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Background: Ongoing technological advances in genome sequencing are allowing bacterial genomes to be
sequenced at ever-lower cost. However, nearly all of these new techniques concomitantly decrease genome
quality, primarily due to the inability of their relatively short read lengths to bridge certain genomic regions, e.g,,
those containing repeats. Fragmentation of predicted open reading frames (ORFs) is one possible consequence of
this decreased quality. In this study we quantify ORF fragmentation in draft microbial genomes and its effect on
annotation efficacy, and we propose a solution to ameliorate this problem.

Results: A survey of draft-quality genomes in GenBank revealed that fragmented ORFs comprised > 80% of the
predicted ORFs in some genomes, and that increased fragmentation correlated with decreased genome assembly
quality. In a more thorough analysis of 25 Streptomyces genomes, fragmentation was especially enriched in some
protein classes with repeating, multi-modular structures such as polyketide synthases, non-ribosomal peptide
synthetases and serine/threonine kinases. Overall, increased genome fragmentation correlated with increased false-
negative Pfam and COG annotation rates and increased false-positive KEGG annotation rates. The false-positive
KEGG annotation rate could be ameliorated by linking fragmented ORFs using their orthologs in related genomes.
Whereas this strategy successfully linked up to 46% of the total ORF fragments in some genomes, its sensitivity
appeared to depend heavily on the depth of sampling of a particular taxon’s variable genome.

Conclusions: Draft microbial genomes contain many ORF fragments. Where these correspond to the same gene
they have particular potential to confound comparative gene content analyses. Given our findings, and the rapid
increase in the number of microbial draft quality genomes, we suggest that accounting for gene fragmentation
and its associated biases is important when designing comparative genomic projects.

Background

Beginning with the bacteriophage ¢$X174 genome in
1977 by Sanger et al. [1], microbes have spearheaded
technological advances in genome sequencing. This is
almost certainly because their small size and limited
genomic complexity (at least compared to Eukaryotes)
makes genomic analysis especially tractable, and because
of their founding role and long history in the study of
molecular biology. Microbial genomics also yields enor-
mous and otherwise inaccessible informational gains
compared to the relatively few easily observable pheno-
types of microbes (at least compared to macroorgan-
isms). This preponderance shows no signs of abating;
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the current Genomes Online Database (GOLD; http://
www.genomesonline.org/cgi-bin/GOLD/bin/gold.cgi;
accessed August 15, 2011) lists 8212 bacterial and 308
archaeal genome projects either completed or ongoing.
These statistics do not include a myriad of sequenced
viruses or projects not registered in GOLD.

For approximately 30 years following its original pub-
lication in 1977 [2], the Sanger dideoxy terminator
method was the standard for DNA sequencing. Whereas
this technology is now fully mature and capable of rou-
tinely yielding reads > 800 bp long, its reliance on capil-
lary electrophoresis created a ceiling for the volume and
speed of sequences that can be generated inexpensively
by this approach [3]. So-called “next-” or “second-gen-
eration” sequencing approaches emerged in 2005 follow-
ing the release of the 454 pyrosequencing platform
(Roche), followed closely thereafter by the Illumina/
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Solexa (Illumina) and SOLiD (Applied Biosciences/Life
Technologies) systems [3-6]. Second-generation sequen-
cing platforms all produce reads shorter than those
achieved by modern Sanger sequencing, although new
PacBio and Roche FLX Titanium XL+ technologies may
offer alternatives. Regardless, short-read sequencing
remains the most cost-effective on a per-base basis (L.
A. Pannacchio, unpublished data), leading to the domi-
nance of these technologies (especially Illumina) in
terms of market share http://www.genomicslawreport.
com/wp-content/uploads/2011/04/JP-Morgan-NGS-
Report.pdf.

Next-generation sequence assembly is an inherently
challenging computational problem, stemming from the
relatively low amount of data contained within each
sequencing read, the huge volumes of data produced,
and platform-specific error frequencies and profiles [7]
including difficulties with regions of high %GC bias [8]
and homopolymeric regions leading to frame-shifts [9].
Simulations suggest that completely unbroken coverage
of a bacterial genome is impossible using short read
lengths [10,11], although to some extent this can be
compensated for using (more expensive) paired-end
approaches [12]. Improving a draft-quality genome to
completion is typically costly and laborious due to its
general requirement for targeted PCR and Sanger
sequencing. Fragmented genomes should therefore be
the expectation from modern genome sequencing pro-
jects, at least for the foreseeable future, given the cur-
rent economic reality and the market dominance of
short-read sequencing platforms.

Consequently, data occurring between genomic contig
ends are omitted from draft-quality genomes. This
affects comparative analyses using phylogenetic techni-
ques; because the state of these missing characters can-
not be otherwise estimated, their phylogenetic analysis
is impossible. In contrast, analyses based on presence-
absence of particular open reading frame (ORF) types, e.
g., using BLAST [13], can be performed using ORF frag-
ments. These estimations are primarily susceptible to
two types of errors: false-negatives, where ORFs that
should be present are not annotated; and false-positives,
where multiple fragments actually belonging to the
same ORF are annotated separately. In the present
work, we attempt to understand the extent and conse-
quences of the biases partial ORFs introduce into anno-
tation analyses. Furthermore, we attempt to mitigate
these biases by linking fragmented ORFs based on their
relatedness to homologs in closely-related organisms.
We acknowledge that ORF fragmentation can introduce
other biases into comparative analyses, e.g., due to the
increased difficulty of correct ORF modeling [14] or
potentially, misannotation due to the lower informa-
tional content of ORF fragments relative to full-length
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sequences. However, these errors fall outside the scope
this current work.

Results

Extent of predicted ORF fragments in publicly available
draft genomes

Whereas it is intuitive to expect ORF fragmentation in a
draft genome due to the existence of multiple contigs,
the extent of this problem is currently unknown. The
majority of draft genomes in the NCBI database at the
time of this study contained tens to hundreds of partial
ORF fragments, although some fell both above and
below this range (Figure 1a). The largest number of
OREF fragments in a particular genome was 8,717 and
the maximum percentage of the total number of pre-
dicted ORFs composed of partial sequences was 81.4%
(Figure 1b). The increased numbers of ORF fragments is
a result of decreased assembly quality, as indicated by
the negative correlation of both the number of frag-
ments and the percentage of the total number of pre-
dicted ORFs composed of partial sequences with N50
(Figures 1c and 1d). Note that, whereas N50 values
from different genomes cannot be directly compared
due to their dependence on genome size, the strong
negative correlation with genome fragment abundance
supports its use here as an estimate of genome quality.
These distributions likely reflect the technological tran-
sition from Sanger sequencing towards 454-, lllumina-
and SOLID-based methods.

The effect of partial ORFs on annotation efficacy

As noted, genome fragmentation can affect ORF annota-
tion either by erroneously omitting ORFs or by duplicat-
ing annotations for fragments originating from the same
OREF. We examined the effect of fragmentation on ORF
annotation in 25 Streptomyces genomes using three dif-
ferent annotation types, representing different annota-
tion targets (e.g., Pfam primarily annotates domains
whereas COG and KEGG focus more on the entire pro-
tein) and sensitivities (e.g., KAAS incorporates annota-
tion heuristics [15] whereas COG and Pfam annotations
were based solely on RPSBLAST). Genome assembly
quality was approximated using the percentage of pre-
dicted ORFs composed of fragments and the average
ORF length. Note that these metrics reflect genome
quality oppositely: high quality genome assemblies have
longer mean ORF lengths and lower percentages of par-
tial ORFs.

Regardless of the genome quality metric used, ORF
fragmentation caused significant over-annotation using
KEGG and significant under-annotation using Pfam
(Table 1). Some under-annotation was also observed
using COG, although this was not as significant as that
observed for Pfam (Table 1). Under-annotation using
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Figure 1 Quality of draft genomes available in the NCBI database as of May 10, 2011. The number of ORF fragments predicted by
Prodigal and the percent of the total number of predicted ORFs (including ORF fragments) composed of ORF fragments, respectively, ordered
by increasing number of ORF fragments (a and b) or plotted versus N50, the size of the contig for which 50% of the genome is contained in
contigs of greater than or equal size (c and d). The number of ORF fragments, the percent of the total number of predicted ORFs composed of
ORF fragments and N50 were logarithmically transformed to de-emphasize extreme values.
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Pfam may reflect the increased omission of partial or
entire domains due to ORF fragmentation. Over-annota-
tion using KEGG suggests that this annotation type is
especially sensitive. All trends remained, although with
lowered statistical significance, when Streptomyces sp.
PP-C42, the only genome in our dataset generated using
solely Illumina sequencing [16], was excluded (Table 1).
This may suggest that annotation difficulties are espe-
cially exacerbated by some applications of short-read
genome sequencing technologies.

Identifying functional categories enriched in partial ORFs

To further explore the effect of ORF fragmentation, we
separately annotated the partial and complete ORFs
according to their COG superfamilies in the draft genomes

from our Streptomyces dataset (Figure 2). We aggregated
the COG superfamily annotations for partial and complete
OREFs in this analysis because the low number of partial
fragments in some genomes became non-representative
when converted to a percentage. Furthermore, the average
percentage of ORFs belonging to some COG superfamilies
for these genomes exhibited a strongly bimodal distribu-
tion (i.e., some genomes differed greatly between partial
and complete ORFs, whereas others did not), somewhat
undermining statistical inferences based on the mean.
Despite these limitations, most COG superfamilies were
represented by complete and partial ORFs approximately
equally (Figure 2). This suggests that ORF fragmentation
is a largely stochastic process driven by local, sequence-
specific characteristics. However, three COG superfamilies
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Table 1 Effect of genome quality on annotation efficacy
Uncorrected
Pfam? coc? KEGG®
Including PP-C42 % Partial ORFs fragments vs. % all ORFs annotated r=-0.854 r=-0.551 r=0.586
P < 0.001 P=10012 P = 0.007
Mean ORF length vs. % all ORFs annotated r=0785 r=0526 r = -0403
P < 0.001 P = 0017 P = 0078
Excluding PP-C42 % Partial ORF fragments vs. % all ORFs annotated r=-0421 r=-0.019 r=0415
P = 0073 P = 0939 P =0078
Mean ORF length vs. % all ORFs annotated r = 0406 r=0.157 r=-0016
P = 0.084 P =0.520 P = 0949
Corrected using matched partial ORF sets
Pfam COG KEGG
Including PP-C42 % Partial ORFs fragments vs. % all ORFs annotated r=-0.861 r=-0595 r= 0469
P < 0.001 P = 0.007 P = 0.050
Mean ORF length vs. % all ORFs annotated r=0787 r= 0563 r=-0284
P < 0.001 P=0012 P=0253
Excluding PP-C42 % Partial ORF fragments vs. % all ORFs annotated r=-0338 r=0.027 r=0350
P=0.170 P =0915 P =0.168
Mean ORF length vs. % all ORFs annotated r=0378 r=0.155 r= 0052
P=0122 P =0.538 P = 0842

“Pearson correlations between annotation frequency and genome quality, as represented by the percent of the predicted ORFs composed of partial sequences
and mean ORF length. Complete genomes are excluded in all cases; including them has essentially no effect.

were substantially enriched in partial ORF fragments:
“replication, recombination and repair”, “signal transduc-
tion mechanisms” and “secondary metabolites biosynth-
esis, transport and catabolism” (Figure 2). Inspection of
the underlying data revealed that these enrichments were
almost entirely due to three COG families: COG1020-
non-ribosomal peptide synthetase (NRPS) modules and
related proteins, on average 0.26% of complete ORFs but
2.25% of partial ORFs; COG3321-polyketide synthase
(PKS) modules and related proteins, on average 0.20% of
complete ORFs but 6.70% of partial ORFs; and
COGO0515-serine/threonine protein kinase, on average
0.41% of complete ORFs but 2.01% of partial ORFs.
COG1020 and COG3321 both belong to the “secondary
metabolites biosynthesis, transport and catabolism” super-
family, and COGO0515 belongs to both the “replication,
recombination and repair” and “signal transduction
mechanisms” superfamilies. Fragmentation of PKSs,
NRPSs and serine/threonine kinases are likely due to their
multi-modular structures which are composed of homolo-
gous modules [17,18]. The repetitive nature of these
enzymes, along with the lower per-base information con-
tent inherent to the GC-bias characteristic of actinomy-
cetes, is likely to complicate genome-based drug-discovery
efforts based on short-read sequencing platforms.

Linkage of partial ORFs using homologs in related
genomes

Whereas missing data in fragmented genomes cannot be
compensated for without improvements to the genome
sequencing and assembly procedure itself, the same is

not necessarily true for fragments leading to falsely
inflated annotation estimates. We hypothesized that
linkage between some fragmented ORFs could be
inferred based on their common homology to complete
ORFs in other genomes. After extensive parameteriza-
tion to find the most sensitive and specific similarity
and coverage thresholds for fragment assembly using
our algorithm (Additional files 1 and 2), a substantial
proportion of ORF fragments could be so linked, ran-
ging from 9.3% for S. clavuligerus ATCC27064 #2 up to
46.2% for S. roseosporus NRRL11379 (Table 2). The
parameters used yielded a low overall false positive rate
for the entire dataset (< 2%) as determined by the con-
gruency of the linked ORF fragment sets with scaffold
information (Additional files 1 and 2).

Inspection of the relationship between genetic related-
ness and partial ORF linkage revealed insights into the
varied rate of partial ORF linkage observed between
genomes in our test dataset (Figure 3). In some cases,
genome relatedness influenced partial ORF linkage, with
genomes having average amino acid identities (AAls) <
80% (the majority of the dataset; Figures 3 and 4) link-
ing few sets of partial ORFs (Figure 3). However, many
exceptions to this trend could also be found resulting
and an overall lack of correlation between the AAI
between two compared genomes and the number of
linked fragments (R* = 0.006; P = 0.061). Using the per-
centage of orthologous full-length proteins as the metric
of genome similarity yielded equivalent results (data not
shown). Even more important than genome relatedness
per se was the degree to which related samples sampled
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Figure 2 Mean partial and complete ORFs for each COG superfamily. The values shown are expressed as a percentage of the total number
of partial or complete ORFs in the draft Streptomyces genomes examined. COG superfamily single-letter abbreviations are bracketed.

B Complete ORFs
@ Partial ORFs

Replication, recombination and repair (L)
Cell motility (N)

General function prediction only (R)
Function unknown (S)

Signal transduction mechanisms (T)
Defense mechanisms (V)

Cytoskeleton (Z)

Cell wall/membrane/envelope biogenesis (M)
Inorganic ion transport and metabolism (P)

Posttranslational modification, protein turnover, chaperones (O)
Intracellular trafficking, secretion, and vesicular transport (U)

Secondary metabolites biosynthesis, transport and catabolism (Q)

the variable genome of the taxon of interest [19]. Both
the influence and variability in this parameter are exhib-
ited by S. roseosporus NRRL15998, for which more par-
tial ORFs were linked using Streptomyces sp. XylebKG-1
as a reference (90.9% AAI, 165 sequences matched)
compared with either S. roseosporus NRRL11379 (99.7%
AAI 102 sequence matched) or S. griseus subsp. griseus
NBRC13350 (90.7% AAI 10 sequences matched; Figure
3). (Streptomyces sp. XylebKG-1 and S. griseus subsp.
griseus NBRC13350 are 98.4% related to each other by
AAT; Figure 4.) Note that 95-96% AAI correlates to 70%
DNA-DNA hybridization, i.e., bacterial species as cur-
rently defined [20]. In contrast, the three replicate S.

clavuligerus ATCC27064 genomes (derivatives of the
same strain sequenced by different institutes) could link
relatively few of each other’s partial ORFs despite the
high relatedness of these genomes (Table 2). This may
indicate that: (i) some genome fragments are inherently
not linkable using homology e.g., due to the presence of
multiple, closely related paralogs in a genome; (ii) some
highly similar genome regions may fragment similarly,
requiring slightly more divergent homologs for linkage;
(iii) even extremely highly related genomes (such as the
S. clavuligerus ATCC27064 replicates) can differ in
some respect, e.g., plasmid content [21]. Regardless,
these results suggest that this homology-based approach
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Table 2 Efficacy of partial ORF linkage®
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Strain True matching fragments linked (%) False matching fragments linked (%)°
S. albus 1074 127 (22.1) 2 (04)
S. clavuligerus ATCC27064 (#1) 58 (31.2) 0 (0)
S. clavuligerus ATCC27064 (#2) 40 (9.3) 0 (0)
S. clavuligerus ATCC27064 (#3) 2 (20.7) 2 (3.5
S. ghanaensis ATCC14672 182 (28.04 0 (0)
S. griseoflavus Tu4000 326 (27.5) 2(0.2)
S. hygroscopicus ATCC53653 220 (20.2) 1(0.1)
S. lividans TK24 117 (27.9) 2 (0.5)
S. pristinaespiralis ATCC25486 207 (20.7) 0 (0)
S. roseosporus NRRL11379 2 (46.2) 7 (1.8)
S. roseosporus NRRL15998 2 (41.6) 8 (1.7)
Streptomyces sp. XylebKG-1 0 (0) 0 (0)
Streptomyces sp. C 6 (17.9) 9 (1.1)
Streptomyces sp. el4 158 (17.7) 2(0.2)
Streptomyces sp. Mg1 46 (12.0) 0 (0)
Streptomyces sp. PP-C42 887 (106 No scaffolds
Streptomyces sp. SPB74 145 (15.8 12(13)
Streptomyces sp. SPB78 109 (128 6 (0.7)
S. sviceus ATCC29083 200 (28 7 (1.0)
S. viridochromogenes DSM40736 102 (31 8 (24)

@ All Streptomyces genomes except Streptomyces sp. PP-C42 and each query genome were used to link partial ORFs in that query genome. The parameters used
were: > 20% identity to and > 60% coverage between the query and reference sequence and = 50% similarity between the identities of each partial fragment to

the reference sequence.

bFalse positive linkages were identified from their incongruencies with the scaffold information

to fragment linkage might become more effective as
more related genomes become available, as is expected
due to the ever-decreasing cost of genome sequencing.
However, selecting appropriate reference genomes
remains somewhat empirical due to the current lack of
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Figure 3 The effect of genome relatedness on partial ORF
linkage. Cumulative and genome-specific linkage of ORF fragments
are plotted according to increasing AAl divergence between S.
roseosporus NRRL15998 and the other genomes in the Streptomyces
test dataset. Reference genomes were ordered for analysis by their
decreasing AAl to S. roseosporus NRRL15998.

a strong correlation between genome similarity and frag-
ment linkage.

To determine whether our partial ORF linkage
method could compensate for errors in KEGG over-
annotation, we tested the correlation between the num-
ber of KEGG annotations after correction and both the
mean ORF length and percentage of the total number of
ORFs composed of fragments as described above (Table
1). All correlations between the proxies used to repre-
sent genome quality and the percentage of KEGG anno-
tations decreased in significance or became statistically
non-significant following fragment linkage. These results
suggest that over-annotation can at least be partially
compensated for by fragment linkage, especially as the
variable genome for each species becomes better
sampled. Similar correction of the COG and Pfam anno-
tations increased the degree of under-annotation where
this was previously statistically significant, albeit only
slightly (Table 1).

Discussion

Next-generation DNA genome sequencing has irrevoc-
ably moved microbiology (and much of biology, for that
matter) towards extensive data volumes and the conco-
mitant challenges of their analyses. These advances are
not without attendant compromises, especially the eco-
nomic trade-off between dataset breadth and quality
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Figure 4 Phylogenetic tree of the Streptomyces genomes used in this study. This neighbor-joining phylogenetic tree is based on the
average amino acid identity, calculated using each non-fragmented bidirectional best BLAST pair having > 30% identities over > 70% of both
protein lengths. The tree was rooted based on a 165 rRNA gene tree constructed for all actinobacterial type strains which was consistent in all

Streptomyces pristinaespiralis ATCC25486

which appears to be increasingly towards the former at
the expense of the latter. Emerging technologies such as
PacBio and 454 FLX Titanium XL+ offer enhanced read
lengths, but these formats still cannot match the per-
base costs of shorter-read sequencing platforms.
Cheaper short read techniques therefore seem poised to
dominate the sequencing market for the foreseeable
future, especially given that human genome re-sequen-
cing, the main economic driver for innovation in gen-
ome sequencing technologies, is focused on clinical
personal genomics where short reads appear largely suf-
ficient for reference assembly and SNP detection.

Given this technological reality, draft genomes are
likely to dominate microbial genomic data for the
immediate future. Here, we have attempted to address
some of the limitations of this data type for comparative
genomics analysis. We find that ORF fragmentation has
the potential to dramatically cause false-negatives in
some annotation types, especially those relying on rela-
tively small stretches of sequence (e.g., Pfam domains;
Table 1). These biases will be difficult to address with-
out improvements in genome quality. Reciprocally, we
also find that ORF fragmentation can cause false-posi-
tive annotations of multiple ORF fragments belonging to
the same complete ORF where sufficiently sensitive
detection methods exist (e.g., KEGG; Table 1). However,
we also suggest that these problems can likely be at
least partially mitigated by linkage of protein fragments
based on their complete homologs in related organisms
(Table 1, Figure 3). The impact of a well-sampled vari-
able genome on ORF fragment linkage is especially intri-
guing (Figure 3), and suggests that sampling multiple
related strains will not only more accurately represent

biological diversity but will also improve the data quality
of all these strains by unmasking otherwise obscured
homologies among ORF fragments. This is likely to be
particularly important for Streptomyces and other similar
organisms, for which the most biotechnologically inter-
esting genes involved in secondary metabolism are both
variable between strains [22] and highly fragmented
(Figure 2), and assembly is particularly challenged by
low per-read information content due to %GC bias.

Although our analyses indicate the potential for biases,
they in no way diminish the value of draft bacterial gen-
ome sequencing. Indeed, as described above, taking advan-
tage of low cost-sequencing is essential to begin generating
sufficient representation of the vast microbial diversity
present in nature. With this increased sampling we can
begin to differentiate between neutral and adaptive (or at
least conserved) genome contents. However, we must also
be aware of the limitations of these data types. For exam-
ple, if > 80% of the predicted ORFs in a given bacterial
genome are likely to be fragmented, analyses that can
accommodate ORF fragmentation, even if imperfectly, will
be crucial. Extensively fragmented draft genomic data will
be insufficient for some applications, even with down-
stream in silico correction. This will necessitate proper
resource allocation to ensure data usability for a given
experimental objective. Furthermore, data analysis require-
ments scale even faster than data accumulation, e.g., all-
versus-all comparisons of 7 sequences most simply require
n* comparisons. It may therefore be necessary to use judi-
cious subsets of a global dataset when attempting frag-
ment linkage. In the end, there is no substitute for well
designed, tractable research; draft sequencing, for all its
promise and pitfalls, is no different.
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Conclusions

Draft genome quality will be the dominant form of
microbial genomic data produced for the immediate and
foreseeable future. This approach produces highly frag-
mented genomes, which concomitantly translates into
abundant predicted ORF fragments. These fragmented
OREFs lessen annotation efficacy, especially of repeating,
multi-modular proteins. However, this problem can be
somewhat ameliorated by increased sampling of a spe-
cies’ variable genome. Therefore, despite their great uti-
lity in many applications, there exist disadvantages to
draft genome sequencing that need to be addressed by
appropriate experimental design and deployment of
sequencing resources to effectively answer the study
questions posed.

Methods

Dataset construction

The contigs comprising all 1,510 partial genome
sequences were obtained from the NCBI FTP folder “gen-
omes/Bacteria_ DRAFT” on May 10, 2011. Genes and their
corresponding proteins were annotated using Prodigal
v2.00 [23] according to default parameters, and the num-
bers and fragmentation of predicted proteins, the N50 and
the %GC for each genome enumerated using a custom
Perl script. (N50 is the contig size for which 50% of the
genome sequence exists in contigs of at least that size. We
define %GC bias as deviation from 50% (C+G)/(A+C+G
+T), as would be expected if all possible nucleotide substi-
tutions were equally probable.) ORF fragments were auto-
matically annotated by Prodigal as ORFs that were
bounded by a contig end. The list of Streptomyces gen-
omes used for more detailed analysis is given in Table 3.
These genomes were selected because they vary consider-
ably in quality, from complete genomes to one generated
exclusively using Illumina sequencing. They also range
considerably in their phylogenetic relatedness (Figure 4),
including three separate sequencing projects for the S. cla-
vuligerus ATCC27064 using derivatives of the same strain.
Streptomyces genomes are also expected to be especially
challenging to assemble using short-read techniques due
to their substantial %GC bias [22]. All of the selected gen-
omes (with the exception of Streptomyces sp. PP-C42) had
accompanying scaffold information, which allowed estima-
tion of the false positive rate of our partial ORF linkage
procedure (see below). Annotated protein sequences were
downloaded from NCBI for those strains having complete
genomes; otherwise, proteins were predicted from nucleo-
tide contigs using Prodigal v2.00 [23] as described above.

Gene annotation
The COG v1.0 and Pfam v25.0 databases were down-
loaded from the NCBI FTP site and queried by
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RPSBLAST with an expectation cut off of 1 x 10~ using
the predicted proteins in the Streptomyces dataset. The
top COG and all Pfam hits for each query sequence
were recovered for analysis. A Pfam annotation con-
ducted using an expectation cut off of 1 x 107 yielded
similar but slightly stronger statistical correlations com-
pared with those shown in Table 1 (data not shown).
KEGG classifications for the predicted proteins in the
Streptomyces dataset were annotated using the KAAS
web server using the single direction best BLAST
method [15]. Statistical analyses were all conduced using
R v2.13.1.

Partial ORF linkage

Our partial ORF linkage algorithm was implemented as
a Perl script, freely downloadable from the Currie lab
website http://currielab.wisc.edu/. Note that this current
implementation was designed to use pair-wise BLAST
searches of entire proteomes due to the additional utility
of these files for calculating AAIs. Other configurations
(e.g., BLASTing only partial sequences) may be more
computationally efficient depending on particular
experimental needs. Pair-wise comparisons of each pre-
dicted proteome were conducted using BLASTp [13]
with the following parameters: -a 8 -b 20 -v 20 -e 1le-05
-F F. AAIs were calculated according to Konstantinidis
and Tiedje [20]. Pair-wise AAls were averaged for each
genome to construct a double-sided distance matrix,
from which a neighbor-joining tree was constructed
using NEIGHBOR in the PHYLIP package v3.69 [24].

A flow diagram of our approach is presented in Figure
5. Essentially, complete homologs in genome #2 were
sought for protein fragments predicted in genome #1,
which were then used to detect other protein fragments
predicted in genome #1 likely to comprise a matching
set with the first predicted protein fragment. The strin-
gency of this matching process was constrained by user
specified thresholds for: (i) the minimum percent iden-
tity required to define homologs between genomes #1
and #2; (ii) the minimum percent overlap required
between the homologs in genomes #1 and #2; (iii) the
minimum difference in the percent identities of a set
protein fragments to a complete reference homolog
required to consider multiple predicted protein frag-
ments in genome #1 as belonging to the same predicted
protein fragment set; and (iv) the number of overlapping
amino acids allowed between predicted protein frag-
ments in a set. Searches were also conducted recipro-
cally using homologs in genome #1 to find matching
sets of predicted partial proteins in genome #2. The
fragment-matching process was further constrained by
allowing only two predicted partial proteins truncated at
either their 5’- or 3’-ends in the same predicted protein


http://currielab.wisc.edu/

Klassen and Currie BMC Genomics 2012, 13:14
http://www.biomedcentral.com/1471-2164/13/14

Table 3 Characteristics of the Streptomyces genomes used in this study
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Strain Contigs/ Genome Size N50 Complete/Partial Ref.; NCBI project accession number
Scaffolds (bp) (bp) ORFs
(% Partial)”
S. albus J1074 501/2 6,619,469 23,675  5442/575 (9.6) The Broad Institute, unpublished; PRINA37045
S. avermitilis MA-4680 Complete 9,119,895 - 7676/0 (0) [25,26]; PRINA47909
S. bingchenggensis BCW-1 Complete 11,936,683 - 10035/0 (0) [27]; PRINA35119
S. clavuligerus ATCC27064 (#1)  279/2 8,528,397 50,310 6893/186 (2.6) [28]; PRINA42475
S. clavuligerus ATCC27064 (#2)  597/158 6,729,086 16,887 5692/430 (7.0) The Broad Institute, unpublished; PRINA28551
S. clavuligerus ATCC27064 (#3)  89/5 9,134,976 203,387  7567/58 (0.8) [21]; PRINA19249
S. coelicolor A3(2) Complete 9,054,847 - 8153/0 (0) [29]; PRINA35153
S. flavogriseus ATCC33331 Complete 7,656,104 - 6763/0 (0) The Joint Genome Institute, unpublished;
PRINA37207
S. ghanaensis ATCC14672 616/3 8,223,278 24,170  7166/649 (8.3) The Broad Institute, unpublished; PRINA37041
S. griseoflavus Tu4000 927/1 7,364,052 14,024 6076/1187 (16.3) The Broad Institute, unpublished; PRINA37185
S. griseus subsp. griseus Complete 8,545,929 - 7136/0 (0) [30]; PRINA36231
NBRC13350
S. griseus XylebKG-1 4/2 8,731,583 603,0272 7374/5 (0.1) [31]; PRINA38545
S. hygroscopicus ATCC53653 783/2 10,466,286 27,79% 8647/1092 (11.2) The Broad Institute, unpublished; PRINA37181
S. lividans TK24 333/1 8,190,887 49,556 7183/419 (5.5) The Broad Institute, unpublished; PRINA37179
S. pristinaespiralis ATCC25486 844/1 7,633,609 17,558 6283/1000 (13.7) The Broad Institute, unpublished; PRINA36845
S. roseosporus NRRL11379 280/2 7,763,119 57471 6737/394 (5.5) The Broad Institute, unpublished; PRINA65085
S. roseosporus NRRL15998 371/1 7,560,086 38,584 6493/462 (6.6) The Broad Institute, unpublished; PRINA55545
S. scabiei 87-22 Complete 10,148,695 - 8746/0 (0) Wellcome Trust Sanger Institute, unpublished;
PRINA35395
Streptomyces sp. C 652/4 7,916,041 25608  6906/815 (10.6) The Broad Institute, unpublished; PRINA37177
Streptomyces sp. el4 716/13 7,146,196 21,378 5780/893 (13.4) The Broad Institute, unpublished; PRINA38087
Streptomyces sp. Mg1 466/127 7,105,723 25,079 6344/384 (5.7) The Broad Institute, unpublished; PRINA36841
Streptomyces sp. PP-C42 7074/- 6,467,850 1414 2503/8392 (77.0) [16]; PRINAG3125
Streptomyces sp. SPB74 845/2 6,505,970 13,132 5401/917 (14.5) The Broad Institute, unpublished; PRINA36843
Streptomyces sp. SPB78 694/4 6,897,976 20,678  5723/853 (13.0) The Broad Institute, unpublished; PRINA37173
S. sviceus ATCC29083 552/1 9,055,790 33,523 7921/711 (8.2) The Broad Institute, unpublished; PRINA36847
S. viridochromogenes 226/1 10,988,130 109490 7473/328 (4.2) The Broad Institute, unpublished; PRINA37183

DSM40736

¢ Predicted proteins for complete genomes were downloaded directly from the NCBI database; all others were predicted using Prodigal.

—&

For a genome pair

BLAST partial
ORFs in #1 vs #2
Repeat for
all possible .
genome pairs Find best complete
Find other partial ORFs matching ORFs in #2
in #1 matching the

complete ORFs in #2
——

|

Keep the fragment sets having the highest AAI to the complete
reference ORF, and add new set members where congruent

Figure 5 Flow diagram of the partial ORF linkage approach
used in this work.

fragment set; no limit was set for predicted partial pro-
teins truncated at both their 5’- and 3’-ends. Note that
this step is especially sensitive to errors in predicting
whether a protein is truncated at one or both ends,
which were often encountered in our test dataset, but
was included to be more conservative. Finally, this same
matching process was repeated using multiple predicted
proteomes, with matched sets being rejected and
replaced if alternative sets are found in another pre-
dicted proteome that satisfy the above criteria but have
a higher mean AAI between the matched protein frag-
ments and their complete protein homologs in another
proteome. This step assumes that homologs with higher
AAIs are more likely to be orthologous than more diver-
gent ones and are therefore more reliable as scaffolds
for matching partial protein fragments. We note that
orthology is not an explicit requirement for fragment
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recruitment; a reference paralogous protein might the
closest homolog to a query when the ortholog in that
reference genome has been lost. Whereas we used trans-
lated protein sequences for fragment linkage to better
compensate for the genetic divergence between the gen-
omes that we analyzed, nucleotide sequences could be
similarly analyzed if several closely-related genomes are
available.

Additional material

Additional file 1: Parameterization of the fragment linkage
algorithm by varying the maximum percentage identities, sequence
overlap and minimum difference in the percent identities of a set
protein fragments to a complete reference homolog. False and true
positive linkage results were defined based on their concordance with
the adjacent location of each fragment pair on the same contig. Each
analysis was conducted on the entire Streptomyces test dataset except
for Streptomyces sp. PP-C42, for which there was not available scaffold
information.

Additional file 2: Parameterization of the fragment linkage
algorithm by varying the maximum percentage of identities and
sequence overlap while holding the minimum difference in the
percent identities of a set protein fragments to a complete
reference homolog constant at 40%. The height of the surface
represents the number of fragments matched using each parameter
combination, and the color represents the percentage of true positives
recovered using those parameters by reference to the available scaffold
information.
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