd.uchicago.
edu/BSB/BSB_overview.shtml. HTRC collected these
breast tissues from mastectomy/lumpectomy specimens
that were not needed for pathological diagnosis by the
Department of Pathology at The University of Chicago
Medical Center. There were a total of 21 such patients
for whom all 4 types of tissues were available. For the
present study, tissue samples from the first 18 patients
were used. These tissue samples were archived for a 3-6
year period.

RNA extraction and quality control
For the extraction of total RNA from both FFPE and FF
breast tissue samples, we used the High Pure RNA Paraf-
fin Kit (Roche Applied Science, cat# 03 270 289 001).
Xylene was used for deparaffinization of the FFPE sam-
ples. Proteinase K digestion was carried out by overnight
incubation at 55°C. DNAse treatment was carried out for
all of the samples and samples were eluted with 40 μl of
the elution buffer provided with the extraction kit. For
quantification, each sample was (a) tested in a NanoDrop
1000 for concentration and 260/280 ratio and also (b)
run in an Agilent Bioanalyzer using the Eukaryotic total
RNA Nano Series II kit. Prequalification of all the
RNA samples derive from FFPE and FF tissue was done
by qPCR using SYBR Green detection. cDNA was

synthesized as recommended by Illumina, and then a 90
bp amplicon was amplified from the highly expressed
RPL13a ribosomal protein gene (GenBank Accession #
NM_012423.2). The amplification reaction was carried
out for all FFPE and FF samples in duplicates in ABI
Prism 7900 HT Sequence Detection Systems (Applied
Biosystems). The ΔCt was calculated as Ct (test sample) -
Ct (control sample). As per Illumina protocol for DASL,
a ΔCt of up to 12 was acceptable as prequalification for
the assay. Only 4 out of 72 breast tissue samples had ΔCt
just above 12 and none > 12.5. Only 1 of these 4 samples
showed a poor performance on the assay (see result
section).

Whole genome DASL assay
We used 300 ng of total RNA (5 μL at 60 ng/μL concen-
tration) as starting material for each sample run on the
microarray. Each chip accommodates 8 samples. Four
types of sample for each patient were processed in one
chip. The four types of sample were FF tumor tissue
(T_FF), FF adjacent normal tissue (N_FF), FFPE tumor
tissue (T_FFPE) and (4) FFPE adjacent normal tissue
(N_FFPE). Thus, a single chip contained 8 samples from
2 patients and three such chips (24 samples) were pro-
cessed in one batch. We also ran four technical replicates
of the T_FFPE RNA samples to analyze the reproducibil-
ity of the DASL assay. According to the manufacturer’s
protocol, RNA was first converted to cDNA through
reverse transcription with biotinylated primers. The
cDNA was then annealed to the assay oligonucleotide
and bound to streptavidin conjugated paramagnetic
beads. After the oligohybridization, non-hybridized and
miss-hybridized sequences were washed away and the
hybridized sequences were extended and ligated to start
PCR amplification with fluorescent tagged primers. The
fluorescently labeled amplified PCR products were hybri-
dized overnight onto the bead chip to be scanned on
Bead Array reader.

Statistical analyses and power
Statistical analysis
To compare the continuous variables (e.g. number of
detected genes/samples or average signal intensity across
different groups), we used one-way analysis of variance
(ANOVA). For the gene expression data, we used quan-
tile normalization in BeadStudio software before export-
ing the data for PARTEK Genomic Suite [7] for further
statistical analyses. Principle components analysis (PCA)
and sample histograms were checked as a part of quality
control analyses of the data. Mixed-model multi-way
ANOVA (which allows more than one ANOVA factor
to be entered in each model) was used to compare the
individual gene expression data across different groups.
In general, “disease status” (tumor/adjacent normal) and
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“storage method” (FFPE/FF) were used as categorical
variables with fixed effect since the levels tumor/normal
or FFPE/FF represent all conditions of interest; whereas
“case ID#” (as proxy of inter-person variation) and
“batch#” were treated as categorical variable with
random effect, since the person or batch are only a ran-
dom sample of all the levels of that factor. Method of
moments estimation was used to obtain estimates of
variance components for mixed models [8]. As per
study design we processed all four types of samples
from one individual in a single chip (i.e., in same batch),
therefore batch# and case ID# were linked, and thus
they were not entered in the same model. In combined
analysis when we included FFPE and FF samples
together, the log2-transformed signal intensity was used
as the response variable, and “tissue type “ (or “disease”
i.e. tumor or normal), “sample storage” (i.e. FFPE or FF)
and case ID# were entered as ANOVA factors. In order
to examine interaction between “tissue type” and “sam-
ple storage”, we also entered the cross-product term
“tissue type” × “sample storage” in the 3-way ANOVA
model. When we separately analyzed the FF and FFPE
samples to identify differentially expressed genes in
breast tumor compared to adjacent normal tissue, dis-
ease status or “tissue type”, “batch#” and “block archival
age” were entered as ANOVA factors in the 3-way
ANOVA model. One example of a model [9] that uses
method of moments for combined analysis is as follows:

Y Tissue Storage Case ID Tissue*Storageijkl i j k ij ijkl= + + + +μ + ε

Where Yijkl represents the gene expression intensity of
gene “Y” in l-th sample with i-th tissue with j-th storage
for the k-th case ID; μ is the common effect for the
whole experiment; and εijkl represents the random error,
which is assumed to be normally and independently dis-
tributed with mean 0 and standard deviation δ for all
measurements. Case ID is a random effect in this model.
Similarly, when we analyzed the data separately for FF

and FFPE samples to detect individual genes differen-
tially expressed in tumor, we used the following 3-way
ANOVA model by using method of moments:

Y Tissue Batch no Block_Ageijkl i j k ijkl= + + +μ + ε

Where Yijkl represents the gene expression intensity of
gene “Y” in l-th sample with i-th tissue for the j-th
Batch no with k-th Block_Age. As in the model for
combined analyses above, μ is the common effect for
the whole experiment and εijkl represents the random
error, which is assumed to be normally and indepen-
dently distributed with mean 0 and standard deviation δ
for all measurements. Batch no is a random effect in
this model.

In GO Enrichment analysis, we tested if the genes
found to be differentially expressed fall into a Gene
Ontology category more often than expected by chance.
We used Chi-square test to compare “number of signifi-
cant genes from a given category/total number of signif-
icant genes” vs. “number of genes on chip in that
category/total number of genes on the microarray chip”.
Negative log of the p-value for this test was used as the
enrichment score. Therefore, a GO group with a high
enrichment score represents the lead functional group.
The enrichment scores were analyzed in a hierarchical
visualization and in tabular form.
In addition to looking at differential expression at

individual gene level, we also examined the differential
expression of gene sets using the Gene Set Enrichment
Analysis (GSEA) [10]. Given an a priori defined set of
genes S (sharing the same GO category), the goal of
GSEA was to determine whether the members of S were
randomly distributed throughout the ranked list or pri-
marily found at the top or bottom. Considering the fact
that GSEA can look at single variable (unadjusted
expression), we also used GO-ANOVA that offers
adjustments for other factors like “person-to-person”
variation, “tissue type” variation etc.
GO-ANOVA is a mixed model ANOVA to test the

expression of a set of genes (sharing the same GO cate-
gory) instead of an individual gene in different groups
[7]. The analysis is performed at the gene level, but the
result is expressed at the level of the GO-category by
averaging the member genes’ results. The equation for
the model was:

Model:Y T P G S(T*P)= μ + + + + + ε

Where Y represents expression of a GO-category, μ is
the common effect or average expression of the GO-
category, T is tissue-to-tissue (tumor/healthy) effect, P is
patient-to-patient effect, G is gene-to-gene effect (differ-
ential expression of genes within the GO-category inde-
pendent of tissue types), S(T*P) is sample-to-sample
effect (this is a random effect, and nested in tissue and
patient) and ε represents the random error.
Cross-validation: For the one-level cross validation, the

data was first divided into 10 random partitions. At each
iteration, 10% samples were held out for testing while the
remaining 90% samples were used to fit the parameters of
the model. We also used a 10 × 10 two-level nested cross-
validation [11]. In the outer cross-validation, with 10% of
samples held out as test cases, the remaining 90% were
used in a 10-fold cross-validation to determine the optimal
predictor variables and other classifier parameters.
The model that performed the best on the inner cross-
validation was applied to the held-out test samples in the
outer cross-validation. Thus an inner cross-validation was
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performed in order to select predictor variables and opti-
mal model parameters, and an outer cross-validation was
used to produce overall accuracy estimates for the classi-
fier. In the first step, we considered all the differentially
expressed genes for inclusion in the model and then in the
next step(s), for selecting the top 50 or 100 genes, expres-
sion of which could be used to differentiate the FFPE sam-
ples from the FF samples, we used 3-way ANOVA
["storage” (FFPE or FF) adjusted for “tissue type” (tumor or
normal) and “person-to-person” variation]. We tested three
classification methods - (a) K-Nearest Neighbor (KNN)
with Euclidean distance measure and 1-neighbor, (b) near-
est centroid with equal prior probability and (c) linear dis-
criminent analysis with equal prior probability.
Statistical power
In genome-wide gene expression experiments requiring
multiple testing, it is more powerful and more reason-
able to control false discovery rate (FDR) or positive
FDR (pFDR) [12-14] instead of type I error. We fol-
lowed that strategy for sample size calculation. When
controlling FDR, the traditional approach of estimating
sample size by controlling type I error is no longer
applicable [15]. In their paper, Liu P and Hwang JTG
have compared calculations of sample size using four
different approaches - all of which had good agreement
and show that, for standardized effect size Δ/s = 1 [e.g.,
for fold change of 1.4 with s = 0.5; Δ/s = (log2 1.4)/0.5)
= 1], if identification of 95% of the truly altered genes
are desired (our set target), then the estimated sample
size for each group would be between 33 and 34. For
standardized effect size Δ/s = 2 [in other words, for
fold change of 2 with s = 0.5; as Δ/s = (log2 2)/0.5) =
2], if identification of 95% of the truly altered genes is
desired (our set target), then the estimated sample size
for each group would be 11. Therefore, our study was
sufficiently powered to detect a 1.4-fold change differ-
ence in the combined analysis and a 2-fold change in
the subgroup analysis where FF and FFPE samples were
analyzed separately.

Results
Performance of the assay, evaluated by the number of
detected genes per sample, was impressive. Among the
18,391 genes on the DASL assay, on average, about
11290 genes (61.4%) were detected in each sample at
p < 0.05 level. A gene was said to be detected at p <
0.05 level if the mean signal intensity from multiple
probes for that gene was significantly higher (at the
level of p < 0.05) than the negative control on the same
chip. Table 1 shows that the number of genes detected
per sample at p < 0.05 level per sample was comparable
in all the four tissue types (N_FF, T_FF, N_FFPE and
T_FFPE), suggesting uniform performance of DASL
across FF and FFPE samples stratified by tissue type.

The average signal intensity for all the genes and for the
housekeeping genes are also shown in Table 1.

Reproducibility
We ran 4 samples in duplicate (technical replicates) to
check the reproducibility. A representative figure show-
ing the correlation between log2 signal intensities is pre-
sented in Figure 1A which shows r2 = 0.98, suggesting
acceptable reproducibility. The central line represents
the regression line and the two lines on either side of
the central line represent the boundary for 2-fold
change.
Correlations of log2 signal intensity between a pair of

RNA samples extracted from N_FF and N_FFPE tissue
(r2 = 0.86) and between T_FF & T_FFPE tissue (r2 =
0.75) from same subject (case ID#50527) are shown in
Figure 1B and Figure 1C respectively. Both the graphs
show that in normal as well as in tumor tissue, a num-
ber of genes were found to be more than 2-fold up- or
down-regulated in FFPE samples compared to corre-
sponding FF samples. Similarly, correlations between
signal intensity from paired RNA samples extracted
from N_FF and corresponding T_FF tissue (r2 = 0.85)
and paired RNA samples extracted from N_FFPE and
T_FFPE tissue (r2 = 0.72) from the same subject (case
ID#50527) are shown in Figure 1D and Figure 1E
respectively. As expected, in both the FF and FFPE sam-
ples, there were a number of genes that were more than
2-fold up- or down-regulated in the tumor tissue com-
pared to the corresponding normal tissue.

Sources of variation in the gene expression
As part of the quality control of the data, we utilized
principle component analysis (PCA) which indicated
only one sample as an outlier. This sample had only
4606 genes detected at p < 0.05 level and also had a
ΔCt = 12.36. We excluded this sample from further ana-
lysis. PCA on the remaining 71 breast tissue samples is
shown in Figure 2A, where the samples are color-coded
by of sample storage type. The figure suggests a cluster-
ing effect of sample storage type. When we color-coded
the samples by tissue type (normal or tumor, i.e. “dis-
ease”), we also saw a clustering effect of tissue type, but
less prominent than for the type of sample storage.
In the next step, to further investigate the source of

variation in the expression, we used multivariate
ANOVA. We did not use any filter for selecting the
genes to be included in the analysis. In other words,
ANOVA was performed on log2-transformed intensity
value for all the 18,391 genes irrespective of their level
of detection. The average F-ratio (F-statistics for the test
variable/F-statistics for error) for all the genes was con-
sidered as representative of significance of signal-to-
noise ratio. Figure 2B shows the significance of different
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sources of variation in the entire data in a model where
tissue type (tumor/normal), sample storage (FFPE/FF)
and person-to-person variation (case ID#) were entered
as explanatory variables at a time for gene expression.
The figure shows that “sample storage” (F ratio 16.02)
was the most significant source of variation, followed by
the “disease status” (F-ratio 7.14) and person-to-person
variation (F-ratio 2.22).

Differential gene expression in FFPE samples compared
to FF
In the total set of 71 breast samples, we looked at the
genome-wide (n = 18,391) differential gene expression
in FFPE samples compared to FF samples after adjust-
ment for tissue type (tumor/normal), and inter-person
variation. There were a total of 9186 differentially
expressed genes (49.94% of 18391) at FDR 0.05. Con-
cerning fold change, a total of 1864 genes had > 2-fold
change in either direction (1098 up- and 766 down-
regulated). Combining these two criteria, there were a
total of 1863 genes (10.12% of total 18,391 genes) that
were differentially expressed by at least 2-fold at FDR
0.05 level (766 up- and 1097-down-regulated in FFPE).
For the statistically most significantly (p = 2.17 × 10-28)

differentially expressed gene, GIGYF1, 83.6% of the
variation was due to “storage”. Taking all of these 1,863
differentially expressed genes in FFPE samples into
account, we found that overall 30.32% of the variation
in individual gene expression was contributed by “sto-
rage” (FFPE or FF), 4.94% by tissue type (tumor or nor-
mal), 25.43% by “person-to-person” variation and the
rest 39.31% of the variation could not be explained by
the ANOVA model. It may be noted that among these
1,863 genes, a total of 138 genes (7.4%) were also differ-
entially expressed (at least two-fold change) in tumor
tissue compared to healthy tissue at FDR 0.05 in our
data set. In the Breast Cancer Gene Database (BCGD)
[16], there was a total of 62 genes of which 51 were stu-
died in our gene-chip. We also looked if the expression
of any of those 51 breast cancer related genes in BCGD
list was also found to be affected by FFPE in our setting.
In fact five of them (APC, CDKN2A, IGF1R, TGFA and
TSG101) were in our list. We also separately tested the
normal and tumor tissue data to see the effect of FFPE
preservation. In the analysis of normal tissue only, a
total of 2820 genes in FFPE samples were differentially
expressed (1712 down- and 1108 up-regulated) at least
by 2-fold at FDR 0.05 level, compared to corresponding

Table 1 Sample characteristics and assay performance

N Mean 95% Confidence Interval for Mean ANOVA

Lower Bound Upper Bound Sig.

Detected Genes (0.05) N_FF 18 11274.94 10750.46 11799.43 0.788559493

T_FF 18 11283.50 10278.99 12288.01

N_FFPE 18 11063.11 10498.01 11628.21

T_FFPE 18 11542.39 10951.83 12132.94

Total 72 11290.99 10965.42 11616.55

Signal Average N_FF 18 1980.32 1972.98 1987.65 1.37991E-10

T_FF 18 1951.04 1939.61 1962.46

N_FFPE 18 1932.33 1922.32 1942.33

T_FFPE 18 1929.77 1918.58 1940.97

Total 72 1948.36 1941.68 1955.05

HOUSEKEEPING N_FF 18 6879.53 5605.81 8153.24 0.168579448

T_FF 18 7897.44 6729.16 9065.73

N_FFPE 18 6620.02 5638.74 7601.30

T_FFPE 18 8180.73 6767.25 9594.20

Total 72 7394.43 6809.35 7979.51

Block_Age N_FF 18 3.83 3.44 4.22 1

T_FF 18 3.83 3.44 4.22

N_FFPE 18 3.83 3.44 4.22

T_FFPE 18 3.83 3.44 4.22

Total 72 3.83 3.65 4.01

Difference of CT N_FF 18 7.45 6.69 8.21 0.011648246

T_FF 18 8.36 7.27 9.45

N_FFPE 18 9.53 8.47 10.59

T_FFPE 18 7.87 7.00 8.74

Total 72 8.30 7.83 8.78

Kibriya et al. BMC Genomics 2010, 11:622
http://www.biomedcentral.com/1471-2164/11/622

Page 5 of 23



FF samples. Cluster analysis based on these genes could
effectively separate the FFPE samples from the FF sam-
ples (see Figure 3A). In the analysis of tumor tissue
only, a total of 1159 genes in FFPE samples were differ-
entially expressed (555 down- and 604 up-regulated) at
least by 2-fold at FDR 0.05 level, compared to corre-
sponding FF samples. Cluster analysis based on these
genes also could effectively separate the tumor FFPE
samples from the tumor FF samples (figure not shown).
The Venn diagram in Figure 3B shows the overlap
among these gene lists obtained from (a) combined

analysis, (b) normal tissue alone and (c) tumor tissue
alone to look for differentially expressed genes in FFPE
tissue compared to corresponding FF tissue.
Cross-validation
A 10 × 10 two-level nested cross-validation analysis
using all the 1,863 differentially expressed genes in FFPE
in present study suggested that the expression of these
genes could differentiate FFPE samples from FF samples
with overall accuracy of 95.7%. The same 10 × 10 two-
level nested cross-validation analysis suggested that the
expression of the top 100 genes could be used in a

Figure 1 Scatter plot of the log2-transformed signal intensities. Scatter plot of the log2-transformed signal intensities of representative
samples are shown in 1A - 1E. The central straight line represents the regression line and the two lines on the either sides mark the boundaries
for 2-fold changes. Pearson correlation coefficient squared (r2) for each scatter plot is shown on the top. Figure-1A shows the signal intensities of
two technical replicates of RNA samples. Figure-1B & 1C show correlations between corresponding FF (x-axis) & FFPE samples (y-axis) in normal
breast tissue and tumor tissue respectively. Figure 1D & 1E show correlations between corresponding tumor (y-axis) and normal (x-axis) tissue
from same patient using FF and FFPE samples respectively.
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model that could differentiate FFPE samples from FF
samples with overall accuracy of 100%. We also tested
the top 50 genes, and again the overall accuracy was
100%. This further supported our ANOVA finding that
a number of genes are differentially expressed in FFPE
samples compared to their corresponding FF sample.

Differential expression profile at “gene set” level in FFPE
samples compared to corresponding FF
In addition to individual gene level analysis, we also
performed GSEA to find out “gene sets” that are up- or
down-regulated in FFPE. The top five “gene sets” (each
representing a GO-category) that were down-regulated in
FFPE include: “nucleotide excision repair, DNA gap filling”
(normalized enrichment score- NES 2.11), “negative
regulation of epithelial cell proliferation” (NES 1.98), “cha-
perone binding”, “DNA polymerase activity” and “DNA-
directed DNA polymerase activity”. The up-regulated
GO-category includes: “positive regulation of gene-specific
transcription” (NES -1.95), “regulation of Rho protein sig-
nal transduction”, “Rho guanyl-nucleotide exchange factor
activity”, “dopamine receptor signaling pathway”, and “thy-
mic T cell selection”. GO-ANOVA also confirmed these

findings. Figure 4 shows one of the examples: the genes in
GO-category “negative regulation of epithelial cell pro-
liferation“ (p = 6.65 × 10-14) were overall down-regulated
in FFPE.
Considering the effect of FFPE on the gene expression,

we then looked at the differential gene expression in
tumor tissue compared to adjacent normal tissue in two
ways - (a) looking at the combined data (FF and FFPE)
with adjustment for “sample storage” and “person to
person variation” and (b) looking at the FF and FFPE
data separately with paired comparisons to detect differ-
ential expression in tumor and to see if similar conclu-
sion(s) could be made.

Differential gene expression in breast tumor tissue
compared to corresponding adjacent normal breast tissue
Among the 18 individuals included in the analyses of
breast tissues, one had fibroadenoma, 3 had no abnormal-
ity detected and in one the histopathology was unknown.
Therefore, to get a clearer picture of genes differentially
expressed in breast cancer, we included 52 samples from
13 patients with known histopathological diagnosis of
breast cancer (4 samples from each patient). Of these

Figure 2 Principle components analysis (PCA) and sources of variation. A: Principle components analysis (PCA) of 71 samples displaying
spatial separation (expression level clustering) of RNA extracted from FF samples (shown in red on left) and FFPE samples (shown in blue on
right); The three principle components (PC#1, #2 & #3 and respective contributable variations are presented on x-, y- and z-axis along). B:
Statistical significance of the different “sources of variation” in the total gene expression estimated by 3-way ANOVA models. F ratio for each
factor (source) represents the F-statistics for that factor/F-statistics for error (noise). The mean of the F Ratio for all the genes for a particular
factor are shown on Y-axis and the different factors (sources of variation) are shown in x-axis.
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52 samples, one FF tumor sample was excluded due to
poor performance on the chip (an outlier on PCA, as men-
tioned above). The analysis was restricted to the 51 arrays.
In addition to PCA, we also used unsupervised hierchical
clustering based on all 18,391 genes which showed cluster-
ing by sample storage (FF/FFPE) as well as by histopathol-
ogy [figure not shown].
In this total set of 51 samples, we looked at the gen-

ome-wide (n = 18391) differential gene expression in
breast tumor tissue compared to adjacent normal tissue
after adjustment for “sample storage” (FF/FFPE), and
“person to person variation” (case ID#). There were a
total of 1319 genes (7.17% of total 18,391 genes; 604
were up-regulated and the rest 715 were down regulated
in tumor) that were differentially expressed at least by
2-fold at FDR 0.05 level.
In the next step, we analyzed the data separately for

FF and FFPE samples to evaluate the significance of
“batch effect” and “sample block age” as sources of var-
iation in the overall gene expression data. The F-ratio

for these factors in these two types of sample storage
methods are shown in Figure 5A and Figure 5B, respec-
tively. The data shows that both the “batch effect” and
“block age” contributed more significantly as the source
of variation in overall expression data in the FFPE sam-
ples. However, by study design we assayed the paired
samples on the same chip to minimize batch-effect. In
paired analysis of the FF samples (tumor & adjacent
normal), a total of 1275 genes were differentially
expressed in breast tumor tissue by at least 2-fold at
FDR 0.05 level (503 up- and 772 down-regulated in
tumor). On the other hand, using the same criteria in
FFPE samples, a total of 966 genes were differentially
expressed in breast tumor (346 up-and 620 down-
regulated in tumor).
Figure 5C shows the overlap of differentially expressed

genes in the FF and FFPE samples and combined analysis.
Only 315 genes were picked in both FF and FFPE sam-
ples, and all these 315 were also picked-up in the com-
bined analysis. In other words, only one-third of the

Figure 3 Unsupervised hierarchical clustering and lists of differentially expressed genes in FFPE. A. Heat map of hierarchical clustering.
Normal breast tissue samples in FFPE (color coded and labeled at the top) and corresponding FF samples are shown in columns. Log2
transformed signal intensities of 2820 differentially expressed genes are shown in color code (bar at bottom) in rows. B. Venn diagram showing
overlap between the three lists of the differentially expressed genes (at FDR 0.05 level and at least 2-fold) in FFPE compared to FF samples from
three different analyses - normal breast tissue only (bottom left showing 2820 genes), corresponding breast tumor tissue only (bottom right
showing 1159 genes) and combined analysis of normal & tumor tissue (top center showing 1863 genes).
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differentially expressed genes in tumor detected in FF
samples could be picked up in FFPE samples and only
one-fourth of the differentially expressed genes in tumor
found in FFPE samples would be picked up in FF sam-
ples. Having this in mind, we further analyzed the lists of
differentially expressed genes for GO-Enrichment to see
if genes of similar GO- groups were found to be enriched
in these lists derived from FF and FFPE samples.

How do these gene lists compare to breast cancer or
multiple cancer signatures from prior studies
Ein-dor et al [17] correctly described earlier that several
microarray studies yielded gene sets whose expression

profile successfully predicted survival, but the overlap
between these gene sets was very low. We compared our
three gene lists (FF, FFPE and from combined analysis)
with some of the published data related to prognosis/sur-
vival [16,18-21] in breast and/or other cancer and two
commercially available gene sets for real-time PCR assays
from SA BioScience http://www.sabiosciences.com/
ArrayList.php. It was not surprising to see different
degree of overlap [see Table 2]. However it was interest-
ing to see the predictive accuracy of those different gene
lists from different studies or sources in our data set. For
example, although only 4 out of 51 genes in BCGD list
[16] was common with our 1319 genes, expression

Figure 4 Result from “gene set” analysis - GO-ANOVA. GO-ANOVA result for Differential gene expression of the gene set “negative regulation
of epithelial cell proliferation” in FFPE. The members of this category are shown in x-axis and the corresponding log2-transformed expression is
presented on y-axis; error bar represents SE.
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pattern of those 51 genes could correctly identify 39 out
of 51 samples included in our study (predictive accuracy
76.53%). On the other hand, 10 out of 21 genes of the
Martin KJ et al [18] list (almost 50%) overlapped with our
list from combined analysis; however prediction based on
expression of those 21 genes in our data set was just
slightly higher at 80.23%.

GO Enrichment Analyses of the lists of differentially
expressed genes in breast cancer tissue compared to
normal breast tissue in FF and FFPE samples
The GO-Enrichment analysis tests if the genes found to
be differentially expressed (at individual gene level) in a
given list fall into a Gene Ontology category more often
than expected by chance. Enrichment score was

Figure 5 Sources of variation & lists of differentially expressed genes in breast cancer. A. Estimated measures of significance of the
sources of variation in gene expression data in FF samples. B. Estimated measures of significance of the sources of variation in gene expression
data in FFPE samples. C. Venn diagram showing overlap between three lists of differentially expressed genes (at FDR 0.05 level and at least
2-fold) in breast cancer tissue compared to corresponding adjacent normal breast tissue from three different analyses -using only FF samples
(top center, showing 1275 genes), using only FFPE samples (bottom left, showing 966 genes) and using both the FF and FFPE samples in a
combined analysis (bottom right, showing 1319 genes).
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calculated as the negative log of the p-value of the test
statistics. Hence, higher enrichment scores represent
lead functional GO-groups. The functional groupings
are sometimes easier to understand than pathways. The
scores are used to rank the functional groupings. In GO,
the genes are categorized into different GO-terms in
three ways: (a) by “biological process”, (b) by “molecular
function” and (c) by “cellular components”. First, we
used GO-Enrichment analysis for the two lists of up-
regulated genes in breast tumor derived from analysis of
FF and FFPE samples. Figure 6(i) and Figure 6(ii) show
hierarchical clustering of the enrichment scores for the
“cellular process” category under the broad term “Biolo-
gical process” for FF and FFPE samples respectively. It
may be noted that in both the lists derived from FF and
FFPE samples, the GO-term “cell division” and “cell
cycle” were the top-ranking lead groups. This is very
much biologically relevant with respect to any carcino-
genesis in general. In fact, enrichment scores of “cell
division” and “cell cycle” related genes constituted
56.87% of the total score for the “cellular process” for
the up-regulated genes found in FF samples and 63.2%
of the up-regulated genes found in FFPE sample. Simi-
larly, we looked at the GO-Enrichment analysis for the
down-regulated gene lists in tumor derived from FF and
FFPE samples (see Figure 7(i) and Figure 7(ii) respec-
tively for “biological process” categorization). The top-
ranking functional lead groups show similarity between
the gene lists derived from FF and FFPE samples. Simi-
larly, under the broad category “Cellular components”,
the GO-term “extracellular region” comes up in both
FF as well as FFPE samples (results not shown),

emphasizing the significance of alteration in the extra-
cellular matrix in breast carcinogenesis.
Therefore our findings suggest that the analysis of

FFPE samples does not identify the exact same genes
that would have been identified by analyzing FF samples,
but at least, the list shows some similarity in terms of
enrichment of GO-terms representing the lead func-
tional groups of genes. In other words, FFPE samples
may not be ideal for picking individual target gene(s),
but may be used to identify the lead functional group(s)
of genes that are differentially expressed in tumor.
For the up-regulated genes in breast tumor, that we

found by analyzing the FF samples (and also in FFPE
samples), if we looked at the enrichment of GO-terms
under all the three major groups together - “biological
process”, “molecular function” and “cellular compo-
nents”, the top most ranking GO-term was “nucleo-
some“ under “cellular components”. All the
up-regulated genes under this GO-term are from the
same family of genes that are related to HIST1 and
HIST2 proteins.
For the down-regulated genes in breast tumor, that we

found by analyzing the FF samples, if we look at the
enrichment of GO-terms under all the three major
groups - “biological process”, “molecular function” and
“cellular components”, the top ranking GO-term was
“regulation of epithelial cell proliferation“ under the
“biological process”. This finding is also very much rele-
vant in the context of breast cancer pathogenesis. These
down-regulated genes include FGF2, FGF9, APC, IGF1,
CDKN2B, NOTCH1, LAMC1, LAMB1, NKX3-1, TBX18,
and GAS1.

Table 2 Overlap between our gene lists and the lists from other studies &/or sources

Martin et
al [18]

Multiple cancer
gene list **

SA Bioscience
Cancer Panel

SA Bioscience Breast
Cancer panel

Baasiri et al.
(BCGD) [16]

n = 21 n = 184 n = 83 n = 83 n = 51

List from combined
analysis, n = 1319

overlap 10 18 8 10 4

% correct* 80.23 88.07 80.30 82.15 76.38

List from analysiss of FF
samples, n = 1275

overlap 2 13 5 2 5

% correct* 75.64 79.80 76.92 75.64 83.65

List from analysiss of FFPE
samples, n = 966

overlap 7 10 8 9 1

% correct* 84.61 88.46 88.46 80.76 76.92

*All the genes in the external list were used in a model to predict the tissue type (tumor or normal) in our data set to calculate the % correct rate. For all
models, nearest centroid with equal prior probability was used as classification method. ** Gene lists are combined from Su et al [20], Yu et al [21] and
Ramaswami et al.[19]
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We performed GO-Enrichment analysis of the 315
genes common in all the three ANOVA analyses - (a)
FF samples, (b) FFPE samples and in (c) combined ana-
lysis. Subsequent hierarchical clustering suggested that a
number of those genes (including PPARG, FGF2, APOB,
CRHBP, CETP, and RXRG) were significantly associated

with breast cancer that appeared repeatedly in different
GO-terms. For example, PPARG was significant in the
GO-terms “anatomical structure development”, “organ
development”, “developmental maturation”, “lipid meta-
bolism”, “regulation of biological quality”, “transcription
factor activity”, “molecular transducer activity”, “drug

Figure 6 GO-Enrichment for up-regulated genes. GO-Enrichment analysis of the up-regulated genes for “cellular process” under the broad
category “Biological process” in FF samples (on left) and in FFPE samples (on right). Different GO-terms are shown in vertical axis with
Enrichment score in parenthesis.

Figure 7 GO-Enrichment for down-regulated genes. GO-Enrichment analysis of the down-regulated genes for “cellular process” under the
broad category “Biological process” in FF samples (on left) and in FFPE samples (on right).
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binding”, and “lipid binding”. The dot plot in Figure 8
shows the expression of PPARG and FGF2 in paired
samples (breast tumor and adjacent normal tissue; cor-
responding samples from same patient are connected by
line) preserved as FF as well as FFPE sections. PPARG is
shown to be down-regulated in breast cancer in all the
patients and FGF2 is shown to be down-regulated in
breast cancer in all but one patient in both FF and FFPE
sections.

Interaction between “tissue type” and “sample storage”
In mixed model ANOVA, we also entered the interaction
term “tissue type (tumor/normal) × sample storage (FFPE/
FF)” to identify the genes that show a different degree, or
even direction, in differential expression in tumor com-
pared to normal tissue for FF or FFPE samples. There
were a total of 772 genes that showed significant

interaction at FDR 0.05; of which 178 also had differential
expression in tumor at FDR 0.01 with at least 1.4-fold
change (see Table 3). The present study suggests that dif-
ferential expression of these genes in tumor should be
cautiously interpreted if FFPE samples are studied. Figure
9(i) shows differential expression of a gene (LPL) without
any significant interaction. Expression of the LPL gene was
down-regulated in tumor tissue compared to adjacent nor-
mal tissue in an identical fashion in both FF as well as
FFPE samples. On the other hand, Figure 9(ii-iv) shows
the examples of the genes which show significant interac-
tion, i.e. degree of differential expression in tumor (com-
pared to normal), is significantly influenced by the storage.
For example, if we look at the expression of ZNF800 gene
[Figure 9(iv)] in FF tissue, we would notice significant
down-regulation in tumor, but if we look at FFPE samples,
there was no differential expression in tumor.

Figure 8 Dotplot for PPARG and FGF2 in FF and FFPE samples. Dot plots for “PPARG“ are shown in upper panel and that of “FGF2“ in the
lower panel. In each panel data from FF samples are shown on the left plot and that of FFPE is shown on the right plots. In each dot plot,
corresponding samples are joined by straight lines (indicating same patient), the gene expression in normal tissue is shown in red on left side
and that of tumor tissue is shown in blue on right side of each dot plot. Each box extends from 25th to 75th centile with a central mark for 50th

centile; the whiskers show 10th and 90th centile for each set of data.
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Table 3 List of 178 genes that show significant “Tissue * Storage” interaction and are also differentially expressed in
breast cancer tissue at FDR 0.05 level with at least 1.4 fold change in the combined analysis

GENE_SYMBOL p-value
(Disease)

p-value
(Storage)

p-value
(Case

ID)

p-value (Disease *
Storage)

Fold- Change (Tumor vs.
Normal)

Fold-Change (FFPE vs.
FF)

WRB 1.78E-03 3.40E-09 7.35E-07 6.59E-06 -1.41 -2.21

TPCN1 1.10E-05 8.55E-01 4.37E-05 6.85E-06 1.66 1.02

ANKFY1 1.95E-06 7.64E-01 1.04E-04 7.24E-06 1.42 1.02

CYP2U1 2.62E-08 8.80E-10 1.16E-03 1.01E-05 -1.98 -2.22

SMTN 9.55E-04 1.47E-01 2.11E-04 1.24E-05 1.47 1.17

LNX1 2.10E-05 7.85E-04 3.50E-02 1.30E-05 -1.90 -1.62

CBL 2.48E-05 8.60E-06 2.30E-05 1.71E-05 -1.62 -1.68

KLHL2 9.67E-04 1.51E-10 2.73E-07 1.72E-05 -1.46 -2.57

AKAP8L 1.75E-07 1.64E-01 6.17E-04 1.87E-05 1.75 1.13

RFXANK 1.13E-07 3.60E-01 9.57E-05 2.32E-05 1.65 1.07

CTBP1 1.41E-06 6.11E-05 7.37E-06 2.94E-05 1.54 1.40

HELB 7.51E-08 6.99E-06 3.10E-03 3.78E-05 2.89 2.28

CCDC101 5.10E-05 7.93E-01 1.24E-02 4.39E-05 1.51 -1.02

SFRS16 6.63E-04 7.91E-05 2.77E-02 4.66E-05 1.58 -1.73

C2orf33 1.98E-03 5.92E-02 5.27E-11 4.77E-05 -1.41 -1.22

SMARCB1 7.18E-10 1.10E-02 2.94E-04 5.15E-05 1.81 1.21

TOLLIP 4.00E-07 9.39E-02 9.85E-05 5.16E-05 2.58 1.30

PLEC1 4.76E-06 1.18E-09 3.41E-05 6.28E-05 1.71 2.26

EBNA1BP2 2.76E-05 5.97E-03 4.00E-05 6.47E-05 1.41 -1.23

EFTUD2 4.09E-06 1.28E-03 6.33E-02 6.59E-05 1.40 1.24

POLDIP3 1.58E-07 2.39E-01 6.11E-03 8.18E-05 1.44 1.07

RPL6 1.21E-10 3.21E-04 6.06E-04 8.22E-05 2.53 1.51

ITIH5 4.60E-05 6.68E-01 1.87E-02 8.39E-05 -1.56 1.04

GBF1 1.18E-08 4.35E-03 1.05E-03 1.00E-04 1.97 1.32

MAEA 2.50E-08 4.61E-02 7.21E-02 1.03E-04 1.68 1.16

CCT2 1.17E-08 6.92E-05 2.15E-04 1.15E-04 1.71 1.39

SMC6 5.61E-04 4.28E-03 1.65E-05 1.31E-04 -1.51 -1.40

C19orf61 8.87E-08 4.16E-01 2.55E-02 1.31E-04 1.99 1.09

VPS28 1.63E-06 1.44E-01 7.92E-04 1.34E-04 1.62 -1.13

QTRT1 2.39E-04 4.20E-01 8.43E-01 1.37E-04 1.60 1.10

RPL12 5.18E-06 1.54E-01 4.17E-02 1.40E-04 1.49 -1.11

CNOT3 4.87E-07 9.43E-01 1.48E-03 1.43E-04 1.72 -1.01

BANF1 7.48E-09 1.49E-03 1.84E-04 1.51E-04 1.57 1.23

AATF 1.92E-07 8.25E-02 1.08E-03 1.58E-04 1.76 -1.17

NDUFAF1 2.59E-05 8.26E-11 1.35E-01 1.60E-04 -1.49 -2.12

SDCCAG1 2.36E-05 1.39E-01 3.91E-04 1.69E-04 1.50 -1.13

BNIP1 2.36E-05 5.09E-04 5.73E-03 1.72E-04 1.53 1.39

LOC728758 3.19E-04 1.24E-02 6.97E-03 1.74E-04 -1.82 1.49

RPL23AP7 1.52E-06 5.66E-10 1.00E-01 1.79E-04 1.41 -1.65

LSM11 7.45E-07 5.36E-01 1.06E-02 1.87E-04 1.58 1.05

CLPTM1 3.20E-06 6.03E-04 1.21E-04 1.88E-04 1.58 1.37

POGZ 8.70E-05 5.28E-07 2.38E-02 1.91E-04 1.48 1.71

SC5DL 7.77E-07 3.64E-02 2.47E-08 2.02E-04 -1.61 1.19

XRCC6 9.50E-07 6.25E-01 4.42E-03 2.13E-04 1.83 1.05
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Table 3: List of 178 genes that show significant ?“?Tissue * Storage?”? interaction and are also differentially expressed
in breast cancer tissue at FDR 0.05 level with at least 1.4 fold change in the combined analysis (Continued)

LOC205251 7.83E-04 2.26E-04 5.18E-03 2.41E-04 1.57 -1.66

PLEKHG1 1.89E-06 5.93E-05 2.48E-04 2.42E-04 -2.18 -1.87

SPATA22 1.33E-05 1.92E-02 4.97E-04 2.48E-04 -2.62 -1.60

CENTB5 5.14E-05 7.22E-02 5.84E-04 2.54E-04 1.67 1.23

ZCCHC8 8.69E-06 1.74E-02 1.17E-02 2.67E-04 1.47 1.20

KLHL20 4.97E-06 9.02E-02 5.65E-01 2.77E-04 -1.62 1.17

BANK1 2.22E-08 3.82E-05 6.06E-03 2.93E-04 -2.95 -2.03

SGTA 3.52E-04 5.78E-02 3.09E-04 2.93E-04 1.57 -1.25

ACIN1 1.88E-05 4.24E-10 4.33E-03 2.98E-04 1.45 1.91

RCE1 2.27E-08 3.07E-05 4.81E-03 3.16E-04 1.81 1.49

NUDT13 1.37E-05 2.79E-06 4.24E-04 3.33E-04 -1.45 -1.51

GPR64 4.44E-09 1.13E-04 1.69E-03 3.33E-04 -2.75 -1.77

STAMBPL1 4.63E-04 1.47E-05 1.28E-01 3.44E-04 -1.41 -1.56

SHKBP1 2.42E-06 1.23E-07 8.23E-04 3.71E-04 1.49 1.60

C9orf86 2.04E-05 6.48E-01 1.82E-03 3.81E-04 2.40 -1.09

ECHDC1 2.80E-06 3.82E-03 2.11E-06 3.88E-04 -2.04 -1.49

EDF1 5.10E-06 2.30E-01 8.34E-05 4.12E-04 1.42 1.08

PRMT7 2.10E-04 8.12E-01 6.42E-03 4.12E-04 2.11 1.04

HERC2P2 7.56E-04 9.75E-03 6.71E-01 4.36E-04 1.85 1.58

TOPORS 1.21E-04 2.75E-06 1.66E-06 4.37E-04 -1.64 -1.90

RCBTB2 1.80E-04 2.21E-06 1.76E-05 4.38E-04 -1.53 -1.77

BRF1 4.92E-06 5.96E-02 5.32E-05 4.40E-04 1.92 1.26

LOC440836 2.48E-04 3.96E-09 2.34E-04 4.45E-04 2.13 4.21

ZNF800 2.21E-03 4.28E-06 1.26E-05 4.48E-04 -1.46 -1.87

IGBP1 3.76E-04 1.23E-04 7.30E-02 4.62E-04 1.77 1.87

SLCO1C1 7.65E-11 1.40E-05 7.92E-06 4.71E-04 -2.18 -1.53

CCDC97 2.50E-05 2.67E-04 2.14E-02 4.73E-04 1.65 -1.52

ARMCX1 2.36E-05 1.27E-05 6.04E-06 5.06E-04 -1.87 -1.92

PCAF 6.56E-06 2.64E-09 7.50E-05 5.09E-04 -1.53 -1.89

INPP5A 1.98E-03 1.20E-03 4.68E-04 5.26E-04 -1.45 -1.48

FGFR1OP2 1.03E-04 2.73E-03 5.53E-05 5.32E-04 -1.47 -1.33

ZBTB37 1.07E-03 8.73E-01 3.47E-05 5.33E-04 1.61 -1.02

ERGIC1 5.17E-07 1.05E-02 1.77E-02 5.42E-04 1.64 -1.24

THAP10 3.18E-04 1.96E-03 2.71E-02 5.62E-04 -1.70 -1.56

CSTF2T 1.64E-03 2.02E-10 3.38E-05 5.71E-04 -1.55 -3.08

CTNND1 1.96E-06 5.30E-05 2.25E-01 5.72E-04 1.49 1.38

CKS2 2.43E-05 9.21E-04 2.19E-01 5.73E-04 2.73 -2.11

C7orf26 1.34E-04 4.08E-01 5.39E-02 5.75E-04 1.55 1.09

PRKAR1B 6.89E-04 1.47E-01 1.68E-01 5.79E-04 1.76 1.25

NF2 8.23E-08 1.54E-01 8.02E-03 5.88E-04 1.60 1.11

UBR4 2.48E-05 9.60E-08 5.01E-02 6.22E-04 1.53 1.80

UFM1 2.30E-05 5.45E-01 4.26E-09 6.36E-04 -1.45 -1.05

ARID1B 1.38E-03 1.01E-03 5.96E-01 6.39E-04 1.43 1.44

TSPAN12 7.09E-06 1.31E-07 2.74E-06 6.41E-04 -2.17 -2.63

TXNDC5 4.99E-08 2.44E-08 6.66E-04 6.45E-04 1.77 1.81
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Table 3: List of 178 genes that show significant ?“?Tissue * Storage?”? interaction and are also differentially expressed
in breast cancer tissue at FDR 0.05 level with at least 1.4 fold change in the combined analysis (Continued)

CLTC 9.24E-05 7.98E-11 3.76E-04 6.57E-04 -1.45 -2.16

C17orf38 1.38E-03 1.16E-01 3.79E-01 6.58E-04 1.84 1.33

SHOC2 3.10E-04 3.40E-08 9.38E-03 6.73E-04 -1.46 -1.94

MAN2B1 1.59E-04 1.04E-04 1.87E-02 6.88E-04 1.47 1.49

FUCA2 3.16E-04 1.16E-03 1.02E-02 6.92E-04 -1.74 -1.63

MED24 4.68E-07 7.29E-01 1.60E-03 7.36E-04 1.82 -1.03

C1orf86 2.05E-08 8.20E-02 2.70E-05 7.73E-04 1.85 -1.16

TUBGCP6 2.57E-05 2.13E-02 1.35E-02 7.77E-04 1.47 1.21

PLCB3 3.60E-05 1.98E-02 3.19E-02 7.84E-04 1.50 -1.23

PAN3 1.27E-05 3.57E-09 1.41E-04 7.84E-04 -1.44 -1.75

BDH2 8.19E-06 1.98E-06 6.92E-03 7.87E-04 -2.50 -2.71

NR3C2 6.25E-07 2.97E-11 1.65E-03 7.93E-04 -2.29 -3.68

TRIM44 1.74E-04 2.28E-03 9.50E-03 8.03E-04 -1.80 -1.59

RBM42 3.45E-08 8.38E-01 1.16E-04 8.14E-04 1.40 -1.01

IQCB1 1.52E-06 7.01E-04 5.37E-03 8.21E-04 1.61 1.36

TMEM106B 4.98E-04 1.77E-05 2.12E-14 8.24E-04 -1.51 -1.70

C9orf142 5.85E-12 4.64E-03 4.62E-05 8.46E-04 1.90 -1.21

ADRM1 2.00E-05 9.59E-01 1.31E-04 8.49E-04 1.40 1.00

NOC4L 6.75E-04 3.10E-04 2.61E-03 8.54E-04 1.46 1.50

ZFYVE16 6.13E-04 1.66E-02 1.16E-03 8.63E-04 -1.54 -1.33

HPS1 1.80E-04 5.28E-04 1.53E-03 8.68E-04 1.72 1.64

RAB4B 2.82E-05 6.19E-06 1.50E-04 8.90E-04 2.82 3.14

MUT 2.14E-05 2.01E-06 7.54E-05 8.96E-04 -1.66 1.79

HNRNPL 4.63E-06 5.51E-03 1.18E-01 9.18E-04 1.61 1.30

LIN7C 2.12E-04 1.28E-06 5.96E-07 9.22E-04 -1.61 -1.96

VCPIP1 1.49E-03 3.15E-06 5.03E-02 9.42E-04 -1.42 -1.76

DLD 9.70E-04 8.80E-08 1.75E-03 9.49E-04 -1.49 -2.09

DLAT 2.09E-05 3.75E-02 1.21E-06 9.73E-04 -1.54 -1.21

FGF13 2.54E-04 6.38E-08 8.76E-03 9.89E-04 -1.75 -2.55

C5orf41 7.05E-05 1.75E-09 5.73E-03 1.05E-03 -1.48 -2.01

TMEM134 2.70E-08 5.91E-02 1.18E-03 1.05E-03 2.00 -1.21

C12orf39 4.41E-12 3.12E-03 2.44E-05 1.06E-03 -6.13 1.75

YAP1 2.16E-06 5.80E-07 1.46E-04 1.08E-03 -1.58 -1.64

NOC2L 2.15E-04 2.66E-02 6.49E-04 1.10E-03 1.63 -1.32

MAL2 3.09E-04 8.75E-06 2.33E-02 1.12E-03 1.87 -2.25

PTPLAD1 1.17E-05 8.28E-10 2.11E-02 1.13E-03 1.43 -1.78

SDC3 1.95E-03 1.05E-01 9.52E-02 1.14E-03 1.48 1.21

CCNL2 2.72E-04 6.33E-01 1.73E-02 1.15E-03 1.60 1.06

ARHGEF15 8.73E-06 8.29E-01 4.72E-02 1.18E-03 -2.02 1.03

IFIT5 7.61E-04 7.57E-12 1.27E-02 1.18E-03 -1.45 -2.76

PDGFC 1.44E-05 1.94E-08 1.92E-06 1.19E-03 -1.74 -2.22

HIP1R 5.96E-04 7.12E-06 2.55E-02 1.19E-03 1.50 1.76

FBXL18 4.98E-04 1.16E-02 9.70E-02 1.20E-03 1.68 1.44

PDLIM7 4.33E-05 1.22E-04 1.34E-02 1.22E-03 1.70 1.63

LOC90379 2.62E-04 2.22E-04 1.45E-03 1.23E-03 1.73 1.74

CLDN5 2.33E-03 1.21E-03 4.47E-01 1.24E-03 -1.90 -2.00
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Table 3: List of 178 genes that show significant ?“?Tissue * Storage?”? interaction and are also differentially expressed
in breast cancer tissue at FDR 0.05 level with at least 1.4 fold change in the combined analysis (Continued)

ZNF558 6.51E-04 3.18E-06 2.49E-06 1.25E-03 -1.41 -1.67

ATP8A1 9.49E-04 3.31E-03 1.32E-03 1.29E-03 1.86 1.72

HTF9C 8.06E-05 7.73E-03 3.66E-03 1.30E-03 1.62 1.36

TOP1MT 1.04E-05 7.89E-04 1.88E-04 1.30E-03 1.59 1.39

DDIT3 3.71E-05 3.25E-01 1.58E-02 1.31E-03 1.64 1.11

HSF1 7.00E-05 4.86E-03 1.29E-02 1.32E-03 2.53 1.86

APRT 5.71E-08 3.55E-01 1.22E-04 1.33E-03 2.36 -1.12

C17orf49 1.48E-06 2.40E-03 8.03E-04 1.35E-03 1.45 -1.23

GABARAPL2 7.79E-05 1.43E-08 3.81E-05 1.36E-03 -1.53 -2.00

PRKAA1 6.97E-07 5.50E-01 4.02E-03 1.37E-03 -1.53 -1.04

PLXNA4B 2.90E-06 1.93E-05 1.03E-02 1.40E-03 -3.29 2.87

SPPL2B 1.84E-04 9.70E-01 8.27E-03 1.46E-03 1.65 -1.00

IL17RC 4.01E-04 2.18E-01 2.42E-04 1.46E-03 1.73 1.19

C9orf66 5.23E-04 3.12E-03 1.62E-01 1.47E-03 -1.56 -1.45

PPAT 3.48E-05 4.79E-01 5.33E-02 1.47E-03 1.55 1.07

ENO3 2.55E-06 7.64E-03 5.28E-04 1.47E-03 1.94 -1.40

NUP85 1.61E-07 5.16E-03 1.79E-01 1.48E-03 1.65 -1.26

JMJD1B 5.67E-05 2.06E-08 2.51E-06 1.49E-03 -1.64 -2.19

C20orf149 4.13E-08 4.50E-03 3.19E-02 1.49E-03 1.89 1.32

LRRTM2 7.98E-09 4.21E-04 1.94E-06 1.50E-03 -2.43 -1.58

NSUN5 1.64E-06 2.55E-02 6.91E-03 1.52E-03 1.44 1.16

C15orf48 1.08E-04 3.77E-07 2.00E-04 1.52E-03 1.77 -2.25

SHROOM2 5.44E-05 2.24E-02 6.12E-01 1.52E-03 2.38 -1.57

TMCC1 8.49E-04 1.92E-01 1.62E-03 1.53E-03 1.42 1.14

TMEM16C 1.82E-05 4.87E-05 5.35E-02 1.54E-03 -1.99 -1.90

MRPL53 3.95E-04 1.70E-01 2.16E-03 1.54E-03 1.42 -1.13

IGSF3 1.45E-03 3.95E-08 7.32E-03 1.61E-03 1.73 -3.02

ALG1 1.09E-07 4.88E-04 3.86E-02 1.61E-03 2.42 1.67

ICOSLG 8.82E-04 6.33E-04 1.25E-02 1.72E-03 1.57 1.59

PHC2 1.51E-04 1.36E-01 6.48E-02 1.72E-03 1.66 1.20

UBFD1 2.24E-08 3.23E-01 8.08E-02 1.78E-03 1.99 1.10

RPS3 5.32E-06 1.85E-02 8.89E-03 1.88E-03 1.53 1.22

CTF8 1.51E-05 1.01E-08 1.58E-02 1.90E-03 1.83 2.44

TCOF1 1.06E-03 1.69E-04 6.12E-05 1.90E-03 1.47 1.58

LOC407835 1.67E-05 4.40E-03 1.22E-03 1.91E-03 1.80 1.43

MIB2 1.02E-03 7.29E-03 1.51E-02 1.91E-03 1.45 1.34

SPATA13 2.19E-03 1.67E-08 4.23E-01 1.95E-03 1.44 2.22

C11orf73 6.88E-04 2.78E-15 1.69E-02 1.97E-03 -1.51 -4.38

PPAN 6.63E-04 5.04E-01 3.06E-03 1.98E-03 1.56 1.08

LACTB2 1.98E-06 4.55E-01 5.63E-06 1.98E-03 -2.06 1.10

FVT1 5.84E-06 5.82E-04 2.24E-07 1.99E-03 -1.77 -1.50

NRARP 1.04E-03 1.58E-04 7.55E-05 2.01E-03 2.14 2.47

C10orf97 1.31E-07 1.14E-01 3.59E-08 2.09E-03 -1.82 1.16
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Figure 9 Examples of interaction between “tissue type” and “sample storage”. Error bar plots for least square means for differential gene
expression data for (i) LPL (ii) APRT, (iii) C12 orf 139 and (iv) ZNF 800 genes. LPL shows the example with no interaction between “tissue type”
and “sample storage”, where as the other three genes show the examples of significant interaction - i.e., the differential expression in tumor
tissue is significantly affected by the storage type. In each plot, breast tumor tissue is shown as blue square and adjacent normal breast tissue as
red triangle; data from FF samples are presented on the left side and that of FFPE samples on the right side. The error bars represent standard
error of mean.
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Expression of known “clinically relevant” genes in our
data
From a therapeutic point of view, determination of
HER2, estrogen receptor (ESR) and progesterone recep-
tor (PGR) gene expressions is very helpful in decision-
making for therapeutic regimens [22]. We therefore
looked at these genes in particular in our data set (data
not shown). Expression of the ESR1 gene (ESR1) was
significantly affected by FFPE storage. Expression of the
ESR2 and PGR genes were very minimally affected by
storage, and that of HER2 was not affected at all. We
found HER2 to be up-regulated by 1.5 fold (p = 0.0054)
and PGR to be down-regulated by 1.9 fold (p = 0.006)
in tumor compared to adjacent normal tissue.

Do we see same “gene sets” to be differentially
expressed in breast tumor tissue compared to
corresponding adjacent normal breast tissue in FF and
FFPE samples?
After looking into the differential expression at indivi-
dual gene level, we also looked for differential expres-
sion of different “gene sets” in breast cancer tissue by
using the Gene Set Enrichment Analysis (GSEA) as well
as GO-ANOVA. GSEA of the FF samples showed that a
total of 100 “gene sets” (each representing different GO
description terms) were differentially expressed (p-value
= < 0.05) in breast cancer tissue compared to adjacent
healthy tissue. On the other hand, GSEA of the FFPE
samples showed a total of 440 “gene sets” were differen-
tially expressed at p-value = < 0.05 in breast cancer
FFPE tissue compared to adjacent healthy FFPE tissue.
Only 38 “gene sets” (i.e. 38% “gene sets” from of the FF
analysis and only 8.64% from FFPE analysis) were com-
mon in both the analyses. Therefore, GSEA also sug-
gested the need for caution for interpretation of gene
expression data from FFPE samples.
GO-ANOVA of the FF samples showed that a total of

883 “gene sets” (each representing different GO descrip-
tion terms) were differentially expressed at FDR 0.05 in
breast cancer tissue compared to adjacent healthy tissue.
On the other hand, GO-ANOVA of the FFPE samples
showed that 1,034 “gene sets” were differentially
expressed at FDR = < 0.05 in breast cancer FFPE tissue
compared to adjacent healthy FFPE tissue. A total of 641
“gene sets” (i.e. 72.59% gene sets from FF and 61.99%
from FFPE analysis) were common in both the analyses.
This result also suggested the need for caution for inter-
pretation of gene expression data from FFPE samples.
The overlaps of these results from GSEA and GO-

ANOVA in FF and FFPE samples are presented in
Figure 10. In general, GO-ANOVA could detect larger
number of differentially expressed gene sets (GO-
description terms), however it may be noted that most
of the gene sets detected by GSEA were also detected

by GO-ANOVA - 81.0% in FF and 88.4% in FFPE sam-
ples. There was a total of 26 “gene sets” that was com-
mon to all four analyses. Those 26 gene sets are shown
in Table 4. It may be noted that genes related to “trans-
forming growth factor beta receptor signaling pathway”
were down-regulated (positive NES in this case) and
genes related to “nucleosome” were up-regulated (nega-
tive NES in this case) in breast cancer. It may be noted
that GO-Enrichment analysis of the differentially
expressed gene lists also showed highest enrichment
score for genes related to “nucleosome”.

Discussion
Gene expression profiling of human cancer has proved
valuable in cancer research leading not only to the iden-
tification of targets but also contributing to our under-
standing of the mechanisms of the process [23,24]. The
application of microarrays is limited by the availability
of fresh frozen tissue or the tissue preserved in RNAla-
ter reagent. As FFPE samples are available in almost all
the pathological laboratories and are often available in
conjunction with clinical and follow-up data, they would
be considered as the most valuable sources for microar-
ray analysis [25], provided similar information can be
obtained as would be expected from analyzing the FF
samples. Because of fragmentation [3,26,27] and some
other chemical modifications of RNA in FFPE samples,
currently gene expression studies are largely limited to
immuno-histochemical (IHC) staining and RT-PCR,
which allow only a few genes to be amplified at a time
[3,28,29]. In this paper we mainly focus on the use of
FFPE samples in genome-wide gene expression experi-
ments. We have tried to analyze the data for differential
expression from different angles - at individual gene
level, at “gene set” level and also used different statistical
methods. In follow-up paper we would focus more on
gene selection and relevance to breast cancer biology.
Like other investigators [5,28,30,31], we also observed

high reproducibility across technical replicates regardless
of the sample type. However, the concordance between
the paired FF and FFPE samples was weaker in our study,
which is also consistent with other studies [23,32]. The
tissue archival age, or the “FFPE block age” is another
factor for consideration. Cronin et al. compared frozen
section breast tissue with FFPE samples of “various block
ages” by RT PCR for 92 genes and found a 90% signal
loss in FFPE samples [26]. Our data on the genome-wide
level also suggested the significance of FFPE “block age”
on gene expression data. Srinivasan et al. [2], and Karsten
et al [33] and Masuda et. al [1] have reviewed in detail
the effect of fixative and tissue processing on the content
and integrity of nucleic acids. There are four types of
reactions of formaldehyde with nucleic acids: (1) Addi-
tion reaction or methylolation - the N-H groups of
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primarily adenine and thiamine are converted to N-CH2-
OH groups (methylol groups). The poly(A) tail on RNA
is thus heavily methylolated leading to poor reverse tran-
scription. This methylolation is possibly reversible
through hydrolysis. (2) Cross-linking - methylolated
bases can react with N-H groups (on proteins and nucleic
acids) to form -N-CH2_N- cross-links, which are not
easily hydrolyzed. (3) Formation of apyrimidinic/apurinic
sites - the N-glycosidic bond between A, C, G, T or U
and the sugar backbone is broken, leaving a blank space
in the sequence. This is not base-specific, but is not
reversible. (4) Fragmentation - Formaldehyde catalyzes
the hydrolysis of phosphodiester bonds, fragmenting
strands of nucleic acids, which is also not reversible.
Therefore, it was not a surprise to find differential gene
expression in FFPE samples compared to FF samples in
the present study.
Bibikova et al. used a smaller panel of the DASL assay

with 16 pairs of FF and FFPE samples from healthy and
tumor breast tissue and healthy and colon cancer tissue
[6]. They found that FFPE samples had 50% less gene
expression compared to matched FF samples, which may
be due to RNA degradation related to fixation and storage
[6]. The present study is one of the first few adequately
powered, whole-genome DASL assays interrogating more
than 18,000 genes that has compared the results of paired
tumor and normal tissue from FF and FFPE samples.

Our findings suggest that the analysis of FFPE samples
does not identify the exact same genes that would have
been identified by analyzing FF samples, but at least, the
list shows some similarity in terms of enrichment of
GO-terms representing the lead functional groups of
genes. In other words, FFPE samples may not be ideal
for picking individual target gene(s), but may be used to
identify the lead functional group(s) of genes that are
differentially expressed in tumor. Findings of the differ-
entially expressed genes in breast cancer were biologi-
cally meaningful. On the one hand the “cell cycle” &
“cell division” related genes were up-regulated and on
the other hand, genes related to “regulation of epithelial
cell proliferation” were down-regulated. Genes involved
in metalloexopeptidase activity, transforming growth
factor beta signaling pathway, BMP signaling pathway,
were found to be down-regulated in breast cancer.
As mentioned in the results section, some of the genes

(including PPARG and FGF2) were found repeatedly in
the lists of different GO-terms. Peroxisome proliferator-
activated receptor-g (PPARG), is expressed in a large
number of human cancers, including breast, colon, sto-
mach, prostate, pancreas, bladder, placenta, lung, chon-
drosarcoma and in leukemia [34,35]. Recently Jiang
et al. showed that PPARG expression in immunohisto-
chemistry was positively correlated to estrogen receptor
status, inversely associated with histological grade and

Figure 10 Overlap between GSEA and GO-ANOVA. Venn diagram showing the overlap between four lists of differentially expressed “gene
sets” in breast cancer derived from GSEA and GO-ANOVA in FF and FFPE samples.
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tumor size, and in survival analysis patients with higher
PPARG expression had significantly better prognosis
[36]. In the same direction, the present study showed
evidence of down-regulation of PPARG in breast cancer
tissue. GWAS using germ line DNA showed a signifi-
cant association of SNP in the FGFR2 gene with breast
cancer [37]. In the same line, in the present study, we
also found FGF2 to be down-regulated in breast cancer.
Another biologically relevant gene that we found to be
differentially expressed in breast cancer was corticotro-
pin releasing hormone binding protein (CRHBP). Corti-
cotropin-releasing hormone is a potent stimulator of
synthesis and secretion of preopiomelanocortin-derived
peptides. Although CRH concentrations in the human
peripheral circulation are normally low, they increase
throughout pregnancy and fall rapidly after parturition.
Maternal plasma CRH probably originates from the pla-
centa. Human plasma contains a CRH-binding protein
that inactivates CRH and may prevent inappropriate
pituitary-adrenal stimulation in pregnancy.

An apparent weakness of the present study is the lack
of gene expression data from breast tissue preserved in
RNA stabilization buffer, which would have served as
the gold standard against which FFPE samples could
have been compared. However, 72% of the genes that
we found to be differentially expressed in FFPE breast
tissue compared to corresponding FF in present study
were also differentially expressed in FFPE skin tissue
compared to the “gold standard"- RNAlater preserved
corresponding skin tissue sample (unpublished data
from our group). One of the strengths of the present
study is that it was adequately powered to detect differ-
ential expression arising from tissue storage (FFPE vs.
FF) or disease status (tumor vs. adjacent normal tissue).

Conclusion
In agreement with other studies using the DASL platform,
our present study also suggests the usefulness of DASL
chemistry to study gene expression in fragmented RNA
samples. DASL can efficiently handle the fragmentation

Table 4 Results from GSEA for breast cancer in FF samples. The following 26 gene sets (GO-terms) were common in all
the four lists shown in figure-4(v)

Gene Set Description # of Genes ES* NES** p-value

metalloexopeptidase activity 37 0.5273 1.6927 0.0000

transforming growth factor beta receptor signaling pathway 67 0.4600 1.6388 0.0192

fatty acid metabolic process 116 0.3829 1.5961 0.0000

sterol transport 26 0.4747 1.5879 0.0417

cholesterol transport 25 0.4770 1.5853 0.0208

vitamin metabolic process 22 0.5190 1.5649 0.0204

regulation of insulin secretion 26 0.4652 1.5559 0.0000

regulation of biomineral formation 26 0.4641 1.5288 0.0000

muscle cell differentiation 40 0.4888 1.5192 0.0408

vitamin binding 121 0.3420 1.4857 0.0385

regulation of blood vessel size 43 0.4805 1.4810 0.0408

regulation of tube size 43 0.4805 1.4810 0.0408

BMP signaling pathway 36 0.5195 1.4783 0.0426

regulation of cell proliferation 171 0.3540 1.4709 0.0200

glucose metabolic process 42 0.3829 1.4667 0.0217

blood circulation 46 0.4345 1.4544 0.0204

branching morphogenesis of a tube 55 0.4291 1.4160 0.0208

regulation of hormone secretion 36 0.3898 1.4101 0.0385

magnesium ion binding 418 0.2887 1.3951 0.0000

GTPase binding 85 0.3092 1.3766 0.0000

response to drug 81 0.3105 1.3461 0.0364

carbohydrate binding 301 0.2844 1.3073 0.0204

small GTPase binding 80 0.2944 1.2867 0.0364

protein dimerization activity 433 0.2449 1.2408 0.0196

negative regulation of DNA metabolic process 23 -0.4876 -1.5264 0.0217

nucleosome 87 -0.6222 -1.5847 0.0417

*ES: Enrichment score, **NES: normalized enrichment score.
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issue of RNA in FFPE samples. However, formalin fixation
used in FFPE induces significant gene expression change
in a number of genes, and these changes may differ in
degree or even in direction between tumor and normal tis-
sue. Therefore, FFPE samples should not be directly com-
pared with FF samples and considerable caution must be
taken when interpreting gene expression data from FFPE
samples. Despite these constraints, we found a number of
biologically meaningful, differentially expressed genes
related to HIST1, HIST2 proteins, and some other such as
PPARG, FGF2, APOB, CRHBP, CETP, and RXRG in breast
cancer tissue compared to corresponding adjacent normal
breast tissue. The validity of these specific observations,
however, needs to be confirmed in future larger studies.
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