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Meta-analysis of grain yield QTL identified during
agricultural drought in grasses showed consensus
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Abstract

Background: In the last few years, efforts have been made to identify large effect QTL for grain yield under
drought in rice. However, identification of most precise and consistent QTL across the environments and genetics
backgrounds is essential for their successful use in Marker-assisted Selection. In this study, an attempt was made to
locate consistent QTL regions associated with yield increase under drought by applying a genome-wide QTL meta-
analysis approach.

Results: The integration of 15 maps resulted in a consensus map with 531 markers and a total map length of 1821
cM. Fifty-three yield QTL reported in 15 studies were projected on a consensus map and meta-analysis was
performed. Fourteen meta-QTL were obtained on seven chromosomes. MQTL1.2, MQTL1.3, MQTL1.4, and MQTL12.1
were around 700 kb and corresponded to a reasonably small genetic distance of 1.8 to 5 cM and they are suitable
for use in marker-assisted selection (MAS). The meta-QTL for grain yield under drought coincided with at least one
of the meta-QTL identified for root and leaf morphology traits under drought in earlier reports. Validation of major-
effect QTL on a panel of random drought-tolerant lines revealed the presence of at least one major QTL in each
line. DTY12.1 was present in 85% of the lines, followed by DTY4.1 in 79% and DTY1.1 in 64% of the lines. Comparative
genomics of meta-QTL with other cereals revealed that the homologous regions of MQTL1.4 and MQTL3.2 had QTL
for grain yield under drought in maize, wheat, and barley respectively. The genes in the meta-QTL regions were
analyzed by a comparative genomics approach and candidate genes were deduced for grain yield under drought.
Three groups of genes such as stress-inducible genes, growth and development-related genes, and sugar
transport-related genes were found in clusters in most of the meta-QTL.

Conclusions: Meta-QTL with small genetic and physical intervals could be useful in Marker-assisted selection
individually and in combinations. Validation and comparative genomics of the major-effect QTL confirmed their
consistency within and across the species. The shortlisted candidate genes can be cloned to unravel the molecular
mechanism regulating grain yield under drought.

Background
Drought is a severe abiotic stress that affects the produc-
tion and productivity of rice. Drought stress at the repro-
ductive stage is the most devastating [1,2]. Because of the
ongoing process of climate change, the rainfall pattern
has become more irregular in the cropping season, caus-
ing widespread drought in rice-growing areas, which
results in severe yield losses [3,4]. The development of
drought-tolerant varieties that maintain good yield under
drought is a priority area of rice research for sustainable
rice production.

Marker-assisted mapping and introgression of major-
effect QTL for grain yield under drought could be an effi-
cient and fast-track approach for breeding drought-tolerant
rice varieties [5]. However, the successful use of QTL in
marker-assisted selection depends on their effect and con-
sistency across genetic backgrounds and environments.
Most of the QTL for grain yield under drought have been
mapped against a single genetic background in early-segre-
gating generations (F3, BC2, and BC2F2) evaluated in a lim-
ited number of environments. Such QTL may not provide
a consistent effect because of variation in the genetic back-
ground and environment. Additionally, the QTL may not
be transferrable to other backgrounds because of unfavor-
able epistatic interactions resulting in reduced or even no
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effects in a new genetic background [6,7]. Considering all
these facts, it is difficult to predict the usefulness of QTL
for MAS based only on their performance in an individual
genetic background in any particular study.
A more efficient way to select QTL for MAS is to com-

pare the identified QTL with earlier reported studies for
their consistency of location and effect across genetic
backgrounds and environments. Consistently identified
QTL at the same chromosomal location, explaining high
phenotypic variance and having a major effect on a trait,
can be effectively used in MAS [8-10].
QTL meta-analysis is an approach to identify consensus

QTL across studies, to validate QTL effects across envir-
onments/genetic backgrounds, and also to refine QTL
positions on the consensus map [11]. QTL meta-analysis
requires independent QTL for the same trait obtained
from different populations, different locations, or different
environmental conditions [11]. The consistent QTL iden-
tified by meta-analysis for a set of QTL at a confidence
interval (CI) of 95% are called meta-QTL (MQTL). The
meta-QTL with the smallest CI and having a consistent
and large effect on a trait are useful in MAS. In plants, the
concept of meta-analysis has been applied to the analysis
of QTL/genes for blast resistance [12], root traits and
drought tolerance in rice [9,10], lint fiber length in cotton
[13], cyst nematode resistance in soybean [14], fusarium
head blight resistance in wheat [15], flowering time [16],
drought tolerance in maize [17], and disease resistance in
cocoa [18].
QTL validation is another approach to confirm the

effect of QTL across different genetic backgrounds.
QTL regions harbor many genes; among them, a few
key genes could be more important in the regulation of
a complex trait. Meta-QTL regions with refined posi-
tions are more accurate for short-listing of candidate
genes. The common candidate genes short-listed across
the meta-QTL are more likely candidates that regulate
yield [9].
In this study, QTL meta-analysis was carried out for

yield QTL under drought to develop a consensus map
and to identify consensus yield QTL under drought with
the objective to provide markers of MQTL with high
effects and small confidence intervals for possible use in
MAS or for fine-mapping QTL for gene discovery. Also,
markers linked to 12 major QTL for grain yield were vali-
dated on a set of random drought-tolerant lines, includ-
ing landraces and improved drought breeding lines
developed at IRRI, to know the frequency of their univer-
sal presence. Further, a comparative genomics approach
was used to identify the homologous regions of MQTL in
other cereal crops such as maize, sorghum, wheat, and
barley (http://www.gramene.org/,http://www.maizegdb.
org/, http://www.graingenes.org).

Materials and methods
Meta-QTL analysis
Three steps were employed for the identification of a con-
sensus QTL for grain yield under drought. First, in a bib-
liographic review, reliable data on QTL for yield per plant
were compiled. Second, a consensus map was created and
on this map the QTL of individual studies was projected.
In the third step, a meta-analysis was performed on QTL
clusters to identify the consensus MQTL.

Bibliographic review and synthesis of yield QTL data
QTL information was collected from published reports
involving mapping of QTL for grain yield under
drought. There were 15 reports of a QTL mapping for
grain yield under drought. The details of the parents
used in developing the mapping population, size of the
mapping population, markers used, and yield QTL iden-
tified are given in Table 1. In all, 53 QTL were reported
for yield.

Development of a consensus map
A consensus genetic map was constructed and meta-
analysis was performed using Biomercator v2.0 (http://
www.genoplante.com/). The rice genetic linkage map of
Temnykh et al. [19] was used as a reference map, on
which the markers of 15 studies were projected to
develop a consensus map. Chromosomes connected
with fewer than two common markers to the reference
map were excluded before the creation of the consensus
map. Inversions of marker sequences were filtered out
by discarding inconsistent loci with the exception of
very closely linked markers. After the integration of all
maps, the consensus map contained 531 markers,
including SSR, RFLP, AFLP markers, and genes. The
consensus map covered a total length of 1821 cM, with
an average distance of 3.5 cM between markers.

QTL projections
For all studies, the 95% confidence intervals of initial
QTL on their original maps were estimated using the
approach described by Darvasi and Soller [20]:

CI =
530

NR2

Where N is the population size and R2 the proportion
of the phenotypic variance explained by the QTL. The
CI was re-estimated to control the heterogeneity of CI
calculation methods across studies. Projection of QTL
positions was performed by using a simple scaling rule
between the original QTL flanking marker interval and
the corresponding interval on the consensus chromo-
some. For a given QTL position, the new CI on the
consensus linkage group was approximated with a
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Table 1 Details of mapping studies undertaken for grain yield under drought QTL

S.
no.

Parents used in crossing Mapping
population

Population
size

Number of
markers

Markers used Number of locations used for
phenotyping

Yield QTL
identified

References

1 CTM9993-5-10-1 × IR62266-
42-6-2

DH 154 280 AFLP, RFLP, SSR 2 4 [37]

2 CTM9993-5-10-1 × IR62266-
42-6-2

DH 154 315 AFLP, RFLP, SSR 1 7 [1]

3 Zhenshan 97 × IRAT109 RIL 180 245 SSR 2 4 [38]

4 Zhenshan 97B × IRAT109 RIL 187 213 SSR 2 2 [39]

5 Zhenshan 97 × IRAT109 RIL 180 245 SSR 2 5 [40]

6 IR20 × Nootripathu RIL 150 51 SSR 1 2 [22]

7 Bala × Azucena RIL 177 163 SSR, AFLP, RFLP, BAC
markers

1 4 [41]

8 CTM9993-5-10-1 × IR62266-
42-6-2

DH 220 315 AFLP, RFLP, SSR 3 1 [42]

9 Vandana × Way Rarem F3:4, BC2 436 126 SSR 2 3 [5]

10 Apo × Swarna BC1, BC2, BC3 301 293(BSA) 13(WG) SSR 2 4 [2]

11 N22 × Swarna F3:4 292 140(BSA) 17(WG) SSR 2 4 [23]

12 N22 × MTU1010 F3:4 362 140(BSA) 125 SSR 2 5 [23]

13 N22 × IR64 F3:4 289 140(BSA) 13(WG) SSR 2 4 [23]

14 IR77298-14-1-2 × IR64 BC1, BC2, BC3 288 18 SSR 3 3 IRRI,
Unpublished

15 IR55419-04 × Way Rarem RIL 158 3 SSR 2 1 IRRI,
Unpublished

BSA = bulk segregant analysis; WG = whole genotyping; AFLP = amplified fragment length polymorphism; RFLP =restricted fragment length polymorphism, SSR = simple sequence repeats, BAC = bacterial artificial
chromosome
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Gaussian distribution around the most likely QTL posi-
tion. All projections of QTL onto the consensus map
were performed using the Biomercator (2.0) (http://
www.genoplante.com/).

Meta-analysis
Meta-analysis was performed on the QTL clusters on
each chromosome using Biomercator (2.0) (http://www.
genoplante.com). The Akaike Information Criterion
(AIC) was used to select the QTL model on each chro-
mosome [21]. According to this, the QTL model with
the lowest AIC value is considered a significant model
indicating the number of meta-QTL. QTL meta-analysis
requires independent QTL for the same trait obtained
from different plant populations, different locations, or
different environmental conditions [11].

QTL validation
Genotyping
All molecular marker work was conducted in the Gene
Array and Molecular Marker Analysis (GAMMA) Labora-
tory, Plant Breeding, Genetics and Biotechnology (PBGB)
division, IRRI. For DNA extraction, freeze-dried samples
were used. Freeze-dried leaf samples were cut in eppen-
dorf tubes and ground through a GENO grinder. Extrac-
tion was carried out by the modified CTAB method. DNA
samples were stored in 2-mL deep-well plates (Axygen
Scientific, California, USA). DNA samples were quantified
on 0.8% agarose gel and concentration adjusted to
approximately 25 ng μL-1. PCR amplification was done
with a 15-μL reaction mixture having 40 ng DNA, 1 ×
PCR buffer, 100 μM dNTPs, 250 μM primers, and 1 unit
Taq polymerase enzyme. The PCR profiles started with an
initial denaturation of DNA at 94°C for 5 minutes, fol-
lowed by 35 amplification cycles of denaturation at 94°C
for 1 minute, annealing temperatures varied from 55°C to
58°C for 45 seconds based on the primer, extension
at 72°C for 1 minute and final extension at 72°C for 7
minutes. The PCR products were resolved on 8% non-
denaturing polyacrilamide gels (PAGE). The gels were
scored taking respective QTL donor alleles as reference
band and scores were used for QTL validation. The details
of the peak markers of the 12 major effect QTL are given
in Additional File 1.
Twelve major effect drought grain yield QTL were

validated on a panel of 92 drought tolerant lines consist-
ing of traditional drought tolerant donors, drought toler-
ant breeding lines developed through conventional
breeding approaches and random high yielding lines
under drought from QTL mapping populations. The
peak marker of all the twelve major effect QTL were
amplified on the drought panel lines. The lines were
scored taking QTL donor allele as a base. The list of
lines is given in the Additional File 2.

Gene content analysis
The 14 meta-QTL were analyzed for gene content to
know the presence of genes and gene clusters responsi-
ble for drought. A comparative genomics approach was
followed to analyze the genes present in meta-QTL.
Gene content was noted based on annotated data of
homologous regions in Nipponbare using RAP, Build5
(http://rapdb.dna.affrc.go.jp/download/index.html). It is
assumed that the genes identified in Nipponbare regions
are homologous and collinear to those underlying the
yield QTL under drought mapped in different studies
involving different donors and recipients.

Comparative genomics to identify homologous regions in
cereals
A comparative genomics approach was followed to iden-
tify homologous regions between rice and maize using
the genomic databases (http://www.gramene.org).
Homologous regions identified were checked for the
presence of drought grain yield QTL of maize (http://
www.maizegdb.org). In sorghum, wheat, and barley,
grain yield QTL reported were collected from a litera-
ture survey and these were compared with the meta-
QTL using the comparative maps available in the Gra-
mene database (http://www.gramene.org).

Results and discussion
Overview of QTL and development of a consensus map
In the 15 populations of rice screened for drought toler-
ance to map QTL, population size ranged from 150 [22]
to 436 lines [5]. The number of markers used ranged
from 13 to 315 [1,23]. The number of locations for phe-
notyping varied from 1 to 3. From the 15 studies, 53
yield QTL were reported, which were distributed on all
the chromosomes except chromosome 11 (Table 1). The
number of QTL per population ranged from 1 to 7. The
proportion of QTL per chromosome ranged from one
QTL each on chromosomes 5 and 7 to 18 yield QTL on
chromosome 1. The distribution of yield QTL on differ-
ent chromosomes showed that chromosomes 1, 2, and
10 have the highest number, 18, 7, and 7 QTL, respec-
tively (Figure 1). The phenotypic variance of the initial
QTL varied from 3.2% to 40% and the confidence inter-
val of the markers varied from 2 to 30 cM. The rice
genetic map of Temnykh et al. [19] was used as a refer-
ence map to develop a consensus map as this is a widely
used genetic map of rice and it contained most of the
markers used in the different studies. The consensus
map consisted of 531 markers with a total map length
of 1821 cM. The average distance between the markers
was 3.5 cM, thus enabling the identification of a precise
location of QTL. There were very few marker inversions
in the consensus map, which were discarded from the
final map and further analysis.
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Meta-analysis and QTL validation
It is widely believed that QTL are accurate and can be
positioned onto chromosomal locations by molecular
mapping [24,25]. However, their complex nature and
context dependency in different genetic backgrounds
and environments are constraints in identifying their

precise location. The identification of the most accurate
and precise major-effect QTL across genetic back-
grounds and environments is a prerequisite for the suc-
cessful use of QTL in MAS. Meta-analysis of QTL
identified in different studies helps to identify the most
precise and concise QTL, which can be further pursued
for MAS or the identification of candidate genes. In our
study, we attempted to identify the meta-QTL for grain
yield under drought by genome-wide meta-analysis.
From a bibliographic survey, a total of 53 QTL were
short-listed for grain yield under drought from 15 stu-
dies. All 53 QTL were projected on a consensus map.
The chromosomal regions with only one QTL were not
considered for meta-analysis since meta-analysis by defi-
nition involves more than one QTL. Thus, 38 QTL were
used for meta-analysis and meta-QTL were short-listed
based on the Akaike Information Criterion (AIC).
Accordingly, the QTL model with the lowest AIC value
was considered a significant model indicating the num-
ber of meta-QTL. The number of meta-QTL along with
their AIC values and confidence intervals are given in
Table 2. In total, 14 independent meta-QTL were

Table 2 Meta-QTL for yield under drought identified by meta-analysis

S.
no.

MQTL Chromosome QTL
region

AIC
value

QTL
model

No of
initial
QTL

Mean
phenotypic
variance of
the QTL

Mean
initial
CI
(cM)

MQTL
CI

(95%)
(cM)

Physical
length
of MQTL
(Mb)

kb/
cM

Coefficient of
reduction in
length from

mean initial QTL
to MQTL

MQTL
rank for
MAS/fine
mapping

1 MQTL1.1 1 RZ276-
RM488

146.2 4 2 16 7.50 11.50 1.14 103.1 0.7

2 MQTL1.2 1 RM543-
RM212

3 24 5.20 4.53 0.27 60.3 1.1 2

3 MQTL1.3 1 RM315-
RM472

2 16 17.80 6.30 0.16 183.4 2.8 4

4 MQTL1.4 1 RG109-
RM431

5 12 7.60 2.40 0.36 151.5 3.2 5

5 MQTL2.1 2 RM452-
RM521

62.7 4 3 12 10.50 5.28 1.24 229.8 2.0

6 MQTL2.2 2 RM526-
RM497

2 6 12.00 11.50 2.36 110.7 1.0

7 MQTL3.1 3 RG104-
RM523

45.2 3 3 13 5.40 17.43 0.84 47.7 0.3

8 MQTL3.2 3 RM520-
RM16030

2 20 10.30 3.40 0.98 488.0 16.6 3

9 MQTL4.1 4 RM273-
RM252

45.3 3 3 9 8.40 3.98 1.32 338.2 2.1

10 MQTL8.1 8 RM337-
RM902

40.4 3 2 4 4.00 40.87 1.90 48.0 0.0

11 MQTL8.2 8 RM339-
RM210

2 15 7.50 14.95 1.90 132.0 0.5

12 MQTL10.1 10 RM244-
ME5_16

61.8 4 2 4 13.00 6.50 5.30 825.0 2.0

13 MQTL10.2 10 RM596-
RM304

3 16 15.00 23.72 2.60 112.0 0.6

14 MQTL12.1 12 RM277-
RM260

21.2 1 4 28 4.20 1.79 0.70 178.3 2.3 1

AIC = Akaike Information Criterion, CI = confidence interval, cM = centiMorgan, MQTL = meta-QTL; kb = kilobase, MB = megabase
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Figure 1 Distribution of grain yield QTL on rice chromosomes.
The bar diagram depicts the frequency of drought grain yield QTLs
on rice chromosomes
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identified at a confidence interval of 95% on seven chro-
mosomes, and meta-analysis successfully reduced the
total QTL by 63% (Figures. 2, 3, 4, 5). The meta-QTL
identified on each chromosome varied from 1 to 4.

There were four meta-QTL on chromosome 1; two on
chromosomes 2, 3, 8 and 10; and one each on chromo-
somes 4 and 12. The phenotypic variance of the meta-
QTL varied from 4% to 28%. At 10 of the 14 meta-

 
Figure 2 Meta-QTLs identified on chromosomes 1 and 2 by Meta- analysis of reported yield QTLs. The picture shows the Meta-QTLs on
chromosomes 1 and 2. Vertical lines on the left of chromosomes indicate the confidence interval, horizontal lines indicate the variance, MQTL
are in red. Markers and genetic distance (cM) are shown on the right of chromosomes.
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QTL, the mean phenotypic variance was more than 10%.
In general, the confidence intervals at most of the meta-
QTL were narrower than their respective original QTL.
At nine loci on chromosomes 1, 2, 3, 4, 10, and 12,
meta-QTL were narrower than the mean of their initial

QTL. However, at five loci, the meta-QTL were broader
than the mean of the initial QTL. The confidence inter-
vals of the meta-QTL varied from 2.4 cM between the
marker intervals RG109 and RM431 on chromosome 1
to 40.8 cM between the marker intervals RM337 and

Figure 3 Meta-QTLs identified on chromosomes 3 and 4 by Meta- analysis of reported yield QTLs. The picture shows the Meta-QTLs on
chromosomes 3 and 4. Vertical lines on the left of chromosomes indicate the confidence interval, horizontal lines indicate the variance, MQTL
are in red. Markers and genetic distance (cM) are shown on the right of chromosomes.
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RM902 on chromosome 8. At two regions, meta-QTL1.4
(MQTL1.4) and MQTL12.1, the CI declined to around
2 cM. The physical intervals of the meta-QTL varied
from 0.16 Mb to 5.3 Mb. Three meta-QTL were less

than 500 kb. The meta-QTL regions with small genetic
and physical intervals are useful in MAS. It is significant
to see that seven QTL that had less than 1.3 Mb inter-
vals also had a genetic interval of around 6 cM with a

Figure 4 Meta-QTLs identified on chromosomes 8 and 10 by Meta- analysis of reported yield QTLs. The picture shows the Meta-QTLs on
chromosomes 8 and 10. Vertical lines on the left of chromosomes indicate the confidence interval, horizontal lines indicate the variance, MQTL
are in red. Markers and genetic distance (cM) are shown on the right of chromosomes.
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Figure 5 Meta-QTLs identified on chromosome 12 by Meta- analysis of reported yield QTLs. The picture shows the Meta-QTLs on
chromosome 12. Vertical lines on the left of chromosomes indicate the confidence interval, horizontal lines indicate the variance, MQTL are in
red. Markers and genetic distance (cM) are shown on the right of chromosomes.
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phenotypic variance of more than 10% (Figure 6). Three
of these meta-QTL were on chromosome 1 and one
each on chromosomes 2, 3 and 12. The physical inter-
vals of MQTL1.2, MQTL1.3, and MQTL1.4 were less than
400 kb, that of MQTL12.1 was 700 kb, and those of
MQTL3.2, MQTL4.1, and MQTL2.1 were 1Mb, 1.3 Mb,
and 1.2 Mb, respectively. MQTL1.2, MQTL3.2, and
MQTL12.1 had phenotypic variance of more than 20%.
The seven MQTL regions with small genetic and physi-
cal intervals are important regions for MAS, fine map-
ping, candidate gene identification, and functional
analysis. These QTL can be introgressed in popular rice
mega-varieties to develop drought-tolerant and high-
yielding lines. In addition to meta-analysis of QTL, the
markers linked to the 12 major-effect QTL for grain
yield were also validated on a panel of drought-tolerant
lines to confirm their presence in larger set of lines. It is
notable that major-effect QTL DTY12.1 was present in
85% of the lines. DTY3.2, DTY4.2 DTY1.1, DTY8.1, and
DTY1.2 were present in more than 50% of the lines (Fig-
ure 7). The amplification of the RM523 and RM11943
peak markers of DTY3.2 and DTY1.1 in a set of 92
drought tolerant panel lines is presented in Additional
File 3. The result indicates the presence of at least one
of the major-effect grain yield QTL in the drought panel
lines. In general, the major-effect QTL identified for
grain yield under drought have a genetic gain of 10% to
30%, with a yield advantage of around 150 to 500 kg/ha
over recipient parents. However, considering practical
benefit to farmers, the development of drought-tolerant
rice varieties with a yield advantage of at least 1 ton/ha
could be the desired target for rice breeders. The mar-
ker-aided QTL pyramiding of the major-effect MQTL
identified in this study can be considered as an option
for achieving this target.
A comparison was made between the meta-QTL iden-

tified in this study with the meta-QTL identified for
root traits in two earlier studies [9,10]. It is very inter-
esting to note that MQTL1.2, MQTL2.2, MQTL3.1,

MQTL4.1, and MQTL8.2 coincided with QTL clusters
for root and leaf morphology traits associated with
drought tolerance/avoidance in rice [9]. All the 14 inde-
pendent meta-QTL coincided with at least one meta-
QTL identified for root traits under drought [10]. Earlier
studies on meta-analysis of QTL for root traits [9,10]
and blast resistance in rice [12], fusarium head blight
resistance in wheat [15], flowering time in maize [16],
nematode resistance in soybean [14], and lint fiber
length in cotton [13] identified precise and concise
meta-QTL. Meta-QTL were also used to deduce candi-
date genes and were recommended for MAS in some of
these studies.

Comparative genomics of MQTL
The existence of an evolutionary relationship among the
grass families is a well-known fact. The syntenic relation-
ship can be used to identify the homologous regions
among these species, which in turn is useful in defining
their role in plant growth, development, and adaptation
across species. We compared meta-QTL regions for syn-
teny in other cereal crops. The major-effect MQTL1.4
was also found in maize on chromosome 3 near marker
msu2, in wheat on chromosome 4B near marker Rht-b1,
and in barley on chromosome 6H near marker
Bmac0316, while major-effect MQTL3.2 was also found
in maize on chromosome 1 near marker Umc107a
(Figure 8). All these markers were linked to grain yield
under drought in their respective crops. The largest parts
of chromosomes 1 and 3 of rice have a syntenic relation
with chromosomes 3 and 1 of maize, so their respective
homologous QTL were also found on the corresponding
chromosomes. An interesting observation is that, near
the sd1 locus on chromosome 1 of rice, QTL for grain
yield under drought were identified most frequently. Sd1
is a major locus responsible for semidwarf plant stature
in rice and its corresponding locus in wheat is Rht-b1 on
chromosome 4B. MQTL1.4 is near the sd1 locus and also
on its corresponding locus Rht-b1 in wheat, major QTL
for grain yield under drought were detected.
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Figure 6 Genetic and physical intervals of MQTL. The diagram
depicts the genetic and physical intervals of the MQTLs. Solid bars
indicates genetic interval (cM) and hollow bars indicates the
physical interval (Mb) of the Meta-QTL.
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Figure 7 Frequency of drought grain yield QTL in drought
panel lines. The diagram depicts frequency of major effect drought
grain yield QTLs in a drought panel consisting of 92 lines.
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Gene content analysis and identification of candidate
genes
Meta QTL with precise and narrow confidence intervals
are useful in short listing the candidate genes. Using the
annotated gene information available in the rice database,
the genes present in the 14 meta-QTL regions were ana-
lyzed by comparative genomics approach and candidate
genes were shortlisted. The short-listed candidate genes
can be further confirmed by transgenic approaches by
loss or gain of function studies. Most of the genes present
in the MQTL were genes for hypothetical and expressed
proteins, pseudo genes, genes for signal transduction,
and transposable elements. However, there were many
annotated genes/gene families that were common across
the MQTL regions; these are probable candidate genes
for yield under drought. It was found that three kinds of
genes frequently occurred together in these regions. The
genes/gene families were stress-inducible genes, growth

and development-related genes, and sugar transport-
related genes. Table 3 lists the important genes underly-
ing MQTL for grain yield under drought. In six MQTL
with less than a 1 Mb region, LRR kinase, leucine zipper,
cell division-controlling proteins, sugar transport
protein-like genes, no apical meristem (NAM), pentatri-
copeptide repeat proteins, cytokinin oxidase, F-box pro-
teins, AP2-domain containing proteins, and zinc-finger
transcription factors were present. The candidacy of
these genes for yield and yield traits has already been
proved in rice and other crops. Cytochrome P450 has a
role in bassinosteroid homeostasis and had an influence
on leaf angle leading to increased yield in rice [26,27].
Pentatricopeptide repeats are present in the promoter
region of Rf genes, which restore fertility and also play a
role in embryogenesis in Arabidopsis [28,29]. Zinc-finger
(AN1-like)-like proteins are known to be involved in
stress tolerance. Zinc-finger protein in rice are induced

                 
Figure 8 Comparative map of MQTL1.4 in rice with its corresponding grain yield QTL near Rht-b1 in wheat. The picture shows the
comparative location of major effect Meta-QTL for grain yield under drought in rice MQTL1.4 on a wheat genetic map.
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Table 3 Candidate genes reported in the identified MQTL region

S.
no.

MQTL Candidate genes (no. within
MQTL)

Candidate genes Candidate genes (no. in
total)

1 MQTL1.1 1 Calcineurin-related phosphoesterase-like 14

2 2 ERECTA-like kinase 1-like 35

3 3 Putative ankyrin-kinase 69

4 4 Putative NAC transcription factor 135

5 5 Putative pectin acetylesterase precursor 139

6 6 Putative signal recognition particle 160

7 7 QUAKING isoform 5-like 179

8 8 Tetratricopeptide repeat (TPR)-containing protein-like 193

9 MQTL1.2 1 ABC transporter subunit-like 1

10 2 F-box domain-containing protein-like 39

11 3 Glutaredoxin-like 43

12 4 Leucine zipper protein-like 51

13 5 Lustrin A-like 52

14 6 Nodulin-like protein 57

15 7 Ovate family protein-like 59

16 8 Pentatricopeptide repeat (PPR)-containing protein-like 60

17 9 Protein kinase-like 66

18 10 Putative auxin-independent growth promoter 76

19 MQTL1.3 1 Cell wall protein-like 21

20 2 Cytochrome P450 monooxygenase 30

21 3 F-box domain-containing protein-like 39

22 4 hAT dimerisation domain-containing protein-like 45

23 5 HGWP repeat-containing protein-like 48

24 6 Leucine zipper protein-like 51

25 7 Nucleoporin-like protein 58

26 8 Pentatricopeptide repeat (PPR)-containing protein-like 60

27 9 pr1-like protein 65

28 10 Sucrose-phosphatase-like protein 192

29 11 Zinc knuckle domain-containing protein-like 206

30 MQTL1.4 1 Polyprotein-like 64

31 2 Putative aspartic proteinase nepenthesin II 74

32 3 Putative cytokinin oxidase 97

33 4 Putative lectin-like receptor kinase 1:1 130

34 5 Putative vacuole membrane protein 1 172

35 MQTL2.1 1 Ethylene-responsive family protein-like 37

36 2 Putative cytochrome P450 94

37 3 Putative DREPP2 protein 106

38 4 Putative F-box protein 111

39 5 Putative flavin-containing monooxygenase 114

40 6 Putative GTP-binding protein 120

41 7 Putative kaurene synthase 128

42 8 Putative pentatricopeptide repeat (PPR)-containing protein 140

43 9 Putative sugar transporter 164

44 10 Aquaporin 7

45 MQTL2.2 1 Cell wall protein 21

46 2 Dehydration-responsive family protein-like 33

47 3 F-box protein-like 39

48 4 Growth-regulating factor 1-like 44

49 5 HGWP repeat-containing protein-like 48

50 6 Pentatricopeptide repeat (PPR)-containing protein-like 60

51 7 Putative anther-specific protein 70
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Table 3 Candidate genes reported in the identified MQTL region (Continued)

52 8 Putative anthocyanin biosynthetic gene regulator 72

53 9 Putative basic-helix-loop-helix transcription factor 77

54 10 Putative cell division control protein 85

55 11 Putative cold acclimation protein 90

56 12 Putative CRT/DRE binding factor 1 93

57 13 Putative cytochrome P450 94

58 14 Putative growth-regulating factor 1 119

59 15 Putative high-mobility group protein 124

60 16 Putative pectin methylesterase 138

61 17 Putative photoperiod-independent early flowering 145

62 18 Putative sexual differentiation process protein 158

63 19 Root-specific protein 184

64 20 Sexual differentiation process protein-like 187

65 21 Trehalose-6-phosphate phosphatase 194

66 22 UDP-glycosyltransferase-like 194

67 23 Vesicle-associated membrane protein-like 199

68 24 Zinc finger (C3HC4-type RING finger)-like 201

69 MQTL3.1 1 Adapitin protein-like 4

70 2 Cell division control protein 2-like 18

71 3 Cyclin 2 interactor-like 26

72 4 F-box domain-containing protein-like 39

73 5 Flavanone 3-hydroxylase-like 40

74 6 HGWP repeat-containing protein-like 48

75 7 MADS-box transcription factor 53

76 8 NAC domain-containing protein-like 54

77 9 Photomorphogenic 63

78 10 Putative callose synthase 1 81

79 11 Putative cell cycle switch protein 84

80 12 Putative cell division control protein 2 86

81 13 Putative cytochrome p450 94

82 14 Putative dihydrodipicolinate reductase 103

83 15 Putative dihydrofolate synthetase 104

84 MQTL3.2 1 ABC transporter-like protein-like 2

85 2 c-type cytochrome synthesis 1 25

86 3 Pentatricopeptide repeat (PPR)-containing protein-like 60

87 4 Pherophorin-dz1 protein-like 62

88 5 Putative cleavage stimulation factor subunit 1-like protein 89

89 6 Putative cold acclimation protein 90

90 7 Putative peroxidase 142

91 8 Putative phytochrome C 146

92 9 Putative prolamin 148

93 10 Putative prolyl 4-hydroxylase 149

94 11 Putative protein kinase SPK-2 150

95 12 Putative protein phosphatase 2C 151

96 13 Putative UDP-glucose 6-dehydrogenase 171

97 14 Putative zinc-finger protein 177

98 15 Receptor protein kinase 181

99 16 Senescence downregulated leo1 185

100 MQTL4.1 1 Auxin-related protein-like 11

101 2 Cell division cycle 20

102 3 Cytochrome c oxidase 28

103 4 Hydroxyproline-rich glycoprotein 49
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Table 3 Candidate genes reported in the identified MQTL region (Continued)

104 5 Integral membrane transporter-like 50

105 6 Lustrin A-like 52

106 7 Protoporphyrinogen IX oxidase 67

107 8 Putative calcium-binding protein 79

108 9 Putative cell cycle checkpoint protein MAD2 homolog 83

109 10 Putative chitinase 88

110 11 Putative CONSTANS-like protein 92

111 12 Putative ER33 protein 108

112 13 Putative LRR receptor-like kinase 131

113 14 Putative salt-tolerance protein 154

114 15 Stress-inducible protein 191

115 16 Zinc finger (C3HC4-type RING finger)-like protein 202

116 MQTL4.2 1 ABC-1-like 3

117 2 Auxin response factor 9

118 3 Calcium-dependent protein kinase 15

119 4 CCAAT-box binding factor HAP5 17

120 5 Cytochrome P450 monooxygenase 29

121 6 Cytokinin-induced apoptosis inhibitor 1 32

122 7 Heat shock protein binding 47

123 8 HGWP repeat-containing protein 48

124 9 Pentatricopeptide repeat (PPR)-containing protein 60

125 10 Pherophorin-C1 protein precursor-like 61

126 11 Putative calcium-dependent protein kinase 80

127 12 Putative dehydration-responsive element-binding protein 101

128 13 Putative ethylene response factor 109

129 14 Putative floricaula 115

130 15 Putative flowering locus D 116

131 16 Putative growth-regulating factor 118

132 17 Putative IAA24 125

133 18 Putative inositol 1,3,4,5,6-pentakisphosphate 2-kinase 126

134 19 Putative jasmonate O-methyltransferase 127

135 20 Putative late embryogenesis abundant protein 129

136 21 Putative wall-associated kinase 1 175

137 22 RCP1 (ROOT CAP 1)-like 180

138 23 Stress-related-like protein interactor-like 190

139 24 Wall-associated protein kinase-like 200

140 25 Zinc finger (C3HC4-type RING finger)-like 201

141 MQTL8.1 1 Heat shock protein 46

142 2 Vesicle-associated membrane protein 197

143 3 Auxin efflux carrier protein-like 8

144 4 Cell division control protein-like 19

145 5 Cellulose synthase-1-like protein 22

146 6 CLAVATA1 receptor kinase (CLV1)-like protein 23

147 7 CONSTANS-like protein 24

148 8 Cytochrome b5-like 27

149 9 Ethylene-responsive elongation factor EF-Ts precursor-like 36

150 10 F-box domain-containing protein-like 39

151 11 Germin protein type 1 42

152 12 HGWP repeat-containing protein-like 49

153 13 NAC2 protein-like 55

154 14 Nam-like protein 56

155 15 Nodulin-like protein 57
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Table 3 Candidate genes reported in the identified MQTL region (Continued)

156 16 Pentatricopeptide repeat (PPR)-containing protein-like 60

157 17 Polyprotein-like protein 64

158 18 Putative ABC transporter 68

159 19 Putative anthocyanin 5-aromatic acyltransferase 71

160 20 Putative AP2/EREBP transcription factor LEAFY PETIOLE 73

161 21 Putative CCAAT box binding factor/transcription factor
Hap2a

82

162 22 Putative chaperone GrpE 87

163 23 Putative cold shock protein-1 91

164 24 Putative cytokinin-regulated kinase 1 98

165 25 Putative death receptor interacting protein 99

166 26 Putative DEFECTIVE IN ANTHER DEHISCENCE1 100

167 27 Putative farnesylated protein 110

168 28 Putative fertility restorer homolog 113

169 29 Putative MADS-box protein 132

170 30 Putative male fertility protein 133

171 31 Putative nucleoporin 137

172 32 Putative pherophorin 143

173 33 Putative senescence-associated protein 155

174 34 Putative osmatic embryogenesis receptor-like kinase 1 178

175 35 Putative sexual differentiation process protein isp4 159

176 36 Putative starch synthase 161

177 37 Putative stress-responsive gene 162

178 38 Putative teosinte branched1 protein 166

179 39 Putative trehalose-6-phosphate synthase 170

180 40 Putative vesicle-associated membrane associated protein 173

181 41 Putative wall-associated kinase 174

182 42 Ripening-related protein-like 182

183 43 Root cap protein 1-like 183

184 44 Senescence-associated protein-like 186

185 45 Stress-inducible protein-like 189

186 46 Zinc finger-like protein 204

187 MQTL8.2 1 AP2 domain transcription factor-like 6

188 2 Auxin-induced protein-related-like protein 10

189 3 F-box protein family-like protein 39

190 4 Pentatricopeptide repeat (PPR)-containing protein-like 60

191 5 Putative calcineurin B subunit 78

192 6 Putative cytochrome P450 monooxygenase 95

193 7 Putative male fertility protein 133

194 8 Putative NAC domain protein 134

195 9 Putative senescence-associated protein 155

196 10 Putative stromal cell-derived factor 2 precursor 163

197 11 Putative temperature stress-induced lipocalin 165

198 12 Putative teosinte branched1 protein 166

199 13 Putative tethering factor 167

200 14 Putative trehalose-6-phosphate synthase 170

201 15 Somatic embryogenesis receptor kinase-like protein 188

202 16 Zinc finger protein-like 204

203 MQTL10.1 1 Aminotransferase-like 5

204 2 Putative gibberellin-regulated protein 117

205 3 Putative peptide transporter 1 141

206 4 Putative serine threonine kinase 157
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after different types of stresses, namely, cold, desiccation,
salt, submergence, heavy metals, and mechanical injury.
Over expression of the zinc-finger gene in transgenic
tobacco conferred tolerance of cold, dehydration, and salt
stress at the seed germination/seedling stage [30,31]. F-
box proteins play an important role in floral development
and stress tolerance. In addition, F-box proteins appear

to serve as the key components of the machinery
involved in regulating plant growth and development
throughout the plant’s life cycle and their expression is
influenced by light and abiotic stresses [32]. Leucine zip-
pers are a class of transcription factor involved in ABA-
independent stress tolerance. Over expression of Osb-
ZIP23 in rice triggered clusters of genes regulating stress

Table 3 Candidate genes reported in the identified MQTL region (Continued)

207 5 Putative wall-associated kinase 4 176

208 6 ABC transporter-like 1

209 MQTL10.2 1 Calcineurin B-like protein 13

210 2 Calcium-dependent protein kinase, isoform 1 (CDPK 1) 16

211 3 Cytochrome p450-like 31

212 4 Dehydration-responsive family protein-like 33

213 5 Elicitor-like protein 34

214 6 Ethylene-responsive protein-like 38

215 7 F-box protein-like 39

216 8 Fringe-related protein-like 41

217 9 Pentatricopeptide repeat (PPR)-containing protein-like 60

218 10 Putative anther-specific protein 70

219 11 Putative auxin response factor 10 75

220 12 Putative cytokinin dehydrogenase 96

221 13 Putative DEFECTIVE IN ANTHER DEHISCENCE1 100

222 14 Putative dehydration-induced protein 102

223 15 Putative DRE binding factor 2 105

224 16 Putative drought-inducible protein 107

225 17 Putative fertility restorer 112

226 18 Putative hairy meristem 121

227 19 Putative heat shock factor RHSF5 122

228 20 Putative hexose carrier protein HEX6 123

229 21 Putative NAM (no apical meristem) gene 136

230 22 Putative pollen-specific kinase partner protein 147

231 23 Putative root cap-specific glycine-rich protein 152

232 24 Putative salt-induced MAP kinase 1 153

233 25 Putative senescence-associated protein DH 156

234 26 Putative tonoplast membrane integral protein 168

235 27 Putative trehalose-6-phosphate phosphatase 169

236 28 Putative zinc finger protein 177

237 29 Ripening-related protein-like 182

238 30 Senescence-associated protein-like 186

239 31 Stress-inducible protein-like 189

240 32 Tetratricopeptide repeat (TPR)-containing protein-like 193

241 33 Universal stress protein-like 195

242 . 34 Vacuolar protein-sorting 13C protein-like 196

243 35 Vesicle-associated membrane associated protein-like 198

244 36 Zinc finger (HIT type)-like 203

245 MQTL12.1 1 Calcineurin B-like 12

246 2 Cell wall protein-like 21

247 3 HGWP repeat-containing protein-like 48

248 4 Hydroxyproline-rich glycoprotein-like 49

249 5 Putative pherophorin-dz1 protein 144

250 6 Zinc knuckle-containing protein-like 205
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adaptations [33]. The no apical meristem gene (NAM)
plays an important role in the growth and development
of meristematic tissue. The root-specific expression of
this gene resulted in enhanced root growth and improved
drought tolerance in rice [34]. The other important genes
that harbored the meta-QTL were the ERECTA and
DREB genes. ERECTA is a leucine-rich repeat receptor-
like kinase gene known for its influence on inflorescence
development, stomatal density, epidermal cell expansion,
and mesophyll cell proliferation. This gene is mainly
involved in transpiration efficiency and enhanced
drought response [35]. DREB is a well-known transcrip-
tion factor that is induced by drought and it activates
many down stream stress-responsive genes to ultimately
improve the drought and chilling tolerance of rice [36].
Some of these short-listed genes can be considered as
positional candidate genes that determine grain yield
under drought. However, it is also well known that yield
and adaptability to stress are complex in nature and
highly negatively correlated. The QTL/genes for these
two are often co-located. Even though individual genes
have been proved to regulate yield under controlled
drought experiments, a well-coordinated response of
many genes is essential for drought tolerance under field
conditions. This is evident from the presence of three dif-
ferent groups of gene clusters in most of the meta-QTL
regions.

Conclusions
Meta-analysis of grain yield QTL is an effective
approach in identifying concise and precise consensus
QTL. The seven meta-QTL identified with small genetic
and physical intervals could be useful in MAS/pyramid-
ing. Validation of the major-effect QTL confirmed the
consistency of the major-effect grain yield QTL under
drought in different drought-tolerant panel lines. The
comparative genomics approach to identify the consis-
tency of drought grain yield QTL across species revealed
the conservation of some of the loci, indicating their
evolutionary significance. The presence of gene clusters
in the meta-QTL indicates that a well-coordinated
response of many genes is essential to achieve drought
tolerance under field conditions.

Additional material

Additional File 1: Details of the markers used for QTL validation.
This file contains the list of major effect QTLs for grain yield under
drought and peak markers of the QTLs. Primer sequence, product size of
the markers and annealing temperatures (Tm) used for amplifying the
markers.

Additional File 2: Drought panel lines for QTL validation. This table
shows the list of drought panel lines and type of the breeding material.
These lines were used for validating the major effect QTLs for grain yield
under drought.

Additional File 3: Amplification of RM523 and RM11943 peak
markers of QTL3.2 and QTL1.1 in a set of 92 drought tolerant panel
lines. The gel picture shows the amplication of RM523 and RM11943
peak markers of QTL3.2 and QTL1.1 in a set of 92 drought tolerant panel
lines.
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