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Abstract

Background: Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful
conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich
source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization
strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags
(ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic
stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic
stress-responsive gene expression profiles in grain amaranth.

Results: A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled
into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and
930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/
isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR,
UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed
with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to
be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which
were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially
expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-
inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The
transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems
of Arabidopsis and black cottonwood (Populus trichocarpa).

Conclusions: This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to
be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic
stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-
resistance in plants, a trait that has potential biotechnological applications in agriculture.
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Background
The genus Amaranthus L. (Caryophyllales: Amarantha-
ceae) comprises C4 dicotyledonous herbaceous plants
classified into approximately 70 species. It has a worldwide
distribution, although most species are found in the warm
temperate and tropical regions of the world [1,2]. Many
amaranth species are cultivated as ornamentals or a source
of highly nutritious pseudocereals (e.g. grain amaranths)
and vegetables; others, are notoriously aggressive weeds
that affect many agricultural areas of the world [3,4]. The
grain amaranths (predominantly Amaranthus hypochon-
driacus L., A. cruentus L., and A. caudatus L.) are ancestral
crops native to the New World. They are classified along
with their putative progenitor species (A. hybridus L., A.
quitensis H.B.K., and A. powellii S. Wats.) in what is
known as the A. hybridus complex [5]. Restricted for cen-
turies to a limited cultivation in Meso America as a result
of religious intolerance [6], grain amaranths have gradually
acquired renewed interest due to their various nutritional
[7-12] and health-related traits [13], in addition to their
highly desirable agronomic characteristics. These charac-
teristics offer a viable alternative to cereals and other
crops in many stressful agricultural settings, particularly
those where soil moisture conditions vary considerably
between growing seasons [14-16]. The increased ability to
withstand drought stress that characterizes grain amaranth
is closely related to its superior water use efficiency (WUE)
[17-20], variously defined as the ratio of economic yield to
evapo-transpiration or of the amount CO2 assimilated to
water loss [21,22]. WUE in grain amaranth has been
found to be higher than in other C3 and C4 crops, includ-
ing wheat, corn, cotton and sorghum [23]. Moreover, the
high salt tolerance of grain amaranth has also been asso-
ciated with a high WUE [16]. The drought-tolerance of
grain amaranth has been attributed to the inherently
stress-attenuating physiology of the C4 pathway, an inde-
terminate flowering habit and the capacity to grow long
taproots and develop an extensive lateral root system in
response to water shortage in the soil [20,24,25]. Recently,
the results of a combined proteomic/genomic approach
suggested that amaranth’s root response to drought stress
involves a coordinated response that includes osmolyte
accumulation and the activation of stress-related genes
needed for the scavenging of reactive oxygen species, pro-
tein stabilization and transcriptional regulation of plant
growth [26,27].
The use of molecular tools for the advanced genomic

study of the genus Amaranthus has recently increased,
with at least six published reports appearing in the last
three years. The construction of a bacterial artificial chro-
mosome (BAC) library for A. hypochondiacus represent-
ing a 10.6-X coverage of its haploid genome content was
reported in 2008 [28]. Shortly afterwards, this BAC

library was utilized to generate a set of microsatellite
markers for the grain amaranths, which were used to
clarify taxonomic relationships within the A. hybridus
complex. Additional applicability for these microsatellite
markers for the study of other economically important
species within the Amaranthus genus, including weeds
and ornamentals, was proposed [29,30]. The utilization
of next-generation 454 pyrosequencing technology was
subsequently explored as a tool to obtain genomic data
for waterhemp (A. tuberculatus), a notorious weed of
maize and soybean crops in the USA [31]. The sequence
data obtained (43 Mbp), which covered 10% of this spe-
cies’ genome, included the nearly complete sequence of
the chloroplast genome and revealed genomic data per-
taining herbicide resistance genes, simple sequence
repeat markers, and repeated elements (e.g., transpo-
sons). This materialized later with the publication of a
deep coverage of waterhemp’s transcriptome that yielded
a total of 44,469 unigenes, 49% of which displayed highly
significant similarities to Arabidopsis proteins [32].
Moreover, this study generated preliminary sequence
information for all of the major herbicide target-site
genes for which waterhemp has documented resistance,
in addition to two other herbicide targets not previously
reported as having evolved resistance in any plant spe-
cies. Similarly impressive results were obtained when
more than 500 Mbp sequence data, derived from a single
454-pyrosequencing run, were utilized in combination
with novel genomic reduction protocol to discover thou-
sands of single nucleotide polymorphisms in different
populations of A. caudatus [33].
The information regarding resistance responses to

insects and pathogens in amaranth is relatively scarce.
The limited number of defense-related genes reported
includes protease and a-amylase inhibitors, agglutinins,
anti-microbial peptides and ribosome-inactivating pro-
teins [34-39]. This information, however, was comple-
mented by a recent study describing several more insect-
and pathogen-induced genes [40]. Similarly limited is the
genetic information underlying the mechanisms that con-
fer amaranth with its capacity to withstand drought and/
or saline stress, although several abiotic-stress-related
genes have been identified in amaranth and in phylogen-
etically related species such as spinach, cultivated and
wild species of beet root, Mesembryanthemum crystalli-
num and the halophytes Suaeda spp., Salicornia spp.,
and Atriplex spp. [26,27,40-50].
In this study, the results derived from a large-scale

transcriptomic analysis of A. hypochondriacus plants
performed by massive parallel pyrosequencing technol-
ogy, are described. The data includes genes found to be
specifically- or highly-expressed in stems and also in
leaves under four different stress conditions (drought
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and salt stress, insect herbivory and bacterial infection).
This allowed the identification of several stress-respon-
sive genes, including many with unknown function and/
or that are expressed in multiple conditions of stress.
These may constitute potentially novel mechanisms uti-
lized by this, and related plant species, to deal with
highly unfavorable conditions. A comparison of the A.
hypochondriacus and A. tuberculatus, a weedy amaranth
species, transcriptomes yielded low levels of similarity.
Annotation of homologous transcripts in both species
indicated that the majority was associated with genes
required for basic biological processes, although an
important fraction of them included abiotic stress-
related genes.

Methods
Sample preparation for 454 sequencing
Seeds of Amaranthus hypochondriacus cultivar Revancha
and of accession 38040 (origin: India) were kindly pro-
vided by E. Espitia (INIFAP, México) and D. Brenner
(USDA, Iowa State University, Ames, IA), respectively.
Seeds were germinated in 60-well germinating trays filled
with a sterile soil preparation composed of a general soil
mixture (three parts Sunshine Mix 3TM [SunGro Horti-
culture, Bellevue, WA], one part loam, two parts mulch,
one part vermiculite [SunGro Hort] and one part perlite
[Termolita S.A., Nuevo León, México] and coconut paste
[Hummert de México, Morelos, México] in a 1:1 v/v rela-
tion). The trays were maintained in a growth chamber
kept at 26°C, ≈75% R.H. and with a 16: 8 h light (at
approximately 300 μmol m-2 s-1) dark photoperiod.
Amaranth plantlets were subsequently transplanted to
1.3-L plastic pots, containing sterile general soil mixture,
21 days after germination. They were fertilized once, one
week after transplant, with a 20:10:20 (N: P: K) nutrient
soil drench solution according to the manufacturer’s
instructions (Peters Professional; Scotts-Sierra Horticul-
tural Products, Marysville, OH, USA). Plants having six
expanded leaves were employed for experimentation.
Total RNA was obtained from leaves (A. hypochondriacus
cv. Revancha) or pigmented stems (A. hypochondriacus
India 38040) using the Trizol reagent (Invitrogen Corp.,
Carlsbad, CA, USA) as instructed, treated with RNAase-
free DNAase and re-purified with the RNeasy kit (Qia-
gen, Valencia, CA, USA) following the manufacturer’s
protocol. Different sources of RNA were used to generate
the six cDNA libraries employed for pyrosequencing
runs: i) leaves of intact plants grown under natural green-
house conditions in the summer of 2009 (Source 1, S1) ;
ii) pooled damaged leaf tissue from plants subjected to
herbivory for 1, 4 and 12 h (≈20% maximum leaf-tissue
loss) by larvae of the salt marsh caterpillar Estigmene
acrea (S2); iii ) leaves of noticeably wilted plants resulting
from the drought-stress imposed after withholding

watering for 3 days (S3) (drought-stress was most prob-
ably caused by the confinement of the treated plants in
pots, which impeded taproot elongation, a known mor-
phological response to drought in amaranth [see above]),
and iv) leaves of plants, showing increased thickness and
coarser leaf texture as a result of the acute salt-stress pro-
duced by watering the plants for three straight days with
100 ml of a 400 mM NaCl solution, (S4). Leaf material
was also obtained from leaves of plants infected with
Pseudomonas argentinensis, a bacterial amaranth patho-
gen, as described previously [51] (S5) and from pigmen-
ted (red) stem tissue of un-stressed 38040 plants (S6).
RNA source S1 to S5 were obtained exclusively from
plants of the Revancha cultivar.

cDNA library construction for pyrosequencing
Two different methods were employed for the generation
of the cDNA libraries. In method 1, cDNA synthesis (S1)
was performed by using SMART II™ cDNA Synthesis kit
(Clontech Laboratories, Inc., Mountain View, CA, USA)
following manufacturer’s recommendations. The SMART
II oligonucleotide (Clontech), which has extra G nucleo-
tides at its 3’ end, was used to create an extended template
useful for full-length cDNA enrichment. Double stranded
cDNA was quantified with a spectrophotometer (Nano
Drop 1000, Thermo Scientific, Wilmington, DE, USA) and
then concentrated by speed vacuum to a concentration of
500 ng/ul. The products were run on a 2% agarose gel to
verify cDNA quality and fragment length. The main size
distribution was within the 500 to 4,000 bp range.
Approximately 5 μg of each cDNA sample were sheared
via nebulization into small fragments, and then sequenced
(runs 1 and 2; see below).
In method 2, cDNA synthesis (S2 - S6; destined for

the differential gene expression analysis) was performed
following a previously described RNA amplification pro-
tocol [52]. This procedure is based on a reverse tran-
scription with an oligo(dT) primer bearing a T7
promoter using ArrayScript™ reverse transcriptase
(RT), engineered to produce higher yields of first-strand
cDNA than wild-type enzymes. ArrayScript RT catalyzes
the synthesis of almost exclusively full-length cDNAs.
The cDNAs then undergo a second-strand synthesis and
cleanup to get a template suitable for in vitro transcrip-
tion with the T7 RNA polymerase. This methodology
generates hundreds to thousands of antisense RNA
copies of each mRNA in a sample (also called cRNA)
from which a second round of cDNA synthesis is per-
formed. This RNA amplification methodology was ori-
ginally developed as a method to increase very small
amounts RNA samples to produce enough material for
microarray hybridization [53]. Moreover, several pre-
vious reports have confirmed that no bias is generated
by the amplification of RNA [54-56].
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Steps from aRNA isolation through to pyrosequencing
were performed as a service by the National Laboratory
of Genomics for Biodiversity (Langebio) at Cinvestav,
Irapuato México. Preliminary titration runs were fol-
lowed by six micro-bead sequencing runs, using Roche-
454 GS FLX (454 Life Sciences/Roche; Branford, CT,
USA) (runs 1 and 2) and Roche- 454 GS-FLXTM (runs
3 to 6) instruments, respectively. The first two runs
involved cDNAs derived from S1. Runs 3 and 4 were
done with S2 and S3. The two final runs (5 and 6)
involved equimolar cDNA amounts derived from S2, S3,
S4 and S5 and S2, S3, S4 and S6, respectively. In runs 5
and 6, the respective cDNAs were placed in defined sec-
tions of the pico-titer plate, which was equally divided
into four sectors, to permit identification for subsequent
analysis (i.e. the digital expression analysis; see below).

Bioinformatics
The 454-reads were assembled using software version
2.3 Newbler, which has a cDNA option for transcrip-
tome assembly. This option allows the formation of iso-
groups (a collection of isotigs and/or contigs). In broad
terms, isotigs are transcripts, built out of the contigs.
Different isotigs within the same isogroup represent
alternative splice variants. Thus, an isogroup can be
considered the equivalent of a gene.
The resulting sequence set (contigs/isotigs) was anno-

tated using Basic Local Alignment Search Tool
(BLASTX) [57] against the non-redundant (nr) database
from the National Center for Biotechnology Information
(NCBI) (http://www.ncbi.nlm.nih.gov), the Arabidopsis
database from The Arabidopsis Information Resource
(TAIR) (http://arabidopsis.org/index.jsp), the UniRef50
and UniRef100 databases (UniProt Reference Clusters;
European Bioinformatics Institute) and all the Amar-
anthaceae sequences (ESTs) downloaded from Gen-Bank.
Those sequences that did not produce a significant hit (E
≥ 1 × 10-10) with the nr database (3901 sequences; ≈15%
of the total) were compared to the PFAM database for
annotation. The latter comprises a large collection of
multiple sequence alignments and hidden Markov mod-
els covering many common protein domains, [58]. Signif-
icant BLAST results against TAIR database were used for
functional gene ontology (GO) annotation [59].

Transcriptome comparison: A. tuberculatus vs.
A. hypochondriacus
The raw sequence files (SRR039408, SRR039411 and
SRR039412) derived from the recently reported A.
tuberculatus transcriptome pyrosequencing effort [32]
were downloaded directly from the NCBI Sequence
Read Archive (SRA) at http://trace.ncbi.nlm.nih.gov/
Traces/sra/sra.cgi?study=SRP002251. Reads were
assembled after quality control, following an identical

procedure as that used for A. hypochondriacus. Tran-
script annotation for A. tuberculatus was performed by
querying the UniRef 100, and Amaranthaceae ESTs
databases. Both transcriptomes were then aligned with
each other using BLASTN to identify homologous con-
tigs. Sequence homology was defined only at E values ≤
1 × 10-10 and identity ≥ 90%. Homologous transcripts
were quantified and classified into five different cate-
gories, i.e. those: i) producing the same hit; ii) different
hits; iii) and iv) one hit for one species and no hit for
the other, and vice-versa, or v) no hit, when queried
against the above databases. Annotated transcripts
detected only in A. hypochondriacus or A. tuberculatus
were also quantified.

Digital expression analysis
The number of reads per gene was counted in each of the
454-sequencing outputs derived from the salt stress, water
stress, insect herbivory and bacterial infection treatments
and also from stem tissue (runs 5 and 6). Genes having
read counts lower than 5 were eliminated. To calculate
relative expression profiles in each stress treatment, Rela-
tive Abundance (RA) values were computed for each gene
per treatment sample by dividing its 454-sequence count
by the total 454-sequence count in the treatment sample.
Differentially expressed genes in one or more treatments
were detected by using the R [60] and c2 test statistics
using a freely available web tool (http://telethon.bio.unipd.
it/bioinfo/IDEG6_form/) [61]. A gene was considered to
be differentially expressed when at least one statistical test
yielded significance values ≤ 0.0001. A similar procedure
was employed to identify transcripts that were stem-speci-
fic or highly abundant in this tissue.
The following considerations were adopted for the

organization of the digital stress-related gene expression
data: i) a minimum (MIN) or baseline/control expression
value for a given gene was assigned to the lowest RA in
the four-treatment set examined. The RAs that produced
an expression ratio ≤ 2 when divided by MIN were also
considered as MINs; ii) a gene was considered to be sig-
nificantly expressed (SE) by a given treatment when its
RA yielded a ratio ≥ 2 when divided by MIN, and iii)
maximum expression (ME) levels for a given gene were
assigned to the treatment having the highest SE. Treat-
ments were reported to produce additional MEs when
their respective SEs yielded a ratio ≤ 2 when divided by
ME. This classification was devised to give an indication
of the influence that a given treatment or group of treat-
ments had on the expression levels of a particular gene.
Six basic patterns of expression could be generated on
the basis of the above definitions: 1) induced expression
in only one treatment (only MEs); 2) induced expression
in two treatments (ME-ME or ME-SE combinations) and
3) induced expression in three treatments (ME-ME-ME,
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ME-ME-SE or ME-SE-SE combinations]). A total of 50
different patterns of expression were produced when all
four stress treatments analyzed in this study were accom-
modated into the above basic patterns.

Results and Discussion
Roche GS-FLX and GS-FLXTM sequencing and assembly
Six sequencing runs yielded ≈910 Mb total data size
equivalent to 2,913,966 raw reads. The raw sequence files
are available from the NCBI Sequence Read Archive
(SRA) at http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?
study=SRP006173, as files SRR172675 (S1), SRR172676
and SRR183482 (S2), SRR172677 (S3), SRR172678 and
SRR183483 (S4), SRR172679 (S5) and SRR172680 (S6).
Length frequency distribution of raw reads clustered
around the 200-to-300 bp and 300-to-400 bp range as the
result of using two different platforms for sequencing (Fig-
ure 1A). A total of 2,700,168 reads (93% of total) entered
into the assembly process which yielded 21,207 high qual-
ity assembled sequences (20,408 isotigs + 799 contigs¸
equivalent to 87% of reads entering assembly and ≈82% of
all assembled sequences). These ranged in length from 80
to 3,379 bp (Figure 1B) and had an average sequence
length of 1,014 bp (isotigs) and 930 bp (contigs). A total of
178,636 reads (≈6% of total) remained as singletons (cov-
erage depth = 1); of these, only 5,113 clean sequences
remained after quality control. Isotigs were further incor-
porated into 15,667 isogroups. A status summary of the
sequencing, assembly and annotation (see below) process
is presented in Table 1.

Annotation of A. hypochondriacus contigs/isotigs
All contigs/isotigs were queried against the nr, TAIR,
UniRef100, UniRef50 and Amaranthaceae ESTs and
PFAM databases for annotation. Approximately 82% of
all entries produced significant hits (E ≤ 1 × 10-10) when
queried against the nr database (Table 1). The 3,901
sequences with no significant hit versus the nr database
were queried against the PFAM protein domain database
in order to determine their putative function. Only a
small fraction of these sequences (≈2%) produced signifi-
cant hits (E values ≤ 1 × 10-5) to known protein domains.
These results are available in Additional file 1. Annota-
tion of the 5,113 clean singletons against the TAIR data-
base yielded approximately 1,000 significant hits.
The best hit for each unigene queried against the

TAIR database was utilized to assign functional GO
annotation in terms of biological process (11,224
sequences), molecular function (11,499 sequences) and
cellular component (11,227 sequences) groups. The
results are summarized in Figure 2. As expected, the lar-
gest percentage in each GO group (12% to 15%) was
conformed by contigs/isotigs with an unknown func-
tional annotation. No obvious differences in the number

of sequences assigned to each category, including
response to (a)biotic stress, were observed between
grain amaranth and Arabidopsis thaliana. This was
probably a reflection of Arabidopsis’ known capacity
respond strongly to abiotic and biotic stresses at the
transcriptional level [62,63]. This outcome also argues
against the possibility of grain amaranth possessing a
different transcriptomic signature, particularly in the
stress and response to stimuli categories, that could
explain its characteristic (a)biotic stress tolerance, in
contrast to what has been observed in plant species
adapted to extreme habitats (e.g. the Arabidopsis-related
halophyte Thellungiella halophila [64] and extremophile
mangroves [65]). Thus, functional GO assignment for
Biological Process (Figure 2A) indicated that 3% of the
contigs/isotigs were grouped under stress/stimuli
response, 2% in development processes and an addi-
tional 4% in other biological and metabolic processes.
These categories were of our particular interest consid-
ering that one of the primal objectives of this transcrip-
tome study was to provide information leading to the
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Figure 1 Length frequency distribution of Amaranthus
hypochondriacus raw reads (A) and assembled isotigs/contigs
(B). Reads distribution reflects the utilization of different
pyrosequencing platforms (GS-FLX 454 and GS-FLXTM).
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identification of (a)biotic stress-responsive genes (see
below). From the number of transcripts to which a
defense role was assigned (1% of total), more than half
were associated with bacterial infection (41%) and jas-
monic acid (JA)-regulation (24%), including many JA
biosynthetic (e.g. LOX13, AOS, AOC, OPR3) and JA-
responsive genes (Figure 3A; see also additional files 2, 3
and 4).

The overall perspective obtained from the above infor-
mation is that grain amaranth possesses a diverse arsenal
of genes to resist pathogen infection and insect herbivory,
the majority of which are reported for the first time in
this species. These include genes potentially involved in
oxalate and phytoecdysteroid synthesis (results not
shown), which are believed to be effective defensive
weapons in amaranth and other species [66-68]. The

Table 1 Summary of A. hypochondriacus 454 sequencing data trimming, assembly and annotation

Run Metrics Total raw reads 2,913,966 (100%)

Total bases 909,631,600

Reads after quality control and trimming 2,700,168 (92.6%)

Bases entering assembly 877,153,000 (96.4%)

Assembly Aligned reads 2,417,008 (89.5%)

Aligned bases 803,229,499 (88.3%)

Assembled reads 1,886,081

Fully assembled 1,422,449

Partially assembled 463,632

Singletons (5.9) 178,636

Repeats 68,980

Outliers 56,216

Too short 46,623

Isogroup Metrics Total isogroups 15,667

Average contig content 3.0

Largest contig content 22,172

Number with one contig 12,739

Average isotig content 1.3

Largest isotig content 52

Number with one isotig 12,950

Isotig metrics Total isotigs 20,408

Average contig content 1.7

Largest contig content 17

Number with one contig 12,985

Number of bases 20,710, 069

Average isotig size 1, 014

N50 isotig size 1,196

Largest isotig size 4,762

Large contig metrics Number of contigs 15,608

Number of bases 15,170,717

Average contig size 971

N50 contig size 1,063

Largest contig size 3,379

All contig metrics Number of contigs 25,998

Number of bases 18,043,010

Annotation (contigs/isotigs) nr (NCBI) 17,282

TAIR 16,597

Annotation (singletons) UniRef 100 17,440

UniRef 50 4,396

Amaranthaceae ESTs 10,846

TAIR ≈1,000
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implementation of a relatively robust defense response
was somewhat unexpected, at least against insect herbiv-
ory, considering that the unusually high tolerance to
defoliation we have observed in A. hypochondriacus
plants (see below), might be expected to exempt this spe-
cies from an investment in metabolically costly inducible
defense responses (e.g. protease inhibitors and lectins).
The nature of the pathogen-resistant genes isolated was
also complex, and included a whole gamut of bacterial
and fungal elicitor-induced and pathogenesis-related pro-
teins, extracellular receptors similar to those involved in
elicitor-induced defense responses, proteases, transcrip-
tion factors (TFs) and enzymes involved in reactive oxy-
gen species generation-detoxification.
Also important from our perspective were genes poten-

tially involved in compensatory photosynthesis, carbohy-
drate re-localization (Table 2) and regulation/synthesis of
phytohormone levels (Figure 3B), possibly related to the
increased ramification observed in grain amaranth plants
as a response to defoliation caused by insect herbivory

and/or mechanical damage [40,69]. Many of the genes
identified can be used for studying unrelated processes.
For example, the analysis of phytohormone-related
genes, in combination with those showing homology
with flowering genes is being pursued to gain an insight
of the genetic mechanisms responsible for the several
symptoms produced by phytoplasm infection of grain
amaranth in the field, including phyllody [70].

Transcriptome comparison between A. hypochondriacus
and A. tuberculatus
The publicly available raw transcriptomic 454 pyro-
sequencing data generated for A. tuberculatus [32] was
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re-assembled using the same computational methods as
for A. hypochondriacus. In our hands, however, the
assembly yielded a ratio of contigs/singletons (12,216/
53,803) that differed from the one reported by the for-
mer workers (22,035/22,434), perhaps as a consequence
of the use of different assemblers [71]. The discrepancy
occurred despite the fact that 83% of the total A. tuber-
culatus raw reads entering the process was assembled.
BLASTN alignment of the resulting 12,216 A. tubercula-
tus contigs with the 21,207 A. hypochondriacus isotigs/
contigs yielded 8,260 homologous sequences (E ≤ 1 ×
10-10 and ≥ 90% identity). The number of contigs from
each species that produced significant hits (E ≤ 1 × 10-
10) when queried against the Uniref 100 and Amar-
anthaceae ESTs data bases, is shown in Table 3. Com-
bined use of above information led to the quantification
of the number of homologous contigs producing the
same hit, different hits, one hit for one species and none
for the other, and vice-versa, and no hit. The results
obtained are shown in Table 4. The analysis of the

homologous transcripts annotated with the Amarantha-
ceae EST data base indicated that the majority had an
unknown function/provenance (21%). The highest pro-
portion (71%) was found in EST libraries generated
from immature seed and floral tissues in Chenopodium
quinoa [72], inflorescence, germinating tissue, roots in
various stages of development, hypocotyls, seed stalks
and cotyledons of beet root and chlorenchyma cells of
the non-Kranz C4 species Bienertia sinuspersici [73].
Stress related genes constituted the smallest fraction
(8%), mostly represented by ESTs generated from salt-
stress halophyte species (Salicornia brachiata [44],
Suaeda salsa [74], S. maritima [46], Atriplex centrala-
siatica [75] and C. glaucum, in addition to ESTs from
immature tissue of Salsola tragus. All the biotic-stress
related transcripts identified came from cDNA libraries
of beet roots subjected to maggot (Tetanops myopaefor-
mis) feeding [76,77]. On the other hand, two thirds of
the homologous transcripts annotated with the Uni-
ref100 data base had an unknown function. Subsequent
classification of transcripts (33%) having an assigned
function in the biological processes category placed the
majority of them (16%) within a group consisting of
basic house-keeping functions (e.g. cellular component
organization and biogenesis, cell cycle, cell death, regu-
lation of gene expression, translation, cellular homeosta-
sis, anatomical structure morphogenesis and growth,
carbohydrate, protein and DNA metabolic processes,
transport and photosynthesis), primary and secondary
metabolism (7%), signal transduction and transcription
regulation (4%). The rest included transcripts expressed
in response to biotic (2%) and abiotic stress (4%). The
majority of the latter were isolated from Amaranthaceae
and related halophytes mostly exposed to salt stress,
Interesting (a)biotic stress-related genes present in both
species include a plastid-lipid associated protein known
to be induced in response to multiple stresses in many
plant species [78], AtPOB1, a BTB/POZ-domain protein
that was found the to positively regulate disease
responses in Arabidopsis and tobacco [79], the phloem
sap protein AtPP2-A1 whose over-expression in Arabi-
dopsis strongly repressed phloem feeding of the green
peach aphid Myzus persicae [80], a transcript similar to
the non-specific lipid-transfer protein type 2 from
Tamarix hispida, whose expression was found to be
part of an adaptive response to abiotic stresses in this

Table 2 Selected genes related to carbohydrate (CHO)
synthesis metabolism, storage and mobilization

Gene description No. Isotigs

Starch synthase I 3

Starch synthase II 7

Starch synthase III 1

Starch synthase V 3

Starch synthase VI 1

Granule-bound starch synthase I 2

Starch ramifying enzyme I 5

Starch ramifying enzyme II 1

Starch phosphorylase I 1

Starch phosphorylase H 4

Pullulanase 1

Iso-amylase II 2

Iso-amylase III 1

SnRK1 (SNF1-Related Protein Kinase-1) 2

SNF4 (Sucrose non-fermenting-4) 1

Glucose-6-P/phosphate transporter 5

Phosphoenol pyruvate/phosphate transporter 8

Triose P/phosphate transporter 8

AGPase small subunit 1

AGPase large subunit 3

Sucrose synthase 7

Invertase (vacuolar) 4

Invertase (neutral/alkaline) 14

Invertase (cell wall) 1

Invertase inhibitors/PMEI 7

P-glucomutase 10

The genes listed were identified in the GS-FLX 454 and GS-FLXTM
pyrosequencing of A. hypochondriacus and could be potentially involved in
CHO re-localization associated with tolerance to defoliation by insect
herbivory or mechanical damage.

Table 3 Comparison of A. hypochondriacus (Ah) and A.
tuberculatus (At) transcriptomes (I)

Species UniRef100 Amaranthaceae ESTs

A. hypochondriacus 17,440 10,846

A. tuberculatus 6,625 7,185

Number of sequences with significant hits (E ≤ 1 × 10-10) to the UniRef 100
and Amaranthaceae ESTs databases in each species.
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species [81], polyamine oxidase, an H2O2 producing
enzyme supposedly involved in cell wall differentiation
processes and defense responses, which was recently
found to be required for wound healing in maize [82],
methionine sulfoxide reductase, found to be active in
defense against pathogens in pepper plants, via the regu-
lation of cell redox status [83], and the DEAD-box ATP-
dependent RNA helicase 7, a type of DNA repair pro-
tein recently shown to confer multi-stress resistance
when expressed in plants [84-86]. Also remarkable was
the identification several genes related to heavy metal
ion homeostasis and tolerance, cation detoxification,
water transport and stress-related phytohormone (e.g.
abscisic acid and JA) biosynthesis and signal transduc-
tion (see additional file 5).
The number of annotated transcripts that were

detected in only one species was comparatively large
(Table 5). An illustrative example of the differences
observed between weedy and grain amaranth transcrip-
tomes is given by the analysis of herbicide-target genes
that were annotated with the UniRef 100 and Amar-
anthaceae ESTs databases. It indicated that 29 of these
were found in both species, whereas 13 and 8 sequences
were found only in A. hypochondriacus and A. tubercu-
latus, respectively (Table 6).
The rather stringent parameters employed for the

transcriptome comparison could have led to the tran-
scriptome differences herein observed, although the use
of lower E-value thresholds (say E ≤ 1 × 10-5) might
have not contributed much to increase level of tran-
script homology, as suggested by a previous genome
sequencing study in Eucalyptus grandis [87]. However,
another more plausible possible explanation is that the

above discrepancies were the reflection of fundamental
differences in the overall experimental design utilized to
generate both transcriptomic data. For instance, many
biotic stress-related genes detected in A. hypochondria-
cus were absent in A. tuberculatus (results not shown).
An alternative hypotheses proposing that the difference
observed was due to an important sequence divergence
occurred during speciation/domestication will require
much further research to be validated.

Digital expression profiling
Stress-responsive transcriptional profile in leaves
This technique, also known as tag sampling or RNA-seq,
is considered to be an efficient method for gene expres-
sion analysis [88,89]. The digital expression profiling
analysis performed for A. hypochondriacus identified a
total of 1,971 differentially expressed genes in response
to at least one of the four stress treatments tested (i.e.
water stress, salt stress, insect herbivory and bacterial
infection) (Additional file 6). Fifty different gene expres-
sion profiles were generated to determine the influence
of any given stress treatment on the expression levels of
a particular gene. The results are shown in Figure 4. An
evident feature of this analysis was the high percentage
of un-annotated genes or genes with unknown function
that were induced by stress. These represent a poten-
tially rich source of genetic material that could be sys-
tematically analyzed for the discovery of genes involved
in novel mechanisms of stress resistance.
All the stress-inducible genes with known function that
were identified in 41 of the 50 gene expression categories
were also tabulated (Additional file 7). These included
several TFs known to be regulators of stress responses in
other plant species, e.g. AREB-like protein [90], Dof-type
zinc finger domain-containing protein [91], BTB/POZ
domain-containing protein [92], GRF zinc finger contain-
ing protein [93], RAP 2.4-like protein [94], JAZ1 repres-
sor [95], ATEBP/ERF72/RAP2.3 (related to AP2-3) [96],
RAV [97], MYB-like transcription factor [98], TINY-like
protein 2 [99], Cys2/His2 zinc-finger transcription factor
[100], the little known GAGA-motif binding transcrip-
tional activator [101]; SCOF-1 zinc finger proteins, found
to be induced by cold or salt stress in Arabidopsis and
other plants, apparently to enhance ABRE-dependent
gene expression [102], a putative NAC transcription fac-
tor [103], and histone-fold/TFIID-TAF/NF-Y [104].
Others have been identified in several xerophytes/halo-
phytes as possible factors that contribute to their ability
to colonize extreme habitats, e.g. lycopene synthase [105]
water channel proteins [106], myo-inositol-1-phosphate
synthase, [107] cystathionine gamma-synthase [108]
phosphoenolpyruvate carboxylase [109], Na+/H+ antipor-
ter [110], protein phosphatase-2C [111], Ca2+/H+ anti-
porter [112], calcineurin B-like protein [113], inositol

Table 4 Comparison of A. hypochondriacus (Ah) and A.
tuberculatus (At) transcriptomes (II). Annotation of
homologous contigs

Annotation UniRef100 Amaranthaceae
ESTs

Homologous contigs with different hit 1,406 2,394

Homologous contigs with same hit 2,858 2,331

Homologous contigs with no hit 559 1,088

Ah contig with hit but not its At
homologue

1,406 757

At contig with hit but not its Ah
homologue

235 1,690

Table 5 Comparison of A. hypochondriacus (Ah) and A.
tuberculatus (At) transcriptomes (III)

Species UniRef100 Amaranthaceae ESTs

A. hypochondriacus 9,974 5,364

A. tuberculatus 2,222 2,750

Number of annotated transcripts detected exclusively in one species.
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monophosphatase [46], and salt-induced hydrophilic pro-
tein [114].
Not surprisingly, numerous transcripts coding for

reactive oxygen scavengers were found to be strongly
induced, many of them by multiple stresses, e.g. [Fe]

superoxide dismutase, glutathione S-transferase Z1, ger-
min-like oxidase and several catalases, peroxidases and
ascorbate peroxidases. Also, the strong and multiple-
stress induction of aspartyl protease, various cysteine
proteases, a subtilisin-like protease and a vacuolar

Table 6 Comparison of A. hypochondriacus (Ah) and A. tuberculatus (At) transcriptomes: number of hits (isotigs/
contigs) to herbicide target-site genes in the UniRef 100 and other databases

UniRef 100 Annotation Annotation: all databasesa

Herbicide Target-site Gene Hit in Ah and At Hit in Ah only Hit in At only Ah

Tubulin 11 4 4 34

Acetolactate synthase 2 0 1 5

Protoporphyrinogen oxidase 1 1 2 2

Glutamine synthetase 6 1 0 11

1-Deoxy-D-Xylulose-5-phosphate synthase 3 3 1 3

4-Hydroxyphenylpyruvate dioxygenase 3 0 0 3

Acetyl-CoA carboxylase 1 4 0 13

Phytoene desaturase 2 0 0 2

5-Enolpyruvylshikimate-3-phosphate synthase 0 0 0 1

Dihydropteroate synthase 0 0 0 1

D1 protein (plastidic gene) 0 0 0 2
anr, TAIR, UniRef 100, UniRef 50, Amaranthaceae ESTs databases.
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processing enzyme (VPE) supports a role for protein-
recycling processes in response to stress, similarly to
what was found during the salinity stress adaptation
competence process in the extremophile T. halophila
[115], whereas the expression of expansins, xyloglucan
endotransglycosylases, several cellulose synthase subu-
nits, glycine-, proline- and hydroxyproline-rich proteins
is supported by the observed capacity to adjust cell wall
properties in many plants undergoing stress [116,117].
Many of these carbohydrate-active genes were also
highly expressed in stems (see below).
Of particular importance were genes highly expressed

by several stress treatments, not previously reported in
amaranth or related halophyles/extremophyles. These
have obvious potential biotechnological applications and
could also contribute to the elucidation of molecular
mechanisms leading to resistance to multiple stress con-
ditions. A selection includes the following: Drm3,
required for de novo DNA methylation in Arabidopsis
thaliana where it is proposed to regulate gene silencing
processes [118]; Enhancer of SOS 3-1 which encodes a
chloroplast-localized protein that interacts with the criti-
cal SOS3 and SOS2 regulators of salt stress tolerance in
Arabidopsis [119,120]; YCF3 and HCF101 (high chloro-
phyll fluorescence 101) proteins deemed to be essential
for assembly and accumulation of the photosystem I
(PSI) complex and prevention of photo-oxidative
damage [121,122]; translational initiation factor eIF1,
found to be a determinant of sodium tolerance in yeast
and plants, implying that translation is a salt toxicity
target and that its recovery might be a crucial mechan-
ism for cell survival under NaCl stress conditions [123]
in addition to its proposed regulation of ion accumula-
tion and the intracellular redox status [124]; ATP-
dependent FtsH protease 9, involved in the degradation
of the D1 protein of photo-damaged (PSII), a step which
is needed to avoid the accumulation of excessive levels
of reactive oxygen species [125]; the ACD1-LIKE elec-
tron carrier, resembling the Arabidopsis-accelerated cell
death gene product, involved in the oxygenation of
pheophorbide a that is required to prevent photooxida-
tive destruction of the cell and also found to be up-
regulated during salt stress adaptation process in T.
halophila [115,126]; the prohibitin gene PHB1, family
members of which have been found to accumulate in
response to different stress conditions in many plants,
presumably to act as safeguards of mitochondrial func-
tion and integrity, triggers for the retrograde mitochon-
drion-to-nucleus signaling and/or mediators of the
interplay between H2O2 and NO, by a still undefined
mechanism [127]; the Yellow Stripe Like 6 protein,
whose members are hypothesized to participate in the
delivery of metal micronutrients to and from vascular
tissues and in metal tolerance and hyper-accumulation

[128]; putative linker histone H1 variant protein,
expressed by drought stress conditions in tomato, and
acting by a mechanism other than chromatin organiza-
tion that is proposed to involve a negative regulation of
stomatal conductance [129]; GASA-1/LtCOR1-like, a
gibberellin regulated protein putatively involved in the
regulation of fruit ripening [130] or the establishment of
the dormant state in cambial meristems of trees [131];
beta and gamma-tubulin chains, whose expression is
coincident with the increasingly important role played
by the cytoskeleton in the mediation of the plant cell’s
response to stress [132,133]; translation initiation factor
5A, found to be involved in an apparently isoform-
dependent regulation of stress response pathways and
resistance through a largely unknown mechanism [134];
argonaute 4-like gene, the primary protein involved in
methylation of heterochromatin and recently recognized
as a critical factor for small RNA mediated systemic sig-
naling required for plant (a)biotic stress responses and
nutrient deprivation [135,136]; a putative arginase, high-
lighting the role of arginine as a precursor for the bio-
synthesis of polyamines and nitric oxide, employed as
messengers for the adaptation of plants to stress
[137-139], and pore-forming toxin-like lectin protein
Hfr-2, recognized as an important biotic resistance fac-
tor in wheat against Hessian fly infestation and fungal
(Puccinia striiformis) infection, and implicated in the
vegetative phase change in maize [140-143], but with no
known function in abiotic stress regulation. The func-
tional characterization of a select set of multi-stress-
inducible A. hypochondriacus genes, in Arabidopsis,
tobacco and/or grain amaranth, is now under progress
in our laboratory.
Transcriptional profile in stems
Comparison of the stem-derived cDNA library (S6) with
those generated from leaves subjected to biotic and
abiotic stress (S2 to S5) permitted to identify a small
group of transcripts whose expression was exclusively
detected in stems. Remarkably, the accumulation of sev-
eral other transcripts was higher in stems than in foliar
tissue of amaranth plants exposed to (a)biotic stress (see
additional file 8). The transcript profile observed was
consistent with previously data reported for stem tran-
scriptomic analyses in Arabidopsis thaliana [144,145].
All annotated transcripts were classified into different
categories, similarly to the above studies.
Lignin and cuticule wax biosynthesis was represented by

genes coding for proteins presumably involved in mono-
lignol biosynthesis (e.g. cytochrome P450 reductases,
needed for the activity of several key cytochrome P450
enzymes of the phenylpropanoid pathway [144]), mono-
lignol transport (e.g. ABC transporters [146]) and cuticular
lipid export (e.g. white-brown-complex ABC transporter
family [147]). The modest number of up-regulated lignin
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biosynthesis genes that were detected was probably related
to the use of young amaranth plants, not yet undergoing
active lignification, for experimentation.
The carbohydrate-active enzyme category was highly

represented. This was not surprising considering that
these proteins play a fundamental role in cell wall bio-
synthesis and modification and are therefore tightly
regulated during stem development. It included a num-
ber of glycosyl transferases and several glycosyl hydro-
lases (GH) representing families having cellulase (GH9),
b-1,3-glucanase (GH3), xylanase (GH10), xyloglucan
endotransglucosylase-hydrolase (GH16), glucan endo-
1,3-beta-D-glucosidase (GH17), invertase (GH31) and b-
D-galactosidase (GH35) activity. These enzymes are var-
iously required for cell wall loosening and elongation,
formation of the secondary cell walls of vascular tissues,
hydrolysis of the xylan backbone, post-translational
modifications (as glycosylations) of proteins and mobili-
zation of energy in form of sucrose. Also detected were
pectin methylesterases (PME) involved in the modifica-
tion of the physical, chemical, and biological properties
of pectins. The concomitant expression of a PME inhibi-
tor probably represented a need to regulate PME in
young amaranth stems in order to avoid the wall rigidi-
fication associated with PME activity. In addition, a
putative b-expansin protein was detected; these proteins
modulate the interaction between hemi-celluloses and
cellulose presumably via a disruption of their shared
hydrogen bonds [145].
Within the extracellular oxido-reductases group were

found two peroxidases, belonging to the peroxidase 25
and 64 families, respectively. Peroxidases have been
found to be expressed at moderate to high levels in
developing stems, where they are believed to reduce cell
wall extensibility due to their role in the formation of
covalent links between pectin residues, hydroxyproline-
rich proteins like extensins, and lignin precursors. One
gene encoding a multicopper oxidase of the SKS family
(SKS5) was identified. The function of these proteins in
stem development is not well known, although the
expression of SKS5 was latterly found to be up-regulated
in metal hyper-accumulating ecotypes of Thlaspi caeru-
lescens [148]. Another oxido-reductase identified in
amaranth stems was an 2-OG-Fe(II) oxygenase protein
of unknown function that was recently found to be asso-
ciated with defense mechanisms against fungal infection
in Arabidopsis [149].
Several genes encoding proteins with putative interac-

tion domains with polysaccharides and/or other proteins
were identified. Many of the genes classified within this
category are kinases, peptide receptors and receptor-like
kinases that regulate developmental processes in plants
such as the CLAVATA1-like receptor [150], CLA-
VATA3/ESR-related receptor [151], Abnormal Leaf

Shape 2 receptor-like kinase [152], leucine-rich repeat
receptor-like kinase RLK7 [153] and LRR XI-23 kinase
[154]. A number of hydroxiproline-rich (glyco) proteins,
most probably representing arabinogalactan-proteins
(AGPs), structural proteins (e.g. extensins, proline-rich
proteins, PRPs) and a related prolyl 4-hydroxylase (cata-
lytic alpha-2 subunit) needed for the hydroxylation of
proline residues [155], were also highly expressed in
stems. Numerous roles for AGPs in plant development
have been suggested by means of their influence on cell
fate determination, somatic embryogenesis, and cell pro-
liferation. Also, AGPs have been assumed to be signal
molecules and to associate with pectic polysaccharides,
whereas extensins, PRPs and others (e.g. glycine-rich
proteins) have been shown to be expressed in specific
cell types including xylem and phloem tissues [145].
Also present were genes coding for a Rhomboid-like 2

endopeptidase, and two proteins with inhibitor activity:
a lipid transfer protein/trypsin-alpha amylase inhibitor
and a cysteine proteinase inhibitor. In addition, tran-
scripts for an F-Box protein (SKIP2) and a 26S protea-
some non-ATPase regulatory subunit, known to be
involved in the targeted degradation of proteins trig-
gered in response to various stimuli during growth and/
or diverse stress conditions, were also detected. It has
been suggested that proteinase activity and its modula-
tion by proteinase inhibitors is necessary for the proces-
sing and/or turnover of cell wall proteins, generation of
peptide signals, programmed cell death and/or balancing
cell expansion/proliferation rates, which are collectively
required for proper stem development [156,157].
Among the miscellaneous protein category were found

genes coding for proteins involved in lipid metabolism
(GDSL-lipases [158] and a putative glycerophosphoryl
diester phosphodiesterase [159]), which are suggested to
be important for stem development, a copper-binding
plantacyanin (ARPN), assumed to regulate oxido-reduc-
tion processes in cell walls, several proteins known to be
required for stem cell maintenance in the shoot apical
meristem (histone H2A; [160]; Aurora 2 histone kinase
[161]), metal tolerance (e.g. selenocysteine methyltrans-
ferase [162]) and components of the cytoskeleton, most
probably involved in cell division and elongation [163].
The finding of a transcript coding for the catalytic LigB
subunit of an aromatic ring-opening dioxygenase family
(i.e. a putative dopa dioxygenase) the prominent enzyme
in betacyanin biosynthesis, and of biosynthetically
related glycosyl transferases (GTs) (e.g. GT from Phyto-
lacca Americana and a UDP-GT) [164] was consistent
with the highly pigmented phenotype of the stem tissue
used to generate the sequenced cDNA library. The
determination of the structure and regulation of pig-
ment-related genes, their tissue- and stress-related
expression patterns, and their probable role in defense
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against insect herbivory in grain amaranth is now being
actively pursued in our laboratory. Several TFs were also
detected. In accordance with a previous report [144],
most of TFs found to be highly expressed in stem tissue
of grain amaranth were of the MYB, AP2-EREBP,
GRAS, bHLH-domain and homeodomain families (e.g.
WOX4 [165]). TFs in stems have been variously asso-
ciated with the regulation of vascular tissue bio-genesis
and differentiation, phenylpropanoid gene expression
and fiber development [144]. Finally, a high level of
expression was found for several abiotic stress and
defense-related genes in stems of A. hypochondriacus.
The presence of highly expressed defense-related genes
was in accordance with a recent report showing that
genes involved in plant defense and protective functions
were dominant in developing stems of Populus tricho-
carpa [156]. In this respect, the concomitant presence
of a putative jasmonate o-methyl transferase and a CXE
carboxylesterase gene coding for a protein that can pre-
sumably identify methyl jasmonate (MeJA) as its sub-
strate (in addition to methyl salicylate and indol-3-
acetate) in Actinidia arguta, argues in favor of a possible
role for MeJA in signaling, both within and between
amaranth plants, during biotic and/or abiotic stress
[166,167]. Other interesting genes identified in amaranth
stems to which an active role in pathogen defense has
been recently ascribed include those coding for an epox-
ide hydrolase 2 [168] and a VPE-1B [169], respectively.
The role of epoxide hydrolase in defense is thought to
be associated with its involvement in detoxification, sig-
naling, and/or metabolism of antimicrobial compounds,
whereas VPE’s importance is believed to derive from its
involvement in elicitor-triggered immunity connected
with the combined induction of a hypersensitive
response (HR) and stomatal closure. As mentioned
above, VPE expression has also been associated with
responses to abiotic stress.

Conclusions
The work herewith presented describes the first large-
scale 454 pyrosequencing transcriptomic analysis of A.
hypochondriacus, an under-utilized and stress-tolerant
crop known to produce highly nutritious seeds and foli-
age. This study allowed the identification of numerous
genes that are presently been analyzed to determine their
role in unknown or poorly understood aspects of grain
amaranth physiology, such as the mechanisms employed
to tolerate defoliation, either by mechanical damage or
insect defoliation. Furthermore, a digital expression ana-
lysis of transcriptome-derived data allowed the identifica-
tion of numerous genes that are expressed in response to
(a)biotic stress and also in a stem-specific manner. This
information greatly complemented the relatively scant
knowledge regarding stress-related gene expression in

grain amaranth, particularly with regards to insect her-
bivory and bacterial infection. Furthermore, it uncovered
many multiple-stress genes that could contribute to the
effective response capacity against several types of envir-
onmental insults often reported in grain amaranth.
Finally, a comparison with transcriptomic data obtained
from an amaranth weedy species produced large differ-
ences in the number and types of transcripts detected.
Although this outcome most probably resulted from fun-
damental experimental differences in the way the respec-
tive transcriptomic data was obtained, it is tempting to
speculate that such a difference reflected a large degree
of divergence between wild and cultivated amaranths
generated during speciation and/or as a consequence of
the domestication of A. hypochondriacus.
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